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Summary 
A cheat-proof protocol for real-time gaming is proposed under 
the assumption that time-stamp servers issue serially numbered 
time stamps honestly and are available near every player, i.e., 
they exist everywhere in the Internet. With this protocol, each 
player sends its action to the other player and also sends its hash 
to the nearest time-stamp server. The time-stamp server sends the 
signed hash with the time and a serial number back to the player. 
The actions are checked to verify that they are compatible with 
the hashes, and the signed hashes are checked to verify that they 
have the correct time and the serial numbers are contiguous. The 
only latency in this protocol is the travel time of the packet from 
one player to another. In comparison with other existing 
protocols, we confirm that the proposed protocol is as fast as and 
more secure than the fair synchronization protocol, the fastest 
existing protocol. 
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1. Introduction 

Network games have been suffering from two major kinds 
of cheating. One targets the games where the client 
software controls disclosure of secrets to the player. 
Cheaters tamper the client software in there favor, for 
example, to make walls transparent so that they can see 
enemies behind the walls. Laurens et al. [1] extensively 
studied how to detect cheats of this kind by analyzing 
player behaviors. The other major cheat is late 
commitment which targets all the real-time games. 
Cheaters send their action after receiving other players' 
action and blame the network latency of the delayed 
arrival of their actions. 
 
The existing protocols against late commitment in network 
gaming have been created for a peer-to-peer setting and do 
not assume any trusted third parties. In fact, for those 
working on cryptographic protocols, it is even considered 
to be a scientific ``cheat'' to assume a trusted third party. 

 
The lockstep protocol [2] is the most successful 
cryptographic protocol to realize a fair environment for 
gaming without trusting any third parties. Unfortunately, 
the lockstep is tied to a game clock and not the real-world 
clock. The game clock can be stopped by any player, and 
so gaming by the lockstep protocol is never actually in real 
time. The asynchronous synchronization [3] allows for 
omitting the lock-step sessions between players who are 
remote from each other in the game field since they would 
not have any influence on each other. But neighbors in the 
virtual space are not always neighbors in the network. 
 
In an attempt to make a real-time version of the lockstep 
protocol, several researchers have proposed modifications 
under the assumptions that the players decide their actions 
in synchronization to the real-world clock and that the 
network latency is known [4][5]. But players can easily 
cheat each other by reporting a longer latency than the real 
one. We may have to conclude that a cheat-proof protocol 
for real-time gaming must assume some trusted timing 
supervisors. 
 
The fair synchronization protocol [6] is the first protocol 
where distributed timing supervisors, named pulsers, are 
employed to synchronize the game clock to the real-world 
clock. The pulsers share a series of common keys, each of 
which is assigned to game-clock timing. Each player sends 
its action to the nearest pulser by a deadline. The pulser 
sends the action to the other players in encrypted form. 
Because the encrypted actions may reach the players at 
different times, each player receives a common key to 
decrypt the actions at the same time from the nearest 
pulser. It is beneficial that players are forced to decide 
their actions by a common time and are allowed to know 
the other players' actions at a common time. But, the 
players have to disclose private information such as their 
actions to the pulsers. In that sense, the pulsers constitute a 
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distributed trusted third party. However, the pulsers are 
capable of tampering with the actions. 
 
Distributed timing supervisors have only to force players 
to fix actions by a common deadline. Players do not have 
to disclose their actions to the supervisors. It suffices for 
the proof of a player's honesty that he keeps proper time 
stamps on his actions. 
 
In this paper, a cheat-proof protocol for real-time gaming 
is proposed under the assumption that we trust time-stamp 
servers only with respect to their job in time-stamping and 
that they are available everywhere in the Internet. 
 
The rest of this paper is organized as follows: Section 2 
gives assumptions, procedure and analyses of the 
proposed protocol. In Section 3, we compare it with four 
existing protocols. Section 4 will give a summary and a 
future work. 

2. Proposed Protocol 

2.1 Assumptions 

The time-stamp service is becoming a common 
infrastructure of the Internet. It guarantees that the data 
exist at the time of stamping and that the data have not 
been tampered since the stamped time. Without trusting 
the time-stamp servers, it would not be possible to have 
such a fundamental service as an electronic notary over 
the Internet [7]. In Japan, for example, the time business 
accreditation center [8] authorizes time-stamping 
companies. Several companies are already in business. 
 
The time-stamp servers must be trusted in order to force 
the players to take actions synchronized to the real-world 
clock, ti = iτt, (i = 1,2,3…), where τt > 0 is the frame 
interval. More precisely, we make the following 
assumptions: 
 
• Time-stamp servers honestly issue time stamps 

comprising signed hashes of data with the time and 
serial numbers. 

• The time-stamp servers are available near each player. 
The packet traveling time from a player to the nearest 
time-stamp server, З, will be small. 

2.2 Procedure 

For simplicity in explanation, we assume there are only 
two players without loss of generality. Multiplayer cases 

are superpositions of cambinatorid two-player 
relationships. 
 
In the proposed protocol, each player sends its action to 
the other player and simultaneously sends its hash to the 
nearest time-stamp server. The time-stamp server sends 
back to the player the signed hash, which contains the data, 
signing time and serial number i. The signature is 
undeniable evidence of the action. Nobody can delete or 
insert any actions in the sequence of evidences since the 
serial numbers should be contiguous. The players 
exchange all the signed hashes to verify the actions made 
in the game. 
 
The detailed procedure is illustrated in Fig.1 and 
performed as follows: 
 
1. Both players agree on and share a common hash 

function H. 

2. Players A and B decide their actions Ai and Bi, 
respectively, at time ti. At the same time, they send 
their hashes, H(Ai) and H(Bi), along with i, to the 
nearest time-stamp servers. 

3. The time-stamp servers send back the signed hash 
T(H(Ai), t A

 i  , i) and T(H(Bi), t B
 i  , i) to players A and B, 

respectively; the signed hash contains data, the 
signing time t A

 i  and the serial number i. Here, t A
 i  and 

t  B
 i  represent the time when the time-stamp servers 

receive H(Ai) and H(Bi), respectively. 

Steps 2 and 3 are iterated concurrently for each player 
during the game. 
 

 

Fig. 1  Proposed Protocol. 

The players exchange their signed hashes for verification 
of the actions made during the game to identify possible 
cheats. As soon as player A receives the hash from player 
B, A can start its verification process in a parallel thread 
that runs slightly behind the real time. Of course, this 
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verification can also be done as a batch job after the end of 
gaming. Player A verifies Bi against H(Bi) and also 
verifies the signature T(H(Bi), t B

 i , i) against H(Bi), t B
 i  and i. 

If t B
 i  ⊰ !ti +З, A can accuse B of cheating by delayed 

action. 

2.3 Latency and Frame Interval 

In the proposed protocol, each player sends his own action 
directly to the other player. Therefore, the latency is only 
the packet travel time l from one player to another. No one 
can make this time shorter, so the proposed protocol has 
minimum latency. Player can always verify if their hashes 
are correctly stamped. 
 
The frame interval can be made as short as required in 
principle. In practice, the frame rate is limited by the 
throughput of the time stamp servers. 
 
The hash can be verified by the delay 2Зrelative to the 
receipt of action. 

2.4 Security 

The actions are hashed so that the time-stamp servers 
obtain no information about the actions. This helps protect 
the players' privacy. 
 
A corrupted time-stamp server may give retroactive 
stamps or sign several possible actions with the same 
serial number in favor of a specific player. In either case, 
the proposed protocol collapses. 
 
There has been a countermeasure against the retroactive 
time stamping. That is called the Time-Stamp Authority 
(TSA) grid [9], which is a union of time-stamp servers that 
audit one another. In the TSA grid, a time-stamp server 
sends its time stamp to another server to get another time 
stamp. The first time-stamp server proves its honesty by 
the two-fold time stamp having a sufficiently small time 
difference. In this case, the malicious player has to bribe 
the two time-stamp servers at the same time. By increasing 
the number of time-stamp servers that make multifold time 
stamps, we can make bribery as difficult as required. 
 
In addition to the above auditing capability of the TSA 
grid, we shall also include the capability of detecting 
different actions with the same serial number. Wrongful 
time stamps may not be detected unless some of them 
happened to be passed to the same honest time stamp 
server. But we can reward corrupted time stamp servers 

with a severe penalty so that they would not dare to 
commit crimes. 
 
It is possible that player A commits an action correctly but 
intentionally delays its transmission. In this case, player B 
has to decide Bi+n (for large n) without knowing Ai. If 
player B receives Ai later than expected, Player B is 
encouraged to take a countermeasure by delaying the 
disclosure of its action, too. Then the game becomes 
“blind shooting.”  But the players stay in an equal state. 
Besides, by including this countermeasure in the protocol, 
we can deter players from attempting an intentional delay 
because the cheater does not gain any advantages while 
the gaming becomes tedious. 
 
Another possible countermeasure is to let each player 
verify a hash before sending the next action. Then any 
cheat can be detected immediately in the sense of game 
clock. But the frame interval must be as long as l + 2З
even in the best case. A next frame might never come in 
case a malicious player stops sending the hash. So this 
modification makes the protocol fall back to a non real-
time one. 
 
As long as we keep the assumptions regarding the time-
stamp servers, we have the same security, latency and 
frame interval for the gaming among three players or more 
except that we have more possibility of having a malicious 
player within the increased number of players. It is not a 
technical but social issue that several players may join 
hands for entrapping a player. 
 
If a player has only a remote time-stamp server, we have a 
longЗ. The time lag l + 2Зfor verifying actions will be 
long accordingly. Besides, we have to allow for a longer 
time deviation of time stamps. So we have to limit the 
players within those having a time-stamp server near by. 
 
It would improve the security for the players to have their 
actions time-stamped by several common time-stamp 
servers that they trust. In this case, however, we will have 
a longЗ comparable with l. For the real-time gaming, 
players must trust near-by time-stamp servers. 

3. Comparison 

The following is a comparison of the latency, frame 
interval and security of the proposed protocol with typical 
cheat-proof protocols, such as the lockstep protocol [2], 
pipelined lockstep protocol [4], sliding pipeline protocol 
[5] and fair synchronization protocol [6]. 
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Table 1 shows latency and frame interval and table 2 
shows advantage and draw back. 

 Lockstep Protocol 

In synchronization to the game clock i, (i = 1,2,3…), each 
player sends a commitment of his action and waits for the 
commitment from the other player before unveiling his 
action.  It should be noted again that the game clock is not 
tied to the real-world clock. 
 
The detailed procedure is illustrated in Fig.2 and 
performed as follows: 
1. The players agree on and share a common hash 

function H. 

2. Players A and B decide their respective actions Ai 
and Bi at time i of the game clock and exchange 
hashes H(Ai) and H(Bi) as the commitment of their 

actions. 

3. Upon receiving the hash from the counterpart, the 
players unveil their actions Ai and Bi to each other. 

Steps 2 and 3 are iterated during the game session. 
 

In the lockstep protocol, the latency is the packet round-
trip time 2l, which is the time for the action of one player 
to reach the other. The frame interval cannot be shorter 
than the packet round-trip time 2l. In contrast, with the 
proposed protocol, the latency is only l and the frame 
interval can be made as short as required. 
 
The actions taken by the players are unknown to each 
other until the actions are committed. Therefore, this 
protocol is completely cheat-free, as is the proposed 
protocol. But, in this protocol the game clock remains 
stopped until players complete exchanging their 
commitments or actions. A malicious player can gain time 
to think about the next action as long as he desires simply 
by withholding his decision. 
 

 Pipelined Lockstep Protocol 

In the pipelined lockstep protocol, players are assumed to 
take an action at time ti = iΔt of the real-world clock. The 
locksteps are pipelined in order to make the frame interval 

Δt = ti+1 − ti shorter than the network latency l, which is 
supposed to be known to the players. 
 
The detailed procedure is illustrated in Fig.3 and 
performed as follows: 

Table 1: latency and frame interval 
protocol latency frame interval 

lockstep protocol 2l 2l 
pipelined lockstep 
protocol 

2l 2l
p   

sliding pipelined 
protocol 

2l 2li
pi

  

fair 
synchronization 
protocol 

l +З l
pi

  + 2З 

proposed protocol l limited by the 
throughput of the 
time stamp servers 

Table 2: advantage and drawback 
protocol advantage drawback 

lockstep protocol completely cheat-free not real time 
pipelined lockstep protocol high speed allow late commitment 
sliding pipelined protocol pipeline size adapted to network latency allow late commitment 
fair synchronization protocol Pulsers control the disclosure timing Pulsers are completely trusted. They know 

actions in the plain text 
proposed protocol Time-stamp servers supervise only the 

time of action 
Time-Stamp Servers are trusted with 
respect to stamp time. They know only the 
hash of actions 

 

 

Fig. 2  Lockstep Protocol 
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1. Given the pipeline size p, the players agree on the 

frame interval Δt such that Δt ⊪
m
q
!and a common 

hash function H. 

2. For i = 1,2,…,p, players A and B decide their 
respective actions Ai and Bi at time ti and send their 
respective hashes H(Ai) and H(Bi) to each other. 

3. For i > p, player A decides the action Ai and sends its 
hash H(Ai) along with the unveiled action Ai-p as soon 
as A receives the hash H(Bi-p) from player B. Player 
B does the same. 

 
In the pipelined lockstep protocol, the latency remains the 
same as that in the lockstep protocol. But, unlike the 
lockstep protocol, players do not wait for commitments 

from the other player. The frame interval is 
2l
p   and can be 

made as short as required by increasing the pipeline size p. 
 
The large p, however, degrades the security. If player A is 
malicious and B is honest, A can pretend to suffer from a 
large latency l despite the fact that A receives packets 
from B almost immediately. 
 
Then A will receive the unveiled action Bi-p and new hash 
H(Bi) at ti, but B will not receive Ai-p and H(Ai) until ti+p. 
Therefore, A can take advantage of the information Bi-2p+1, 
Bi-2p+2,…,Bi-p to decide his next action Ai, while B is 
unaware of the information Ai-2p+1,Ai-2p+2,…,Ai-p. In this 
situation, player B has the right to appeal but is unable to 
show any evidence for the late arrival of Bi-2p+1,Bi-

2p+2,…,Bi-p. Thus, player A is able to insist his innocence 

by blaming the varying network condition. 

 Sliding Pipeline Protocol 

The sliding pipeline protocol incorporates a means to 
estimate the variable network latency. The players are 

assumed to take an action at nonuniform instances ti, 
where the frame interval Δti = ti+ 1≗ ti is variable. 
The detailed procedure is illustrated in Fig.4 and 
performed as follows: 
1. By exchanging several packets, players A and B 

estimate the network latency as l A
 1 and l B

 1, respectively. 
Then, they exchange the estimated network latency 
to decide the initial latency l1 = max(l A

 1, l
 B
 1). 

2. Given the initial pipeline size p1, the players agree on 

the frame interval Δt1 such that Δt1 ⊪
m2
q2
!  and a 

common hash function H. 

3. For i = 1,2,…,p1, the pipeline size pi, the latency li 
and the frame interval Δti are set to be p1, l1 and Δt1, 
respectively. Players A and B decide their respective 
actions Ai and Bi at time ti and send their hashes H(Ai) 
and H(Bi) to each other. 

4. For i > p1, player A decides the action Ai and sends 
its hash H(Ai) along with the unveiled action 

1−− ipiA and new estimated network latency l A
 i  as soon 

as A receives the hash H(
1−− ipiB ) from player B. 

Player B does the same. The updated latency is li = 
max(l  A

 i , l  B
 i ), which is given to players A and B. 

According to li, the pipeline size pi, and the frame 

interval Δti, such that Δti ⊪
li
pi

, are updated. 

 
 

In the sliding pipeline protocol, the latency is supposed to 
be variable but remains almost the same as that for the 

lockstep protocol. The frame interval is 
2li
 pi

  and can be 

made as short as required by increasing the pipeline size pi. 
 

 

Fig. 3  Pipelined Lockstep Protocol (for the case p = 2). 

 

Fig. 4  Sliding Pipeline Protocol (for the case p = 2). 
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This protocol may cope with variable network congestion. 
But the network latency is estimated by trusting the 
departure time of the packets, which can be tampered with 
by the sender. Therefore, the sliding technique does not 
provide a remedy for cheating with respect to time. 
 

 Fair Synchronization Protocol 

Unlike the above three protocols, the fair synchronization 
protocol employs distributed supervisors. This protocol is 
similar to the proposed protocol in that the timing 
supervisors are assumed. 
 
These supervisors, named pulsers, control the times when 
the actions are decided and the times when they are 
disclosed to the other players. In order to control the 
disclosure timing, a series of cryptographic keys are 
employed each of which is unique to the time i. The keys 
are distributed to all the pulsers prior to game session. 
Each player is supervised and supported by a pulser in its 
neighborhood reachable by the latency З. 
 
The communications are made in a pipeline to shorten the 
frame interval. The pulsers decide a variable pipeline size 
pi according to the maximum latency l from pulsers to the 
farthest player so that all the players can receive actions 
made at ti by the time 

ipit + . 

 
The detailed procedure is illustrated in Fig.5 and 

performed as follows: 
1. Players A and B decide their respective actions Ai 

and Bi at ti. Player A sends Ai to the nearest pulser. 
Player B does the same. 

2. A's pulser encrypts Ai into Ei(Ai) and sends this Ei(Ai) 
to player B. Likewise, B's pulser sends Ei(Bi) to A. 

3. If A's pulser has received Ai by the time ti +З, the 
pulser sends the decryption key Di so that it reaches 
A just before 

ipit + . Likewise, B's pulser serves 

player B. 

4. Player A decrypts Ei(Bi) to know Bi after receiving 
the decryption key Di from A's pulser at 

ipit + . Player 

B does the same. 

 
The latency is l +З. The frame interval Δti can be as short 

as 
l
pi

  + 2З. By increasing the pipeline size pi, the frame 

interval can be shorten to be 2З. 
 
In a sense, the fair synchronization protocol has been 
constructed by making many copies of a trusted server and 
deploying them near the players. Players send their actions 
to the pulser in plain text format. Pulsers encrypt these 
action and send it to all players, and they send the 
decryption key to the nearest player at every disclosure 
timing. A corrupted pulser may send the decryption key 
earlier or later to a player. It is even possible for a pulser 
to rewrite a player's action in the plain text format. Players 
cannot verify how their actions are passed to the other 
players. Thus, the pulsers constitute a completely trusted 
third party. The proposed protocol offers better security 
since time-stamp servers know only hashed actions that 
are hard to tamper with. 

4. Conclusion 

By employing time-stamp servers as an infrastructure, the 
proposed protocol proves a cheat-free protocol for real-
time gaming, which achieves minimum latency. Under 
the assumptions that time-stamp servers honestly issue 
serially numbered time stamp and that the time-stamp 
servers are available near each player, the proposed 
protocol is as fast as and more secure than the fair 
synchronization protocol, the fastest existing protocol. 
 
A next step is to demonstrate feasibility of the proposed 
protocol in practice by trial implementation. 
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