ADVANCES IN COMPOSITE MATERIALS Iskandar Idris Yaacob Md Abdul Maleque Zahurin Halim **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA # ADVANCES IN COMPOSITE MATERIALS Iskandar Idris Yaacob Md Abdul Maleque Zahurin Halim ### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 ©HUM Press, HUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data Iskandar Idris Yaacob, Md Abdul Maleque & Zahurin Halim: Advances in Composite Materials. ISBN: 978-967-418-231-1 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: HUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Selangor Darul Ehsan # **Table of Content** | Chapter 1 | 1 | |--|----| | A Critical Review of Metal Matrix Composite Brake Rotor Md Abdul Maleque | | | Chapter 2 Technology of Moulding for Composite Auto Brake Rotor | 7 | | Md Abdul Maleque Chapter 3 Fabrication of Nickel Aluminide (Ni ₃ Al) by Hot Isostatic Pressing (HIP) Faizal Abu Zarim, Iraj Alaei, I.I. Yaacob | 13 | | Chapter4 Investigation of Mechanically Alloyed Nd-Fe-B Powder | 17 | | I.I. Yacoob and H.K. Jun | | | Chapter 5 Synthesis And Characterization Of Nanocrystalline Ni ₃ Al Intermetallic Produced by Mechanical Alloying And Reaction Synthesis **R.Ismail and 1.1. Yaacob*** | 23 | | Chapter 6 The Effect of Hard Nanofillers on Mechanical Properties of PVC Nanocomposites Noorasikin Samat, Muhammad Alif Mohd Yusoff and Mohd Shahrul Rizal Bin Zakaria | 29 | | Chapter 7 Fatigue Fracture Mechanism of PVC/CaCO ₃ nanocomposite | 34 | | Noorasikin Samat, Alan Whittle and Mark Hoffman | | | Chapter 8 Mechanical Behaviour of Eco Core Composite Sandwich Structure Norhasnidawani Johari Safiyah Hazwani Abd. Rahim and Zahurin Halim | 40 | | Chapter 9 Characteristics of Oil Palm Biomass via Mixture of Empty Fruit Bunch (EFB) Fiber and Mesocarp Fiber | 45 | | Zahurin Halim, Nabiha Mohd Noh and Nurshazana Mohamad | | | Chapter 10 Mechanical Behaviour of Oil Palm Empty Fruit Bunch (OPEFB) Albumen-Composites Concrete | 49 | | Afigah Omar, | Nur | Humai | rah A. | Razak | and | Zuraida | Ahmad | |--------------|-----|--------------------|--------|---------|-----|-------------|---------| | zijigun Omu, | | A X C+ 17 + C+ 1 + | | 1 (() | | 2017 001010 | 11///// | | Chapter 11 The Influence of Biopolymer and Natural Fiber on the Physical and Mechanical Properties of Cement Composite | 55 | |---|-----| | Norshahida Sarifuddin and Zuraida Ahmad | | | Chapter 12 Thermal and Morphological Study of Biopolymer Cotton-Albumen Clay (BCAC) Composites | 62 | | Zuraida Ahmad, Teoh Swin Le and Kumaran A/L Samannamuthaliar | | | Chapter 13 Effect of Compaction Time on the Properties of Coir Fiber Reinforced Cement-Albumen Composite | 68 | | Amir Zakwan Roslin, Nur Humairah A. Razak and Zuraida Ahmad | | | Chapter 14 Oil Palm Empty Fruit Bunch (OPEFB) for Lightweight Composites Concrete | 74 | | Afiqah Omar, Nur Humairah A. Razak and Zuraida Ahmad | | | Chapter 15 Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 1) Md Abdul Maleque | 80 | | Chapter 16 Fabrication of Metal Matrix Composite Automotive Brake Rotor (Part 2) | 86 | | Md Abdul Maleque Chapter 17 Wear of Aluminium Matrix Composite – Effects of Reinforcement Combination Md Abdul Maleque and Rezaul Karim | 90 | | Chapter 18 Mechanical Properties of Wood Plastic Composites | 96 | | Ooi Chong Jin and Shahjahan Mridha | | | Chapter 19 Properties of Wood Fiber Reinforced Polypropylene Composite Shahjahan Mridha and Nafis Sarwar Islam | 101 | | Chapter 20 The effects of chemical and mechanical treatments on coir fibre to mechanical properties of coir-albumen-concrete | 108 | |---|-----| | Zuraida Ahmad and Nurizan Omar | | | Chapter 21 Architecture of Chopped Fiber Glass in Plastic Composite Processed Under Different Loads Ahmed Nazrin Md Idriss and Shahjahan Mridha | 114 | | Chapter 22 Variation of Fiber Architecture on Loads applied in Fabrication of Epoxy/Woven Fiber Glass Composite | 119 | | Ahmed Nazrin Md Idriss and Shahjahan Mridha | | | Chapter 23 Impact Behavior of Carbon/ Epoxy Composite in Moisture and Temperature environments | 125 | | Shahjahan Mridha | | | Chapter 24 Impact Strength Behaviour of the Woven and Chopped Fiber Glass Composites at Different Temperatures | 132 | | Ahmed Nazrin Md Idriss and Shahjahan Mridha | | | Chapter 25 An Investigation of Hybrid Composites Tubes Subjected to Quasi-Static Loading | 138 | | Farrah Yussof and Zuraida Ahmad | | | Chapter 26 Mechanical Behaviour of Biopolymer Cotton Albumen Clay (BCAC) Composites | 144 | | Teoh Swin Le, Kumaran A/L Samannamuthaliar and Zuraida Ahmad | | | Chapter 27 The Effect of Processing Parameters on Tensile Properties Empty Fruit Bunch (EFB) Fiber Reinforced Thermoplastic Natural Rubber Composites | 150 | | Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmad and Rozaidi Rasid | | | Chapter 28 Manganese Doped Hydroxyapatite Powder through Hydrothermal Method Asep Sofwan Faturohman, Alqap, Iis Sopyan and Nuur Izzati Mazmaa | 155 | | Chapter 29 Synthesis and Characterization of Sol-Gel Method Derived Zinc Doped Hydroxyapatite Powder Agen Softwar Entwerkman Alaga New Hidron and Ita Someon | 161 | |---|-----| | Asep Sofwan Faturohman Alqap, Nor Hidayu and Iis Sopyan | | | Chapter 30 Synthesis and Characterization of Nickel Iron–Silicon Nitride Nanocomposite Iskandar I. Yaacob | 167 | | Chapter 31 Fabrication of Nickel Aluminide Intermetallic-Alumina Nanocomposite | 172 | | Roslina Ismail and Iskandar I. Yaacob | | | Chapter 32 Investigation on the Effect of Water Immersion on Cotton Albumen Composite | 178 | | Zahurin Halim, Zuraida Ahmad and Fauziah Md Yusof | | | Chapter 33 Numerical and Experimental Investigation of Peel Strength of Composite Sandwich Structures | 182 | | Zahurin Halim , Shahnor Basri and Mohd Ramli Ajir | | | Chapter 34 Finite Element Analysis of Interlaminar Stresses in Edge Delamination | 190 | | Zahurin Halim and Meor Mohd. Adli Taib | | ## **Technology of Moulding for Composite Auto Brake Rotor** Md Abdul Maleque ¹Faculty of Engineering – International Islamic University Malaysia ⊠: maleque@iium.edu.my **Keywords:** Sand mold, permanent mold, composite material, brake rotor. **Abstract:** The mold preparation for composite automotive brake rotor plays an important role as a pressure transmitting medium that ensured an excellent shape with good mechanical properties, resulting from zero porosity and fine microstructure. The production parameters such as easting complex shapes, cost, good surface finish and mechanical properties are need to be considered for the preparation of mold. In this chapter, a systematic mold preparation procedure has been proposed with the comparison between oil tempered sand and permanent mold. From the study it is believed that the oil tempered sand mold could be a better choice as it produces surface quality close to permanent mold as a result of the lower gas evolution characteristics of oil which allows for the use of finer grain for the production of auto brake rotor with flexible casting shapes and lower cost. ### Introduction Molding is a process that consists of different operations essential to develop a mold for receiving molten metal. Generally the foundry molds are made of sand grains bonded together to form the desired shape of the casting. Sand is used because it is cheap, resists deformation when heated; it offers a great variety of casting sizes and complexities. It also offers the added advantage of reuse of a large portion of the sand in future molds. Preparation of mold for composite materials application in automotive industry is an essential process that determines the quality of the cast component. In general, molded parts represent more than 70% of the engineering products. Identifying mold materials for the casting of aluminium matrix composite (AMC) will have significant effect in terms of economical production of aluminium alloys. Aluminium alloys are quite attractive in the automotive industry because it achieves a reduction in weight and also due to their low density, their capability to be strengthened by precipitation, their good corrosion resistance, high thermal and electrical conductivity and their high damping capacity. Aluminium matrix composites (AMCs) have been widely studied for many applications such as aerospace, automotive industries, sporting equipment, space shuttle, electronic packaging, and armors [1-3]. Many iron and steel components like piston, cylinder heads, engine blocks and intake manifold have also been replaced with composite materials. In terms of weight, aluminium matrix composite brake rotor designs provide up to a 60 % reduction when compared to cast iron [4]. In addition, aluminum matrix composite rotors outperform their iron counterparts in terms of their mechanical properties and practical use.