$$R$$
 R :
 CH_3
 CH_3
 CH_3
 CH_4
 CH_5
 CH_5
 CH_5
 CH_6
 CH_6

PP-A52

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITY OF LEAF OIL OF MITRELLA KENTII (ANNONACEAE)

Sakina Saadawi, Juriyati Jalil and Malina Jasamai

Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur.

The chemical composition of the leaf oil of *Mitrella kentii* (Annonaceae) was determined by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Caryophyllene oxide (33.8%), E,Z-farnesol (6.9%), benzyl benzoate (6.5%), viridiflorol (6.5%) and cyclohexadecanolide (5.4%) were the major components in the oil. The oil was evaluated for its ability to inhibit prostaglandin E_2 (PGE₂) biosynthesis in human plasma and thromboxane B_2 (TXB₂) biosynthesis in human serum using radioimmunoassay technique. Its inhibitory effect on platelet-activating factor (PAF) receptor binding with rabbit platelets using 3H -PAF as a ligand was also investigated in addition to its free radical scavenging effect on DPPH. The oil showed strong PAF receptor binding inhibitory activity (73.1%) with IC₅₀ value of 6.6 μ g/mL and significant DPPH scavenging activity (86.9.1%) with IC₅₀ value of 155.6 μ g/mL. However, weak inhibitory activity were observed in both PGE₂ (35.4%) and TXB₂ (12.7%) assays. The strong PAF antagonistic activity and DPPH scavenging activity could be due to the presence of the major components in the oil.

PP-A53

PHYTOCHEMISTRY AND ANTIOXIDANT ACTIVITY OF GARCINIA PRAINIANA

Shamsul On¹, Farediah Ahmad¹, Hasnah Mohd Sirat¹, and Muhammad Taher²

¹Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
²Faculty of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia.

Phytochemical investigation of the leaves and stem bark of *G. prainiana* was carried out. The leaves and stem barks of *G. prainiana* collected from Kuantan, Pahang were extracted by soxhlet extractor with hexane, dichloromethane and methanol to get the crude extracts. The crude extracts were purified by column chromatography to yield pure compounds which were characterized spectroscopically using IR, NMR (1D and 2D), UV and MS. Fractionation and purification of the hexane extract of leaves yielded triterpenes, squalene and friedelin. The methanol extract of leaves and stem barks afforded bioflavonoid characterized as morelloflavone and *O*-methyl fukugetin. Total phenolic content studies were carried out on the crude extracts by using Folin-Ciocalteau reagent. The methanol extract of leaves and stem barks showed the highest total phenolic content expressed as gallic acid and (\pm)-catechin equivalents. These extracts also showed the highest value of ascorbic acid and butylated hydroxytoluene (BHT) equivalents on forming the phosphomolybdenum complex in the total antioxidant assay. The antioxidant assay on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical showed that the methanol extract of stem barks had the highest free radical scavenging activity with IC50 value 74.5 μ g/mL while the isolated compound, morelloflavone revealed a strong free radical scavenging activity with IC50 value 15.7 μ g/mL.