ADVANCES IN MATERIALS ENGINEERING Volume 1 Edited By: Zahurin Halim Iskandar Idris Yaacob Md Abdul Maleque **IIUM PRESS** INTERNATIONAL ISLAMIC UNIVERSITY MALAYSIA ## ADVANCES IN MATERIALS ENGINEERING VOLUME 1 Edited By: Zahurin Halim Iskandar Idris Yaacob Md Abdul Maleque #### Published by: IIUM Press International Islamic University Malaysia First Edition, 2011 © IIUM Press. IIUM All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without any prior written permission of the publisher. Perpustakaan Negara Malaysia Cataloguing-in-Publication Data ISBN: 978 -967-418-167-3 Member of Majlis Penerbitan Ilmiah Malaysia – MAPIM (Malaysian Scholarly Publishing Council) Printed by: ITUM PRINTING SDN. BHD. No. 1, Jalan Industri Batu Caves 1/3 Taman Perindustrian Batu Caves Batu Caves Centre Point 68100 Batu Caves Sclangor Darul Ehsan ### **Table of Content** | Chapter 1 Preparation and Characterization of Thermoplastic Natural Rubber (TPNR) Nanocomposites | 1 | |---|----| | Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan | | | Chapter 2 Polymer Clay Nanocomposites: Part I | 6 | | Noor Azlina Hassan and Norita Hassan | | | Chapter 3 Effect of Processing Parameters on the Tensile Properties of TPNR Reinforced Short Carbon Fibre Composite | 11 | | Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | | Chapter 4 Effect of Maleic Anhydride Polyethylene on Damping Properties of HDPE/EPDM Nanocomposite | 16 | | Hazleen Anuar, Nur Ayuni Jama, and Shamsul Bahri Abdul Razak | | | Chapter 5 Comparative Study on the Effect of Plasticizer on Thermal Properties of Polylactic Acid | 22 | | Hazleen Anuar and Muhammad Rejaul Kaiser | | | Chapter 6 Quality of Copper Film Electroplated on Silicon Wafer Using Different Current Densities | 28 | | Shahjahan Mridha | | | Chapter 7 Laser Nitriding of Titanium | 39 | | Shahjahan Mridha | | | Chapter 8 Composite Coating on Titanium Alloy Using High Power Laser | 45 | | Shahjahan Mridha | | | Chapter 9 Measurement of Moisture Absorption in Borophosphosilicate Glass (BPGS) Films | 50 | |--|-----| | Shahjahan Mridha and Shiau Khee Tang | | | Chapter 10 The Effect of Processing Parameter on Tensile Properties of Thermoplastic Natural Rubber Nanocomposites | 58 | | Noor Azlina Hassan, Sahrim Hj. Ahmad, Rozaidi Rasid and Norita Hassan | | | Chapter 11 Comparison of Mechanical Properties Between Untreated and Sulphuric Acid Treated Short Carbon Fiber Reinforced Thermoplastic Natural Rubber (TPNR) Composite | 64 | | Noor Azlina Hassan, Norita Hassan, Sahrim Hj. Ahmadand Rozaidi Rasid | | | Chapter 12 Water Absorption of TPNR Reinforced Short Carbon Fibre Composite | 69 | | Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | | Chapter 13 Enhanced Tensile Strength with Sulphuric Treated Short Carbon Fibre | 74 | | Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | | Chapter 14 Effect of Fibre Length on Tensile Properties of TPNR-Kenaf Fibre Composite | 79 | | Hazleen Anuar, Sahrim Hj. Ahmad and Rozaidi Rasid | | | Chapter 15 Effect of Nanoclay on Mechanical Properties of PLA-Clay Nanocomposite | 84 | | Hazleen Anuar and Muhammad Rejaul Kaiser | | | Chapter 16 Extraction of Glucose From Kenaf Core by Using Chemical Pre – Treatment Process Nurhafizah Seeni Mohamed, Hazleen Amuar, Maizirwan Mel, Rashidi Othman, Nur Aisyah Mohd Norddin, Nur Aimi Mohd Nasir, Mohd Adlan Mustafa Kamalbhrin | 90 | | Chapter 17 Wear of Nitride Coating Produced by Ti-Al Melt Synthesis in Nitrogen Environment | 96 | | Shahjahan Mridha | | | Chapter 18 Effect of Dispersant on Protein Foaming-Consolidation Porous Alumina Containing Hydrothermal Derived Hydroxyapatite Nanopowder | 103 | Iis Sopyan and Ahmad Fadli | Chapter 19 Effect of Yolk Addition on Protein Foaming-Consolidation Porous Alumina-Calcium | 109 | |--|-----| | Phosphate Composites Its Sopyan and Ahmad Fadli | | | | | | Chapter 20 Investigation of the Effect of Starch Addition on Protein Foaming-Consolidation Porous Alumina Containing Hydroxyapatite Nanopowder | 115 | | Ahmad Fadli', Iis Sopyan, Nur Syahidah and Nur Nadia | | | Chapter 21 The Influence of Hydroxyapatite Loading on Protein Foaming-Consolidation Porous Alumina Sintered at 1300°C | 120 | | Ahmad Fadli 'and Iis Sopyan | | | Chapter 22 High Density Polyethylene (HDPE) as an Alternative Material in Fuel Tank Production Afiqah Afdzaluddin and Md Abdul Maleque | 126 | | Chapter 23 Porous Alumina-Hydroxyapatite Composites via Protein Foaming-Consolidation Method: Effect of HA Loading on Physical Properties Its Sopyan, Ahmad Fadli and Nur Izzati Zulkifli | 132 | | - · · · · · · · · · · · · · · · · · · · | | | Chapter 24 Preparation and Characterisation of Low Density Polyethylene/Layered Silicate Nanocomposites | 137 | | Salina Sharifuddin , Iskandar Idris Yaacob | | | Chapter 25 Effects of Sodium Dodecyl Benzene Sulphonate (NaDbs) on Li Imide-PMMA Based Solid Polymer Electrolyte | 144 | | Fauziah Mohd Yusof and Iskandar Idris Yaacob | | | Chapter 26 Effect of Milling Time on Mechanochemically Synthesized Nanohydroxyapatite Bioceramics | 149 | | Iis Sopyan, S. Adzila and M. Hamdi | | | | | | Chapter 27 Morphological Analysis of Mechanochemically Synthesized Nanohydroxyapatite Bioceramics | | | lis Sopyan, S. Adzila and M. Hamdi | 155 | | Chapter 28 | 160 | | Sodium Doped Nanohydroxyapatite Bioceramics through Mechanochemical Synthesis | ,00 | | S. Adzila, Iis Sopyan and M. Hamdi | | | Chapter 29 Thermal Profile Analysis of Composite Brake Rotor Md Abdul Maleque and Abdul Mu'min Adebisi | 165 | |--|-----| | Chapter 30 The Effect of Fibre Content on Thermal Property of Coir Fibre Reinforced Cement-Albumen Composite | 172 | | Faridatul Faezah Razali, Nur Humairah Abdul Razak and Zuraida Ahmad | | | Chapter 31 Pulsed Electrodeposition | 178 | | Suryanto | | | Chapter 32 Electroless Nickel Based Coatings From Solution Containing Sodium Hypophosphite | 184 | | Suryanto | | | Chapter 33 Characterization and Utilization of Fly Ash | 189 | | Suryanto | | | Chapter 34 Workability of Coir Fibre- Reinforced Cement-Albumen Composite | 195 | | Nur Humairah Abdul Razak and Zuraida Ahmad | | | Chapter 35 Preparation of Rice Husk for Raw Material of Silicon | 201 | Hadi Purwanto and Nor Fazilah Mohd Selamat # Sodium Doped Nanohydroxyapatite Bioceramics through Mechanochemical Synthesis Keywords: Sodium, Nanohydroxyapatite, Mechanochemical, Doped, Bioceramics. Abstract. Monovalent metal ion, sodium (Na) was doped into HA structure via mechanochemical method by a dry mixture of calcium hydroxide Ca(OH)₂, di-ammonium hydrogen phosphate (NH₄)₂HPO₄ and sodium hydroxide (NaOH) precursors at 370 rpm in 15 h. The characterizations of the as synthesized Na free HA and Na-doped HA powders were accomplished by X-ray diffraction (XRD) and Fourier transform infra red (FTIR) analysis. The resultant powders showed that Na was successfully substituted into HA and affected the crystallite size, lattice parameters and unit cell volume. The increment of lattice parameters and unit cell volume were limited until 8% Na-doped HA and the enlargement of crystallite size was achieved until 4% Na-doped HA whereby the size decreased as the Na concentration increased. #### Introduction The close chemical similarity to minerals found in calcified tissues has made one of calcium phosphate types, hydroxyapatite (HA) as the most widely studied material. However, insufficient mechanical qualities such as low strength and brittleness have restrict HA's application as bone implants in load-bearing condition [1]. Other drawbacks such design limitations [2] and high degree of crystallinity could result in the nondegradability of pure HA when implanted in an organ [3]. The slow degradation of HA makes in vivo experiments in physiological conditions impractical, unless the degradation process can be accelerated. Bone tissue engineering is a specific area in nanotechnology where the development of nanostructured biomaterials may be able to replace hard and soft skeletal tissue, and biocompatible materials for tissue genesis. In spite of calcium, phosphate and carbonate, bone mineral contains a great number of other inorganic compounds such as sodium, fluoride, chloride, magnesium, strontium, zinc, copper and iron in varying quantities. These elements are known to affect bone mineral characteristics, such as crystallinity, degradation behavior and mechanical properties [4]. There has been a substantial effort devoted by numerous researchers to improve synthetic HA physical and mechanical properties. One of the strategies is to dope HA with metal ions such as magnesium (Mg) [5-7], manganese (Mn) [8-10] and strontium (Sr) [11-13]. Those traces of ions have an effect on the lattice parameters, the crystallinity, the dissolution kinetics and other physical properties of apatite [14]. Sodium (Na) is known to have an important effect in biological apatites since it plays a potential role in a cell adhesion as well as in the bone metabolism and resorption process. Na has been traced as an abundant element in natural bone and tooth mineral after calcium and phosphorous [15]. For instance, previous studies have worked with the processing of sodium substituted HA through several synthesis methods such as hydrolysis of monetite, double decomposition and aqueous