

ADVANCES IN COMPOSITE MATERIALS

Iskandar Idris Yaacob Md Abdul Maleque Zahurin Halim

IIUM PRESS

INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA

ADVANCES IN COMPOSITE MATERIALS

Iskandar Idris Yaacob Md Abdul Maleque Zahurin Halim

Published by: IIUM Press International Islamic University Malaysia

First Edition, 2011 ©HUM Press, HUM

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher.

Perpustakaan Negara Malaysia

Cataloguing-in-Publication Data

Iskandar Idris Yaacob, Md Abdul Maleque & Zahurin Halim: Advances in Composite Materials.

ISBN: 978-967-418-231-1

Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council)

Printed by:

HUM PRINTING SDN. BHD.

No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan

Table of Content

Chapter 1	1
A Critical Review of Metal Matrix Composite Brake Rotor Md Abdul Maleque	
Chapter 2 Technology of Moulding for Composite Auto Brake Rotor	7
Md Abdul Maleque Chapter 3 Fabrication of Nickel Aluminide (Ni ₃ Al) by Hot Isostatic Pressing (HIP) Faizal Abu Zarim, Iraj Alaei, I.I. Yaacob	13
Chapter4 Investigation of Mechanically Alloyed Nd-Fe-B Powder	17
I.I. Yacoob and H.K. Jun	
Chapter 5 Synthesis And Characterization Of Nanocrystalline Ni ₃ Al Intermetallic Produced by Mechanical Alloying And Reaction Synthesis **R.Ismail and 1.1. Yaacob***	23
Chapter 6 The Effect of Hard Nanofillers on Mechanical Properties of PVC Nanocomposites Noorasikin Samat, Muhammad Alif Mohd Yusoff and Mohd Shahrul Rizal Bin Zakaria	29
Chapter 7 Fatigue Fracture Mechanism of PVC/CaCO ₃ nanocomposite	34
Noorasikin Samat, Alan Whittle and Mark Hoffman	
Chapter 8 Mechanical Behaviour of Eco Core Composite Sandwich Structure Norhasnidawani Johari Safiyah Hazwani Abd. Rahim and Zahurin Halim	40
Chapter 9 Characteristics of Oil Palm Biomass via Mixture of Empty Fruit Bunch (EFB) Fiber and Mesocarp Fiber	45
Zahurin Halim, Nabiha Mohd Noh and Nurshazana Mohamad	
Chapter 10 Mechanical Behaviour of Oil Palm Empty Fruit Bunch (OPEFB) Albumen-Composites Concrete	49

Afigah Omar,	Nur	Humair	rah A.	Razak	and	Zuraida	Ahmad
zijigan oma,		A X ++111++11		1 COLD DATE	CT I I	2011 01010	11/////

Chapter 11 The Influence of Biopolymer and Natural Fiber on the Physical and Mechanical Properties of Cement Composite	55
Norshahida Sarifuddin and Zuraida Ahmad	
Chapter 12 Thermal and Morphological Study of Biopolymer Cotton-Albumen Clay (BCAC) Composites	62
Zuraida Ahmad, Teoh Swin Le and Kumaran A/L Samannamuthaliar	
Chapter 13 Effect of Compaction Time on the Properties of Coir Fiber Reinforced Cement-Albumen Composite	68
Amir Zakwan Roslin, Nur Humairah A. Razak and Zuraida Ahmad	
Chapter 14 Oil Palm Empty Fruit Bunch (OPEFB) for Lightweight Composites Concrete	74
Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad	
Chapter 15 Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 1) Md Abdul Maleque	80
Chapter 16 Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 2)	86
Md Abdul Maleque Chapter 17 Wear of Aluminium Matrix Composite – Effects of Reinforcement Combination Md Abdul Maleque and Rezaul Karim	90
Chapter 18 Mechanical Properties of Wood Plastic Composites	96
Ooi Chong Jin and Shahjahan Mridha	
Chapter 19 Properties of Wood Fiber Reinforced Polypropylene Composite Shahjahan Mridha and Nafis Sarwar Islam	101

Chapter 20 The effects of chemical and mechanical treatments on coir fibre to mechanical properties of coir-albumen-concrete	108
Zuraida Ahmad and Nurizan Omar	
Chapter 21 Architecture of Chopped Fiber Glass in Plastic Composite Processed Under Different Loads Ahmed Nazrin Md Idriss and Shahjahan Mridha	114
Chapter 22 Variation of Fiber Architecture on Loads applied in Fabrication of Epoxy/Woven Fiber Glass Composite	119
Ahmed Nazrin Md Idriss and Shahjahan Mridha	
Chapter 23 Impact Behavior of Carbon/ Epoxy Composite in Moisture and Temperature environments	125
Shahjahan Mridha	
Chapter 24 Impact Strength Behaviour of the Woven and Chopped Fiber Glass Composites at Different Temperatures	132
Ahmed Nazrin Md Idriss and Shahjahan Mridha	
Chapter 25 An Investigation of Hybrid Composites Tubes Subjected to Quasi-Static Loading	138
Farrah Yussof and Zuraida Ahmad	
Chapter 26 Mechanical Behaviour of Biopolymer Cotton Albumen Clay (BCAC) Composites	144
Teoh Swin Le, Kumaran A/L Samannamuthaliar and Zuraida Ahmad	
Chapter 27 The Effect of Processing Parameters on Tensile Properties Empty Fruit Bunch (EFB) Fiber Reinforced Thermoplastic Natural Rubber Composites	150
Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid	
Chapter 28 Manganese Doped Hydroxyapatite Powder through Hydrothermal Method Asep Sofwan Faturohman, Alqap, Iis Sopyan and Nuur Izzati Mazmaa	155

Chapter 29 Synthesis and Characterization of Sol-Gel Method Derived Zinc Doped Hydroxyapatite Powder Agen Softwar Entwerkman Alaga New Hidron and Ita Someon	161
Asep Sofwan Faturohman Alqap, Nor Hidayu and Iis Sopyan	
Chapter 30 Synthesis and Characterization of Nickel Iron–Silicon Nitride Nanocomposite Iskandar I. Yaacob	167
Chapter 31 Fabrication of Nickel Aluminide Intermetallic-Alumina Nanocomposite	172
Roslina Ismail and Iskandar I. Yaacob	
Chapter 32 Investigation on the Effect of Water Immersion on Cotton Albumen Composite	178
Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof	
Chapter 33 Numerical and Experimental Investigation of Peel Strength of Composite Sandwich Structures	182
Zahurin Halim , Shahnor Basri and Mohd Ramli Ajir	
Chapter 34 Finite Element Analysis of Interlaminar Stresses in Edge Delamination	190
Zahurin Halim and Meor Mohd. Adli Taib	

Wear of Aluminium Matrix Composite – Effects of Reinforcement Combination

Md Abdul Maleque¹ and M Rezaul Karim²
¹Khulliyyah of Engineering – International Islamic University Malaysia
²Faculty of Engineering – Multimedia University

⊠: maleque@iium.edu.my

Keywords: Aluminium matrix *composite*, *double particle size (DPS)*, triple-particle size (TPS).

Abstract: Aluminum metal matrix composite (AMC) exhibits promising properties enhancement in the field of metal matrix composite. Improved wear properties of reinforced-AMC can be determined by varying the nature of reinforcement and their volume fraction. In this investigation, AMCs with double particle size (DPS) and triple-particle size (TPS) SiC reinforcement combination using 20 wt% SiC were developed using stir-casting process on a special oil-tempered sand mould. The result shows that wear property of aluminium matrix composite with triple-particle size SiC exhibited better results (i.e. lower wear) than double particle size SiC reinforcement as a result of proper shielding effect of base metal and the fine particles by the coarse particles. This study could be use to optimise the wear rate of structural applications developed with triple-particle size aluminium matrix composite.

Introduction

Properties of composite materials are of interest because of their excellent mechanical and wear resistance in automotive applications such as brake rotor, cylinder head, piston etc. Reinforced silicon carbide AMC is a family of composites materials whose stiffness, strength, density, and thermal and electrical properties can be tailored. The matrix alloy, the reinforcement material, the volume and shape of the reinforcement, the location of the reinforcement, and the fabrication method can all be varied to achieve required properties. Regardless of the variations, however, Al composites offer excellent thermal conductivity, high shear strength, excellent abrasion resistance, high temperature operation.

Skolianos and Kiourtsidis [1] and Lim et al. [2] have shown that aluminum alloy-based metal matrix composites (MMCs) with ceramic particulate reinforcement exhibited great promise and are seen as alternative to conventional materials. Moreover, these advanced materials have the potential performance to perform better under severe service conditions such as, higher speed and load which are increasingly being encountered in modern tribocomponents. Manufacturing process plays a big role in developing the multiple-particle size SiC_p light-weight material with effective cost and environmental factors. Many researchers found that among the various MMC manufacturing processes, stir casting process is the most