
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

139

Manuscript received January 5, 2009

Manuscript revised January 20, 2009

Real-Time Cheat-Free Gaming on the Basis of Time-Stamp
Service

Shunsuke Mogaki†, Masaru Kamada†, Tatsuhiro Yonekura†, Shusuke Okamoto††, Yasuhiro Otaki† and
Mamun Bin Ibne Reaz†††,

†Graduate School of Computer and Information Sciences, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-

8511, Japan
††Faculty of Science and Technology, Seikei University, Musashino, Tokyo 180-8633, Japan

†††Department of Electrical and Computer Engineering, International Islamic University Malaysia, Jalan Gombak, 53100
Kuala Lumpur, Malaysia

Summary
A cheat-proof protocol for real-time gaming is proposed under
the assumption that time-stamp servers issue serially numbered
time stamps honestly and are available near every player, i.e.,
they exist everywhere in the Internet. With this protocol, each
player sends its action to the other player and also sends its hash
to the nearest time-stamp server. The time-stamp server sends the
signed hash with the time and a serial number back to the player.
The actions are checked to verify that they are compatible with
the hashes, and the signed hashes are checked to verify that they
have the correct time and the serial numbers are contiguous. The
only latency in this protocol is the travel time of the packet from
one player to another. In comparison with other existing
protocols, we confirm that the proposed protocol is as fast as and
more secure than the fair synchronization protocol, the fastest
existing protocol.
Key words:
real-time network gaming, cheat-proofing, time-stamp service

1. Introduction

Network games have been suffering from two major kinds
of cheating. One targets the games where the client
software controls disclosure of secrets to the player.
Cheaters tamper the client software in there favor, for
example, to make walls transparent so that they can see
enemies behind the walls. Laurens et al. [1] extensively
studied how to detect cheats of this kind by analyzing
player behaviors. The other major cheat is late
commitment which targets all the real-time games.
Cheaters send their action after receiving other players'
action and blame the network latency of the delayed
arrival of their actions.

The existing protocols against late commitment in network
gaming have been created for a peer-to-peer setting and do
not assume any trusted third parties. In fact, for those
working on cryptographic protocols, it is even considered
to be a scientific ``cheat'' to assume a trusted third party.

The lockstep protocol [2] is the most successful
cryptographic protocol to realize a fair environment for
gaming without trusting any third parties. Unfortunately,
the lockstep is tied to a game clock and not the real-world
clock. The game clock can be stopped by any player, and
so gaming by the lockstep protocol is never actually in real
time. The asynchronous synchronization [3] allows for
omitting the lock-step sessions between players who are
remote from each other in the game field since they would
not have any influence on each other. But neighbors in the
virtual space are not always neighbors in the network.

In an attempt to make a real-time version of the lockstep
protocol, several researchers have proposed modifications
under the assumptions that the players decide their actions
in synchronization to the real-world clock and that the
network latency is known [4][5]. But players can easily
cheat each other by reporting a longer latency than the real
one. We may have to conclude that a cheat-proof protocol
for real-time gaming must assume some trusted timing
supervisors.

The fair synchronization protocol [6] is the first protocol
where distributed timing supervisors, named pulsers, are
employed to synchronize the game clock to the real-world
clock. The pulsers share a series of common keys, each of
which is assigned to game-clock timing. Each player sends
its action to the nearest pulser by a deadline. The pulser
sends the action to the other players in encrypted form.
Because the encrypted actions may reach the players at
different times, each player receives a common key to
decrypt the actions at the same time from the nearest
pulser. It is beneficial that players are forced to decide
their actions by a common time and are allowed to know
the other players' actions at a common time. But, the
players have to disclose private information such as their
actions to the pulsers. In that sense, the pulsers constitute a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The International Islamic University Malaysia Repository

https://core.ac.uk/display/300399712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

140

distributed trusted third party. However, the pulsers are
capable of tampering with the actions.

Distributed timing supervisors have only to force players
to fix actions by a common deadline. Players do not have
to disclose their actions to the supervisors. It suffices for
the proof of a player's honesty that he keeps proper time
stamps on his actions.

In this paper, a cheat-proof protocol for real-time gaming
is proposed under the assumption that we trust time-stamp
servers only with respect to their job in time-stamping and
that they are available everywhere in the Internet.

The rest of this paper is organized as follows: Section 2
gives assumptions, procedure and analyses of the
proposed protocol. In Section 3, we compare it with four
existing protocols. Section 4 will give a summary and a
future work.

2. Proposed Protocol

2.1 Assumptions

The time-stamp service is becoming a common
infrastructure of the Internet. It guarantees that the data
exist at the time of stamping and that the data have not
been tampered since the stamped time. Without trusting
the time-stamp servers, it would not be possible to have
such a fundamental service as an electronic notary over
the Internet [7]. In Japan, for example, the time business
accreditation center [8] authorizes time-stamping
companies. Several companies are already in business.

The time-stamp servers must be trusted in order to force
the players to take actions synchronized to the real-world
clock, ti = iτt, (i = 1,2,3…), where τt > 0 is the frame
interval. More precisely, we make the following
assumptions:

• Time-stamp servers honestly issue time stamps

comprising signed hashes of data with the time and
serial numbers.

• The time-stamp servers are available near each player.
The packet traveling time from a player to the nearest
time-stamp server, З, will be small.

2.2 Procedure

For simplicity in explanation, we assume there are only
two players without loss of generality. Multiplayer cases

are superpositions of cambinatorid two-player
relationships.

In the proposed protocol, each player sends its action to
the other player and simultaneously sends its hash to the
nearest time-stamp server. The time-stamp server sends
back to the player the signed hash, which contains the data,
signing time and serial number i. The signature is
undeniable evidence of the action. Nobody can delete or
insert any actions in the sequence of evidences since the
serial numbers should be contiguous. The players
exchange all the signed hashes to verify the actions made
in the game.

The detailed procedure is illustrated in Fig.1 and
performed as follows:

1. Both players agree on and share a common hash

function H.

2. Players A and B decide their actions Ai and Bi,
respectively, at time ti. At the same time, they send
their hashes, H(Ai) and H(Bi), along with i, to the
nearest time-stamp servers.

3. The time-stamp servers send back the signed hash
T(H(Ai), t A

 i , i) and T(H(Bi), t B
 i , i) to players A and B,

respectively; the signed hash contains data, the
signing time t A

 i and the serial number i. Here, t A
 i and

t B
 i represent the time when the time-stamp servers

receive H(Ai) and H(Bi), respectively.

Steps 2 and 3 are iterated concurrently for each player
during the game.

Fig. 1 Proposed Protocol.

The players exchange their signed hashes for verification
of the actions made during the game to identify possible
cheats. As soon as player A receives the hash from player
B, A can start its verification process in a parallel thread
that runs slightly behind the real time. Of course, this

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

141

verification can also be done as a batch job after the end of
gaming. Player A verifies Bi against H(Bi) and also
verifies the signature T(H(Bi), t B

 i , i) against H(Bi), t B
 i and i.

If t B
 i ⊰ !ti +З, A can accuse B of cheating by delayed

action.

2.3 Latency and Frame Interval

In the proposed protocol, each player sends his own action
directly to the other player. Therefore, the latency is only
the packet travel time l from one player to another. No one
can make this time shorter, so the proposed protocol has
minimum latency. Player can always verify if their hashes
are correctly stamped.

The frame interval can be made as short as required in
principle. In practice, the frame rate is limited by the
throughput of the time stamp servers.

The hash can be verified by the delay 2Зrelative to the
receipt of action.

2.4 Security

The actions are hashed so that the time-stamp servers
obtain no information about the actions. This helps protect
the players' privacy.

A corrupted time-stamp server may give retroactive
stamps or sign several possible actions with the same
serial number in favor of a specific player. In either case,
the proposed protocol collapses.

There has been a countermeasure against the retroactive
time stamping. That is called the Time-Stamp Authority
(TSA) grid [9], which is a union of time-stamp servers that
audit one another. In the TSA grid, a time-stamp server
sends its time stamp to another server to get another time
stamp. The first time-stamp server proves its honesty by
the two-fold time stamp having a sufficiently small time
difference. In this case, the malicious player has to bribe
the two time-stamp servers at the same time. By increasing
the number of time-stamp servers that make multifold time
stamps, we can make bribery as difficult as required.

In addition to the above auditing capability of the TSA
grid, we shall also include the capability of detecting
different actions with the same serial number. Wrongful
time stamps may not be detected unless some of them
happened to be passed to the same honest time stamp
server. But we can reward corrupted time stamp servers

with a severe penalty so that they would not dare to
commit crimes.

It is possible that player A commits an action correctly but
intentionally delays its transmission. In this case, player B
has to decide Bi+n (for large n) without knowing Ai. If
player B receives Ai later than expected, Player B is
encouraged to take a countermeasure by delaying the
disclosure of its action, too. Then the game becomes
“blind shooting.” But the players stay in an equal state.
Besides, by including this countermeasure in the protocol,
we can deter players from attempting an intentional delay
because the cheater does not gain any advantages while
the gaming becomes tedious.

Another possible countermeasure is to let each player
verify a hash before sending the next action. Then any
cheat can be detected immediately in the sense of game
clock. But the frame interval must be as long as l + 2З
even in the best case. A next frame might never come in
case a malicious player stops sending the hash. So this
modification makes the protocol fall back to a non real-
time one.

As long as we keep the assumptions regarding the time-
stamp servers, we have the same security, latency and
frame interval for the gaming among three players or more
except that we have more possibility of having a malicious
player within the increased number of players. It is not a
technical but social issue that several players may join
hands for entrapping a player.

If a player has only a remote time-stamp server, we have a
longЗ. The time lag l + 2Зfor verifying actions will be
long accordingly. Besides, we have to allow for a longer
time deviation of time stamps. So we have to limit the
players within those having a time-stamp server near by.

It would improve the security for the players to have their
actions time-stamped by several common time-stamp
servers that they trust. In this case, however, we will have
a longЗ comparable with l. For the real-time gaming,
players must trust near-by time-stamp servers.

3. Comparison

The following is a comparison of the latency, frame
interval and security of the proposed protocol with typical
cheat-proof protocols, such as the lockstep protocol [2],
pipelined lockstep protocol [4], sliding pipeline protocol
[5] and fair synchronization protocol [6].

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

142

Table 1 shows latency and frame interval and table 2
shows advantage and draw back.

 Lockstep Protocol

In synchronization to the game clock i, (i = 1,2,3…), each
player sends a commitment of his action and waits for the
commitment from the other player before unveiling his
action. It should be noted again that the game clock is not
tied to the real-world clock.

The detailed procedure is illustrated in Fig.2 and
performed as follows:
1. The players agree on and share a common hash

function H.

2. Players A and B decide their respective actions Ai
and Bi at time i of the game clock and exchange
hashes H(Ai) and H(Bi) as the commitment of their

actions.

3. Upon receiving the hash from the counterpart, the
players unveil their actions Ai and Bi to each other.

Steps 2 and 3 are iterated during the game session.

In the lockstep protocol, the latency is the packet round-
trip time 2l, which is the time for the action of one player
to reach the other. The frame interval cannot be shorter
than the packet round-trip time 2l. In contrast, with the
proposed protocol, the latency is only l and the frame
interval can be made as short as required.

The actions taken by the players are unknown to each
other until the actions are committed. Therefore, this
protocol is completely cheat-free, as is the proposed
protocol. But, in this protocol the game clock remains
stopped until players complete exchanging their
commitments or actions. A malicious player can gain time
to think about the next action as long as he desires simply
by withholding his decision.

 Pipelined Lockstep Protocol

In the pipelined lockstep protocol, players are assumed to
take an action at time ti = iΔt of the real-world clock. The
locksteps are pipelined in order to make the frame interval

Δt = ti+1 − ti shorter than the network latency l, which is
supposed to be known to the players.

The detailed procedure is illustrated in Fig.3 and
performed as follows:

Table 1: latency and frame interval
protocol latency frame interval

lockstep protocol 2l 2l
pipelined lockstep
protocol

2l 2l
p

sliding pipelined
protocol

2l 2li
pi

fair
synchronization
protocol

l +З l
pi

 + 2З

proposed protocol l limited by the
throughput of the
time stamp servers

Table 2: advantage and drawback
protocol advantage drawback

lockstep protocol completely cheat-free not real time
pipelined lockstep protocol high speed allow late commitment
sliding pipelined protocol pipeline size adapted to network latency allow late commitment
fair synchronization protocol Pulsers control the disclosure timing Pulsers are completely trusted. They know

actions in the plain text
proposed protocol Time-stamp servers supervise only the

time of action
Time-Stamp Servers are trusted with
respect to stamp time. They know only the
hash of actions

Fig. 2 Lockstep Protocol

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

143

1. Given the pipeline size p, the players agree on the

frame interval Δt such that Δt ⊪
m
q
!and a common

hash function H.

2. For i = 1,2,…,p, players A and B decide their
respective actions Ai and Bi at time ti and send their
respective hashes H(Ai) and H(Bi) to each other.

3. For i > p, player A decides the action Ai and sends its
hash H(Ai) along with the unveiled action Ai-p as soon
as A receives the hash H(Bi-p) from player B. Player
B does the same.

In the pipelined lockstep protocol, the latency remains the
same as that in the lockstep protocol. But, unlike the
lockstep protocol, players do not wait for commitments

from the other player. The frame interval is
2l
p and can be

made as short as required by increasing the pipeline size p.

The large p, however, degrades the security. If player A is
malicious and B is honest, A can pretend to suffer from a
large latency l despite the fact that A receives packets
from B almost immediately.

Then A will receive the unveiled action Bi-p and new hash
H(Bi) at ti, but B will not receive Ai-p and H(Ai) until ti+p.
Therefore, A can take advantage of the information Bi-2p+1,
Bi-2p+2,…,Bi-p to decide his next action Ai, while B is
unaware of the information Ai-2p+1,Ai-2p+2,…,Ai-p. In this
situation, player B has the right to appeal but is unable to
show any evidence for the late arrival of Bi-2p+1,Bi-

2p+2,…,Bi-p. Thus, player A is able to insist his innocence

by blaming the varying network condition.

 Sliding Pipeline Protocol

The sliding pipeline protocol incorporates a means to
estimate the variable network latency. The players are

assumed to take an action at nonuniform instances ti,
where the frame interval Δti = ti+ 1≗ ti is variable.
The detailed procedure is illustrated in Fig.4 and
performed as follows:
1. By exchanging several packets, players A and B

estimate the network latency as l A
 1 and l B

 1, respectively.
Then, they exchange the estimated network latency
to decide the initial latency l1 = max(l A

 1, l
 B
 1).

2. Given the initial pipeline size p1, the players agree on

the frame interval Δt1 such that Δt1 ⊪
m2
q2
! and a

common hash function H.

3. For i = 1,2,…,p1, the pipeline size pi, the latency li
and the frame interval Δti are set to be p1, l1 and Δt1,
respectively. Players A and B decide their respective
actions Ai and Bi at time ti and send their hashes H(Ai)
and H(Bi) to each other.

4. For i > p1, player A decides the action Ai and sends
its hash H(Ai) along with the unveiled action

1−− ipiA and new estimated network latency l A
 i as soon

as A receives the hash H(
1−− ipiB) from player B.

Player B does the same. The updated latency is li =
max(l A

 i , l B
 i), which is given to players A and B.

According to li, the pipeline size pi, and the frame

interval Δti, such that Δti ⊪
li
pi

, are updated.

In the sliding pipeline protocol, the latency is supposed to
be variable but remains almost the same as that for the

lockstep protocol. The frame interval is
2li
 pi

 and can be

made as short as required by increasing the pipeline size pi.

Fig. 3 Pipelined Lockstep Protocol (for the case p = 2).

Fig. 4 Sliding Pipeline Protocol (for the case p = 2).

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

144

This protocol may cope with variable network congestion.
But the network latency is estimated by trusting the
departure time of the packets, which can be tampered with
by the sender. Therefore, the sliding technique does not
provide a remedy for cheating with respect to time.

 Fair Synchronization Protocol

Unlike the above three protocols, the fair synchronization
protocol employs distributed supervisors. This protocol is
similar to the proposed protocol in that the timing
supervisors are assumed.

These supervisors, named pulsers, control the times when
the actions are decided and the times when they are
disclosed to the other players. In order to control the
disclosure timing, a series of cryptographic keys are
employed each of which is unique to the time i. The keys
are distributed to all the pulsers prior to game session.
Each player is supervised and supported by a pulser in its
neighborhood reachable by the latency З.

The communications are made in a pipeline to shorten the
frame interval. The pulsers decide a variable pipeline size
pi according to the maximum latency l from pulsers to the
farthest player so that all the players can receive actions
made at ti by the time

ipit + .

The detailed procedure is illustrated in Fig.5 and

performed as follows:
1. Players A and B decide their respective actions Ai

and Bi at ti. Player A sends Ai to the nearest pulser.
Player B does the same.

2. A's pulser encrypts Ai into Ei(Ai) and sends this Ei(Ai)
to player B. Likewise, B's pulser sends Ei(Bi) to A.

3. If A's pulser has received Ai by the time ti +З, the
pulser sends the decryption key Di so that it reaches
A just before

ipit + . Likewise, B's pulser serves

player B.

4. Player A decrypts Ei(Bi) to know Bi after receiving
the decryption key Di from A's pulser at

ipit + . Player

B does the same.

The latency is l +З. The frame interval Δti can be as short

as
l
pi

 + 2З. By increasing the pipeline size pi, the frame

interval can be shorten to be 2З.

In a sense, the fair synchronization protocol has been
constructed by making many copies of a trusted server and
deploying them near the players. Players send their actions
to the pulser in plain text format. Pulsers encrypt these
action and send it to all players, and they send the
decryption key to the nearest player at every disclosure
timing. A corrupted pulser may send the decryption key
earlier or later to a player. It is even possible for a pulser
to rewrite a player's action in the plain text format. Players
cannot verify how their actions are passed to the other
players. Thus, the pulsers constitute a completely trusted
third party. The proposed protocol offers better security
since time-stamp servers know only hashed actions that
are hard to tamper with.

4. Conclusion

By employing time-stamp servers as an infrastructure, the
proposed protocol proves a cheat-free protocol for real-
time gaming, which achieves minimum latency. Under
the assumptions that time-stamp servers honestly issue
serially numbered time stamp and that the time-stamp
servers are available near each player, the proposed
protocol is as fast as and more secure than the fair
synchronization protocol, the fastest existing protocol.

A next step is to demonstrate feasibility of the proposed
protocol in practice by trial implementation.

Acknowledgments

This work was partially supported by the JSPS Grant-In-
Aid no.18300027 and Osamu Miyamoto foundation of the
Ibaraki University VBL.
References
[1] P. Laurens, R. F. Paige, P. J. Brooke, and H. Chivers, “A

Novel Approach to the Detection of Cheating in Multiplayer

Fig. 5 Fair Synchronization Protocol (for the case pi = 2).

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

145

Online Games”, 12th IEEE International Conference on
Engineering Complex Computer Systems (ICECCS 2007),
pp. 97-106, July 2007.

[2] N. E. Baughman and B. N. Levine, “Cheat-proof playout for
centralized and distributed online games”, Proc. IEEE
INFOCOM 2001, U.S.A, pp. 104-113, April 2001.

[3] N. E. Baughman, M. Liberation and B. N. Levine, “Cheat-
Proof Playout for Centralized and Peer-to-Peer Gaming”,
IEEE/ACM Transactions on Networking, vol.15, Issue 1, pp.
1-13, February 2007.

[4] H. Lee, S. Lenker, E. Kozlowski, and S. Jamin,
“Synchronization and cheat-proofing protocol for
multiplayer games”, Playing with the Future: Development
and Direction in Computer Gaming, April 2002,
http://les1.man.ac.uk/cric/gamez/abstracts/lee.html

[5] E. Cronin, B. Filstrup, and S. Jamin, “Cheat-proofing dead
reckoned multiplayer games”, Proc. Int. Conf. Appl. Devel.
Compu. Games(ADCOG) 2003, Hong Kong, January 2003.

[6] B. D. Chen and M. Maheswaran. “A Fair Synchronization
Protocol with Cheat Proofing for Decentralized Online
Multiplayer Games”, Network Computing and Applications,
2004, pp. 372-375, January 2004.

[7] C. Adams, P. Cain, D. Pinkas and R. Zuccherato. “Internet
X.509 Public Key Infrastructure Time-Stamp Protocol
(TSP)”, RFC 3161, August 2001.

[8] Time business accreditation center, “Accreditation program
for time-stamping services”, 2007,
http://www.dekyo.or.jp/tb/english/index.html

[9] T. Nishikawa and S. Matsuoka, “Building Time-Stamp
Authority Grid and Basic Experiment”, Technical Report of
IEICE, vol.107, no.16, pp. 13-18, 2007.

Shunsuke Mogaki was born in Mito,
Ibaraki, Japan in 1983. He received his
bachelor's degree in engineering in 2007
from Ibaraki University. He is soon
finishing his master's degree at the same
university. He has been working on
security issues in the Internet as well as
real world.

Masaru Kamada was born in Hitachi,
Ibaraki, Japan in 1962. He received his
bachelor's (1984), master's (1986) and
doctoral (1988) degrees in engineering
from the University of Tsukuba and
worked for the same university as a
faculty member. In 1992, he joined
Ibaraki University where he is currently
a professor of computer science. He was
a pos-doc fellow at Mathematische

Systemtheorie of ETH Zurich in 1993-1995. He served the
engineering science society of IEICE as an associate editor of its
Japanese transactions (1997-2000), publications secretary (1998-
1999) and webmaster (1999). He has been serving Sampling
Theory in Signal and Image Processing as its secretary since

2003 and IEEE Transactions on Industrial Electronics as an
associate editor since 2009. He is working also on web-based
services, signal processing, and computer forensics. Dr. Kamada
is a member of IEEE, IEICE, and EURASIP.

Tatsuhiro Yonekura was born in
1954. He received his B.S. and M.S.
from Nagoya University in 1979 and
1981 respectively. He then joined
Yamatake Honeywell, working on
development of a distributed
computer control system till 1990. He
received his Ph.D. Degree in
Information Science from the Nagoya

University in 1991. He joined Ibaraki University in 1991. He is a
Professor at Department of Computer and Information Sciences
at Ibaraki University. He is a Professional Member of ACM,
IEICE (The Inst. of Electronics, Information and Communication
Engineers), BMA (Business Model Association) and VRSJ
(Virtual Reality Society of Japan). His research interests are in
the area of Human Communication on Internet, E-business, E-
society and Distributed Virtual Environment.

Shusuke Okamoto was born in Tokyo,
Japan, in 1965. He received the B.Eng.,
M.Eng. and Dr. Eng. degrees from
Seikei University, in 1989, 1991 and
1994. In 1994 he joined the University
of Electro-Communications as a
research associate. From 1997 to 1999,
he was an Assistant Professor at the
Graduate School of Information
Systems, the University of Electro-
Communications. From 1999 to 2005,

he was an Assistant Professor at the Department of Computer
and Information Sciences, Ibaraki University. He is currently an
Associate Professor at Faculty of Science and Technology,
Seikei University. His current research interests are
programming environments, parallel processing and computer
architectures. Dr. Okamoto is a member of IEEE, ACM, IPSJ,
IEICE and JSSST.

Yasuhiro Ohtaki was born in
Yamagata, Japan in 1966. He
received his bachelor's degree from
the University of Tsukuba in 1989,
and his Ph.D (in Engineering) from
the same university in 1994. From
1994 to 2001, he has been an research
associate at the Department of
Computer and Information Sciences at
Ibaraki University. Since 2001 he has
been a Lecturer. His current research
interests include superdistribution and

computer forensices. Dr. Ohtaki is a member of IEEE, IEICE
and IPSJ.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.1, January 2009

146

Mamun Bin Ibne Reaz was born in
Bangladesh, in December 1963. He
received his B.Sc. and M.Sc. degree in
Applied Physics and Electronics, both
from University of Rajhashi,
Bangladesh, in 1985 and 1986,
respectively. He received his D.Eng.
degree in 2007 from Ibaraki University,
Japan. He is currently a Senior Lecturer
in the National University of Malaysia

involving in teaching, research and industrial consultation. He is
a regular associate of the Abdus Salam International Center for
Theoretical Physics since 2008. He has vast research experiences
in Norway, Ireland and Malaysia. He has published extensively
in the area of IC Design and Biomedical application IC. He is
author and co-author of more than 100 research articles in design
automation and IC design for biomedical applications. Dr.
Mamun is a member of IEEE.

