
In: Advances in Mathematics Research. Volume 12 ISBN: 978-1-61761-899-4 
Editors: Albert R. Baswell © 2010 Nova Science Publishers, Inc. 

Chapter 3 

A LAPLACE’S PRINCIPLE BASED  
APPROACH FOR SOLVING  
FUZZY MATRIX GAMES 

Moussa Larbani* and Fatiha Kacher** 
* Department of business Administration, Kainan University, No1 Kainan 

Road, Luchu, Taoyuan County, 338 Taiwan 
Department of business Administration, Faculty of Economics, IIUM 

University, Jalan Gombak, 53100, Kuala Lumpur, Malaysia 
**Dept. of Maths, Faculty of Sciences, University of Tizi-Ouzou, 15000 

Tizi-Ouzou, Algeria 

ABSTRACT 

We introduce a solution for matrix games with fuzzy payoffs via the 
α -cuts and the introduction of Nature as a third player expressing the 
uncertainty involved in the game. The beliefs of players about the 
behavior of Nature are based on the Laplace’s principle of “insufficient 
reason”. Moreover, we provide a procedure for computing the introduced 
solution. 
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1. INTRODUCTION 

Several approaches for solving matrix games with fuzzy payoffs have 
been proposed in literature (Bector et al., 2004a; Bector et al., 2004b; Bector 
& Chandra, 2005; Campos,1989; Li,1999, Li & Yang, 2004; Maeda, 2003; 
Nishizaki & Sakawa, 1995, 1997, 2001; Vijay et al, 2005a, 2005b, Vijay et al., 
2007). These approaches can be classified into three classes. In the first class 
(Bector et al, 2004a; Bector et al., 2004b; Bector & Chandra, 2005; Campos, 
1989; Li, 1999; Maeda; 2003; Vijay et al., 2005a, 2005b), following the theory 
of crisp matrix games, the problem of finding a Nash equilibrium Nash (1951), 
is transformed into a problem of resolution of a pair of independent fuzzy 
linear (single objective or multiobjective) programming problems. Then some 
defuzzification technique is used to transform the obtained pair of fuzzy linear 
programming problems into a pair of crisp linear programming problems. In 
Bector et al (2004b) the defuzzification of the pair of fuzzy linear 
programming problems is based on ranking of fuzzy numbers by Yager’s 
different ranking functions (indexes) Yager (1981). In Bector et al. (2004a) a 
pair of dual fuzzy linear programming problems in the fuzzy sense is obtained, 
then the Yager’s first index is used for defuzzification. In Li (1999) an 
ordering of triangular fuzzy numbers is used to define a solution to the fuzzy 
matrix game. Then based on the same ordering, a pair of two multiobjective 
crisp linear programming problems is obtained for finding the introduced 
solution. In Maeda (2003) a more general ordering of fuzzy numbers based on 
α -cuts is used. The introduced concept of solution is obtained as Nash 
equilibrium of a constructed crisp bimatrix game. It has to be noted that the 
approach in Maeda (2003) is limited to symmetric triangular fuzzy numbers 
only. Most of the approaches of the first class are discussed in details in Bector 
and Chandra (2005). In the second class Nishizaki & Sakawa (1995, 1997, 

2001), the membership function of the expected fuzzy score yAxT ~
of the 

maximizing player is used to define solutions. In Nishizaki & Sakawa (1995) 
the expected fuzzy score and a fuzzy goal are used to define a crisp payoff for 
the maximizing player as a degree of attainment of his fuzzy goal. The 
considered solution is based on the maxmin principle. Recently, Vijay et al. 
(2007) introduced a third class of approaches based on fuzzy relations. The 
fuzzy relation approach unifies the existing theories on fuzzy matrix games. In 
this approach the fuzzy matrix game is transformed into a pair of fuzzy 
optimization problems where constraints are expressed by fuzzy relations. 
Further, this pair is formulated as a pair of semi-infinite programming 
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problems. Matrix games with fuzzy goals and matrix games with possibility 
and necessity relations have been studied as special cases. Finally, note that 
most of the approaches developed for matrix games with fuzzy payoffs have 
been extended to bimatrix games with fuzzy payoffs and fuzzy goals, and 
multiple objective matrix and bimatrix games with fuzzy payoffs and fuzzy 
goals (Bector & Chandra, 2005; Nishizaki & Sakawa, 2001; and Vijay et al., 
2005a, 2005b). For an extensive survey on fuzzy bimatrix games and fuzzy 
games in normal form and their applications see Larbani (2009a). 

In Chen and Larbani (2005) we proposed a game approach for solving a 
multi-attribute decision making (MADM) problem with fuzzy decision matrix 
by using α -cuts and introducing Nature as a player (against the decision 
maker) representing the fuzzyness. In Larbani (2009b) we have extended this 
approach to bimatrix games with fuzzy payoffs by using α -cuts and 
introducing Nature as a third player representing the uncertainty involved in 
such games. The proposed solution of the bimatrix game is based on the 
maxmin principle of decision making under uncertainty Luce and Raiffa 
(1957). 

In this paper we adopt the same approach for solving matrix games with 
fuzzy payoffs, however, the solution we propose here is based on the 
Laplace’s principle of “insufficient reason” for decision making under 
uncertainty Luce and Raiffa (1957). We first use α -cuts to defuzzify the 
payoff matrix, then we construct a crisp three person game where Nature is 
introduced as a third player without payoff function that chooses its strategies 
from the α -cuts of the entries of the payoff matrix. Then using the principle 
of “insufficient reason” of Laplace for decision making under uncertainty Luce 
& Raiffa (1957), we introduce a solution concept to the defuzzified fuzzy 
matrix game. The computation of our solution is also studied. A discussion of 
the existing solutions of fuzzy bimatrix games is provided. 

The rest of the paper is organized as follows. Section 2 presents the 
proposed solution. Section 3 deals with the computation of the introduced 
solution and discussion of related work. Section 4 concludes the paper.  

2. THE SOLUTION 

In this section we present a solution concept for a matrix games with 
fuzzy payoffs based on defuzzification of the fuzzy payoff matrix via α -cuts 
and the introduction of a third player without payoff function, Nature. Here 
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Nature represents the uncertainty involved in the game i.e. fuziness. We 
assume that the players adopt the Laplace’s principle of “insufficient reason” 
for decision making under uncertainty Luce & Raiffa (1957) with respect to 
the behavior of Nature towards them. 

Let us consider the following matrix game with fuzzy payoffs 

 1G = )
~

 , ,( n ASS m   (1) 

where mS = { ),...,,( 21 mxxxx = , 0≥ix , mi ,1= , ∑
=

m

i
ix

1

=1},  

nS ={ ),...,,( 21 nyyyy = , 0≥iy , ni ,1= , ∑
=

n

j
iy

1

=1} are the sets of 

mixed strategies of Player I and II respectively, A
~

 = 
nj
miija

≤≤
≤≤

1
1)

~(  is the fuzzy 

payoff matrix, ija~ is a fuzzy interval with bounded support as defined by 

Dubois & Prade (2000). A fuzzy interval F
~

 with bounded support is defined 

by (.)),(
~ μRF =  with (.)~

F
μ ]1,0[: →R verifying the following conditions 

 

(i) )(~ x
F

μ =0 for all ],] cx ∞−∈ , 

(ii) (.)~
F

μ  is right-continuous non-decreasing on [c,a], 

(iii) )(~ x
F

μ =1 for all ],[ bax ∈ , 

(iv) (.)~
F

μ  is left-continuous non-increasing on [b,d], 

(v) )(~ x
F

μ =0 for all [,[ +∞∈ dx , 

 

where +∞<≤≤≤<∞− dbac , and R is the real line. 
 
Assumption 2.1. In non cooperative games, the following assumptions are 

generally made. 
 
(i) Players are rational. 
(ii) There are no enforceable agreements between players. 
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(iii) The game is of complete information, that is, all the data of the game 
(1) are common knowledge among players Fudenberg & Tirole 
(1993). 

 
Regarding the fuzzy payoffs, it is assumed that the only information 

available to players about the fuzzy payoff ija~  is its membership function

)(~ x
ijaμ , mi ,1= , nj ,1= .  

We start by taking the α -cut 
njmiijaA ≤≤≤≤= 1,1)]~([

~ αα of the payoff matrix 

A
~

of the game (1), where α]~[ ija = { ija / αμ ≥)(~ ija a
ij

}, mi ,1= , nj ,1= . 

Since ija~ is a fuzzy interval with bounded support, its α -cut is a closed 

bounded interval, that is 

 α]~[ ija  = { ija / ijija a
ij

αμ ≥)(~ }=[ αα U
ij

L
ij aa , ], mi ,1= , nj ,1= .  

We can also write  

 α]~[ ija =[ αα U
ij

L
ij aa , ]= { }]1,0[ /)1( ∈−+ ij

L
ijij

U
ijij a βββ αα , mi ,1= , nj ,1= .  (2) 

Thus, choosing a number ija in the α -cut α]~[ ija is equivalent to 

choosing a number ijβ  in [0, 1], mi ,1= , nj ,1=  . The α -cut α]~[ ija is the 

set of payoffs ija that have at least an α degree of membership to ija~ . 

In this paper we assume that once the cut-level α  has been chosen, the 

players are certain that their payoff value ija will vary in α]~[ ija , mi ,1= , 

nj ,1= . However, we assume that they do not know which particular values 

ija α]~[ ija∈  (or equivalently ijβ in [0, 1]), mi ,1= , nj ,1=  will actually 

occur. In terms of necessity measure Dubois and Prade (2000), we assume that 
once α  is chosen, the players assign a necessity degree 1 to the event that the 

payoff value ija is in α]~[ ija , mi ,1= , nj ,1= . Hence, the players would 

consider that ija  is an unknown parameter that varies in α]~[ ija , mi ,1= , 
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nj ,1= . Thus, in addition to the strategic uncertainty, the players face 

another type of uncertainty represented by the possible realizations of the 

unknown parameters (payoffs) ija  in α]~[ ija , mi ,1= , nj ,1= . Hence, they 

have to adopt a decision making under uncertainty principle Luce & Raiffa 
(1957). Then the problem can be considered as a game against Nature Milnor 
(1957). Thus, Nature enters the game as a third player that chooses the crisp 

payoffs ija  in α]~[ ija , mi ,1= , nj ,1= . However, Nature is a special 

player: it has no payoff function. Here it has to be noted that since the interests 
of players are totally opposed (zero-sum game), Nature cannot be against both 
of them at the same time: if Nature is against any player, this means that it 
favors the other player. Thus, we have two possible approaches. The first one 
is to assume that Nature is neutral or has a balanced behavior towards players. 
The second one is that Nature is against one of the players, in which case it 

favors the other player. To illustrate this fact let us consider any strategy ijβ  

of Nature as defined in (2). Then if ijβ is greater than 1/2, this means that 

Nature favors larger values of ija , that is, it favors Player I and goes against 

Player II, with respect to strategies i and j. Conversely, if it chooses ijβ  less 

than 1/2, then it favors Player II and goes against player I. Finally, if Nature 

chooses ijβ = ½, then it shows a balanced behavior towards players with 

respect to strategies i and j. Globally, the behavior of Nature towards players 

can be described as follows. According to (2), choosing ija  in α]~[ ija , 

mi ,1= , nj ,1=  is equivalent to choosing ijβ in [0, 1], mi ,1= , nj ,1= . 

The set of all possible choices (or behaviors) of Nature is  

 { } ,1  ,,1  ],1,0[ /)( njmiT ijij ==∈== βββ .  

First, notice that if Nature chooses a strategy )( ijββ = in T  such that 

1=ijβ , for all mi ,1= , nj ,1= , i.e. mn
ji

ij =∑
,

β (here and in the sequel we 

denote by ∑
ji  ,

the double summation symbol∑∑
= =

m

i

n

j1 1

), this means that it 
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favors the Player I completely. On the other hand, if Nature chooses a strategy 

)( ijββ = in T  such that 0=ijβ , for all mi ,1= , nj ,1= , i.e. 0
  ,

=∑
ji

ijβ , 

this means that Nature favors Player II completely. For any strategy 

)( ijββ = in T  of Nature, we have mn
ji

ij ≤≤∑
 ,

0 β , where the values 0 and 

mn represent the extreme behaviors. Any other type of behavior of Nature can 

be represented by a value ]1,0[∈p , such that p is the degree to which Nature 

favors Player I and 1-p is the degree to which Nature favors Player II. Indeed, 

for a given ]1,0[∈p , the set of strategies of Nature that corresponds to this 

behavior is  

 
⎭
⎬
⎫

⎩
⎨
⎧

=∈== ∑   and  /)(
 ,

ij
ji

ijp pmnTT ββββ  (3)  

Thus, we obtain the following three-person extended crisp game 

 2G = ),( βA, T, SS p
nm   (4) 

In this game there are three players: Player I, Player II and Nature. Nature 

has no payoff, its set of strategies is pT ; the payoff functions and sets of 

strategies of Player I and Player II are yAxT
β , mS  and yAxT

β− , nS  

respectively; njmi
L
ij

L
ij

U
ijij aaaA ≤≤≤≤+−= 1 ,1))(( ααα

β β is the crisp payoff 

matrix of the game. 
The idea of introducing variables that take values in α -cuts to defuzzify a 

decision making problem was first introduced by Sakawa & Yano (1989) for a 
multiobjective problem with fuzzy parameters, but they assumed that the 
introduced variables that vary in the α -cuts are decision variables. That is, 
they are controlled by the decision makers. Our approach differs in the sense 
that we assume that the decision makers control the level α of the α -cuts, but 

they do not control the variables ija that take their values in the α -cuts α]~[ ija

, mi ,1= , nj ,1= . In Chen and Larbani (2005) we have first used this 

approach to solve a multi-attribute decision making (MADM) problem with 
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fuzzy decision matrix by introducing Nature as a second player. We made the 
assumption that the entries of the decision matrix are interdependent triangular 

fuzzy numbers via a parameter λ . In Larbani (2009b) we have extended this 
approach to bimatrix games with fuzzy payoffs by using α -cuts and 
introducing Nature as a third player representing the fuzziness involved in 
such game. The proposed solution of the bimatrix game is based on the 
maxmin principle of decision making under uncertainty Luce and Raiffa 
(1957). In this paper we adopt the same approach for solving fuzzy matrix 
games with fuzzy payoffs, however, the solution we propose here is based on 
the Laplace’s principle of “insufficient reason” for decision making under 
uncertainty Luce and Raiffa (1957). 

 

Definition 2.1. Assume that ]1,0[∈p  and the cut level α  are given. A 

pair of real numbers ( wv, ) is called α p- acceptable solution to the game (4) 

if there exists a pair of mixed strategies nm SSyx ×∈∗∗ ),( such that  

 

(i) vyAx
T

≥∗
β , nSy ∈∀  and pT∈∀β ,  

(ii) wyAxT ≤∗
β , mSx ∈∀  and pT∈∀β . 

 
If ( wv, ) is an α p-acceptable solution to the game (4) then v  

(respectively w  ) is called an α p-acceptable value for Player I (respectively 
for Player II). 

Let us introduce the following sets for Player I and Player II respectively  

 
pW α

1  { }p
ntm TSyvyAxSxRv ×∈∀≥′∈′∃∈= ),(  ,  ,   / ββ  and  

 
pW α

2  { }p
mtn TSxwyAxSyRw ×∈∀≤′∈′∃∈= ),(  , ,  / ββ . 

The relation between theα p-acceptable solution and the sets 
pW α

1  and 
pW α

2 is given by the following proposition the proof of which is 

straightforward. 
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Proposition 2.1. Assume that ]1,0[∈p  and the cut level α  are given. A 

pair of real numbers ),( ∗∗ wv  is anα p-acceptable solution for the game (4) if 

and only if ∈∗∗ ),( wv pW α
1  

pW α
2× . 

 

Proposition 2.2. 
pMaxW α

1  and 
pMinW α

2  exist. 

Proof. The function yAxyxf t
ββ =),,(  is continuous in the compact 

p
nm TSS ××  , then the value εββ

=yAxt

yx ),(
minmax exists. Therefore, there 

exists mSx ∈′  such that  , ( , )t
p

nx A y y S Tβ ε β′ ≥ ∀ ∈ × , hence 
pW αε 1∈ , 

that is, 
pW α

1 is not empty. The non emptiness of 
pW α

2 can be proved similarly. 

For a pair ),( βy , we consider the function 

 IRSf m
y →:β   

 vyAxxfx t
y −=→ ββ )(,   

We have ∈∗v pW α
1 ,0)( , , ≥′∈′∃⇔ xfSx y

m
β  ( , ) n

py S Tβ ∈∀ × . 

Then 
pW α

1 = [ [I
TSy

y
n

f
×∈

− +∞
),(

1
, ),0(

β
β

. The function )(, xfx yβ→  is 

continuous, ( , ) n
py S Tβ ∈∀ ×  and [ [+∞,0 is a closed set, then 

[ [),0(1
, +∞−
yfβ , ( , ) n

py S Tβ ∈∀ × . Therefore 
pW α

1 = [ [I
TSy

y
n

f
×∈

− +∞
),(

1
, ),0(

β
β

 is 

a closed set. Let 
pWv α

1∈ then there exists mSx ∈′ such that 

( , ) n
py S Tβ ∈∀ × ,vyAx t ≥′ β , which implies vyAx t

y
≥′ ββ ),(

min . Moreover, 

we have vyAxyAx t

y

t

yx
≥′≥= ββββ

ε
),(),(

minminmax . Since v is arbitrarily 

chosen in 
pW α

1 , we conclude that 
pW α

1 is bounded from above byε . 

Therefore, 
pMaxW α

1 exists. One can similarly show that 
pMinW α

2 exists.  

Thus, we propose the following solution for the game (1). 
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Definition 2.2. Let 1
pW α  and 2

pW α  be the sets of α p-acceptable values 

for Player I and player II, respectively. Let ( ∗∗ wv , ) 21
pp WW αα ×∈  such that 

1 pWMaxv α=∗  and 2 pWMinw α=∗  and let nm SSyx ×∈∗∗ ),(  be the 

corresponding pair of mixed strategies. Then ),,,( ∗∗∗∗ wvyx  is calledα p-

Nash solution of the game (1), where ∗v  (respectively ∗w ) is the value of the 

game for player I (respectively Player II) and ∗x  (respectively ∗y ) is called an 

optimal strategy for Player I (respectively Player II). 
The solution defined through Definitions 2.1-2.2 is similar to that of 

Bector et al. (2004a). However, our solution depends on the strategy of Nature 
β . Moreover, the inequalities (i)-(ii) in Definition 2.1 are nonlinear and crisp, 

which is not the case in Bector et al. (2004a). 
According to the settings of the game, there is no reason to think that 

Nature will favor any of the players globally. Hence we can fairly assume that 
the players adopt the Laplace’s insufficient reason principle of decision 
making under uncertainty Luce & Raiffa (1957) with respect to the behavior of 
Nature towards them. That is, the players assume that, globally, Nature has a 
balanced behavior towards them, but each of them does not know in which 

payoffs (entries ija ) Nature favors him and in which payoff it does not. In 

order to maintain the complete information spirit of the game (1) (Assumption 
2.1 (iii)), we assume that this assumption is a common knowledge among 
players as well. Let us represent formally this assumption on the behavior of 
Nature. In terms of strategies, this assumption means that Nature chooses 

strategies )( ijββ =  in T  that yield a global value ∑
ji

ij
 ,

β  in the middle of 

the interval [0, mn] i.e. 

 
22

0

 ,

mnmn

ji
ij =+=∑β   

In other words, the players assume p = 1/2 in (3), i.e. Nature chooses its 
strategies β  in 

 
⎭
⎬
⎫

⎩
⎨
⎧

=∈== ∑  )2/1( and  /)(
 ,

ij2/1
ji

ij mnTT ββββ   (5) 
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This means that, globally, Nature does not favor any of the players. The 

ideal case is when Nature chooses 2/1=ijβ , mi ,1= , nj ,1= , then it 

doesn’t favor any of the two player globally or locally. 
 
Definition 2.3. In the particular case where p = 1/2, an α 1/2-Nash 

solution of the game (1) is called α -Nash-Laplace solution (α -NL solution) 
of the game (1). 

3. COMPUTATION OF THE SOLUTION 

We will present a general method for computation of α -NL solution of 
the game (1). 

Using Definitions 2.1-2.3, we can find an α -NL solution of the game (1) 
by solving the following pair of crisp nonlinear programming problems 

Max v  
Subject to,  

 
vyAxT ≥β , nSy ∈  and pT∈β

  (6) 

 
mSx ∈   

and 

 Min w   

Subject to, 

 
wyAxT ≤β , mSx ∈  and pT∈β

  (7) 

nSy ∈ . 

Since mS and nS are polytopes, we can use their extreme points only 
Vijay et al. (2005b), then the problems (6)-(7) can be transformed into a pair 
of crisp nonlinear programming problems 
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Max v  
Subject to, 

 
vAx j

T ≥)( β , nj ,1= , pT∈β
,  (8) 

mSx ∈  
 

and  

Min w  
Subject to, 

 
wyA i ≤)( β , mi ,1= , pT∈β

  (9) 

nSy ∈ , 

where iA )( β  (respectively jA )( β ) denotes the i-th row (respectively j-th 

column) of the matrix βA . Here also we note that the problems (8)-(9) are 

similar to the problems obtained in (Bector et al., 2004a; Campos, 1989). 
However, the problems (8)-(9) involve the additional variable β , which is not 

the case in (Bector et al., 2004a; Bector et al., 2004b).  
 

Remark 3.1. Since the sets pT , mS and nS are compact and the function 

( β,, yx ) → yAxT
β  is continuous, then each of the problems (8)-(9) has a 

solution. Hence the problems (6)-(7) have a solution as well. 
Remark 3.2. 
 

(i) In the case the entries ija~ of the fuzzy payoff matrix A
~

 of the game 

(1) are symmetric triangular fuzzy numbers (STFNs), i.e. ija~ = 

( ha M
ij , ij), where M

ija is the main value and hij the width, we have

)  ( αα L
ij

U
ij aa −  = ( )α2  2 −ijh , hence 

njmi
L
ij

L
ij

U
ijij aaaA ≤≤≤≤+−= 1 ,1))(( ααα

β β =
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njmi
L
ijijij ah ≤≤≤≤+− 1 ,1))22( ( ααβ , then the matrix βA takes the 

form α
β βα L

h AA   )2  2(  +−= , where njmi
L
ij

L aA ≤≤≤≤= 1,1)( αα

and  hβ = njmiijijh ≤≤≤≤ 1,1)( β . 

(ii) In the case the entries ija~ of the fuzzy payoff matrix A
~

 of the game 

(1) are triangular fuzzy numbers (TFNs) Bector & Chandra (2005), 

i.e. ija~ =( U
ij

M
ij

L
ij aaa ,, ), we have  

 
α]~[ ija

=[(
αL

ij
M
ij aa −

)α +
αL

ija
, -(

M
ij

U
ij aa −α

)α +
αU

ija
].  

Procedure 3.1. Computation of α p-Nash solution. 
 
Step 1. Assume that p is fixed. Ask the players to provide theirα -cut 

levels. Assume that they have chosen 1α and 2α , respectively. Then take α
=Max{ 1α , 2α } in order to satisfy each player’s choice. Further, compute the 

α -cuts  

 
α]~[ ija

 = { ija
/ αμ ≥)(~ ija a

ij
}=[

αα U
ij

L
ij aa ,

], mi ,1= , nj ,1=   

In case the players are not able to provide their own α -cut levels, they 
may be determined by consulting with experts.  

 
Step 2. Construct and solve the pair of nonlinear programming problems 

(8)-(9). The obtained solution ),,,( ∗∗∗∗ wvyx is an α -NL solution to the 

considered game with cut-level α . 
Let us now illustrate this procedure by an example. We consider the 

following example that appears in (Bector et al., 2004a; Bector & 
Chandra,2005 (see page 148); Campos, 1989; Li & Yang, 2004; Vijay et al., 
2007), in order to compare our results with those of existing approaches. 

 
Example 3.1. (Computation of α -NL solution) Consider the fuzzy game 

defined by the fuzzy payoff matrix  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

08
~

10
~

9

65
~

108
~

1~
A

  (10) 

The entries of A
~

 are the following TFNs: )190,180,175(08
~

1 = , 

)158,156,150(65
~

1 = and )100,90,80(0
~

9 = . Let us compute an α -NL solution of 

this game by Procedure 3.1, assuming p = 1/2. 
Step1. Ask the players to provide their α -cut levels. Assume that they 

have chosen 1α and 2α  respectively. Let α =Max{ 1α , 2α } in order to satisfy 

both players.  

First we solve the problem for arbitrary levels 1α , 2α , then we assume 

concrete values for these parameters. We have  

 
α]~[ ija

 = { ija
/ αμ   )(~ ≥ija aij } = [

αα U
ij

L
ij aa ,

], 2,1  =i , 2,1  =j   

 
[ ] [ ]190)180190(  ,175)175180(08

~
1 +−−+−= αα

α

  

[ ]19010  ,1755  +−+= αα  ,   

 
[ ] [ ]ααα  2 158 ,6  150  156 −+=

, and 
[ ] [ ]ααα  10 100 , 10 80  90 −+=

.  

We have 2/122 ××=mnp =2, then 

   2   and   / )(    
,

ij2/1

⎭
⎬
⎫

⎩
⎨
⎧

=∈== ∑
ji

ij TT ββββ .  

Compute the matrix 
njmi

L
ij

L
ij

U
ijij aaaA ≤≤≤≤+−= 1 ,1)  )  ( (  ααα

β β , 
2/1T∈β

. Since the payoffs are TFN, according to Remark 3.2 

 njmi
L
ij

L
ij

U
ijij aaaA ≤≤≤≤+−= 1 ,1)   )  ( (  ααα

β β
 =  

  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−++−

++−++−
) 5 175(  )15  15()10  80(  )20  20(

) 6 150(  )8  8()5  175(  )15 15(

2221

1211

αβααβα
αβααβα
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Step 2. The pair of problems (8)-(9) takes the form 

vMax  

 vxx   )) 10 80(  )20  20((  )) 5 175(  )15 15(( 212111 ≥++−+++− αβααβα   

 vxx   )) 5 175(  )15  15((   )) 6 150(  )8 8(( 222121 ≥++−+++− αβααβα   

 2,1 ,0   ,121 =≥=+ ixxx i , 2/1T∈β
.  

and  

wMin   

 wyy   )) 6 150(  )8  8((  )) 5 175(  )15  15(( 212111 ≤++−+++− αβααβα   

wyy   )) 5 175(  )15  15((  )) 10 80(  )20  20(( 222121 ≤++−+++− αβααβα     

 
2,1 ,0   ,121 =≥=+ jyyy j , 2/1T∈β .  

Using the constraints 121 =+ xx  and 121 =+ yy , we simplify the last 

pair of problems as follow 

 vxxx

vxxx

vMax

≥+++−+−+−++−
≥+++−+−+−+−

αβαβαβαα
αβαβαβαα

5175)1515()88()1515()25(

 1080)2020()1515()2020()595(

 

221121221

211111211
  

   ,1 0 1 ≤≤ x , 2/1T∈β .  

and 

 wyyy

wyyy

wMin

≤+++−+−+−++−
≤+++−+−+−+−

αβαβαβαα
αβαβαβαα

5175)1515()1515()1515()595(

6150)88()1515()88()25(

 

221211221

121111121
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   ,1 0 1 ≤≤ y , 2/1T∈β .  

Solving the last pair of problems by Nimbus software Miettinen & Mäkelä 
(2006), we obtain the following solutions for different values of α  

Note that in Tables 1 and 2 for all values of 1≠α , we have ∑ ijβ =2. For 

α = 1, we do not provide the ijβ  values, because the game (4) corresponding 

to (10) reduces to a crisp matrix game (see item (iii) of Remark 3.3 below). 
Assume, for instance, that the players have actually chosen the α -cut 

levels as 1α =1/2, 2α =2/3, respectively. Then α =Max {1/2, 2/3}=2/3. The 

corresponding α -NL solution to the considered game with cut-level 2/3 is 

)2257.0,7743.0()3/2( =x ,  

 )7432.0,2568.0()3/2( =y , 52.161)3/2( =v    

and 

 32.160)3/2( =w , (see Tables 1 and 2).   

Example 3.2. Assume that in Example 3.1 njmiij ,1,,1,2/1 ===β , 

i.e. Nature chooses the ideal neutral behaviour towards players, then the pair 
of problems (8) and (9) will reduce to the following pair of problems 

vMax   

 

( )
( ) ( ) vx

vx

≥−++−
≥+−

αα
α

5365)2/1(957)2/1(

905185)2/1(

1

1

  (11) 

   ,1 0 1 ≤≤ x  

and 

wMin   

 wy

wy

≤−+−
≤−+−

α
αα

1019090

2158)832(

1

1

  (12) 
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  .1 0 1 ≤≤ y    

The solution of this pair of problems is  

 
)

14-242

9-57
 ,

14-242

5-185
 ()(

α
α

α
αα =x

,  

 α
ααα
28484

77785437025
)(

2

−
−−=v

  (13) 

 
)

4-242

5-185
 ,

4-242

9-57
 ()(

α
α

α
αα =y

,   

and 

 α
ααα
28484

77785437025
)(

2

−
−−=w

. (14) 

We obtain the following particular solutions, by taking different values of 
α  

 
Remark 3.3. It is interesting to note the following. 
 
(i) the obtained solution ))(),(),(),(( αααα wvyx is expressed as an 

explicit function of the cut-level α . Hence if the players change the 
confidence level α , there is no need for solving the pair of problems 
(11)-(12) again. This shows some flexibility in our approach and 
sensitivity analysis with respect to α can be done. 

(ii) )()( αα wv = , for all ]1,0]∈α . This means that what Player I gains 

is exactly what Player II looses. In other words, the zero-sum game 
character of the game is maintained. The solution obtained for the 
game (10) by Bector et al. (2004a) is  

 for Player I, ( ) 2750.7725,0.2 * =x  and V=160.91;  

 for Player II ( )   7250.2275,0.7 * =y  and W= 160.65. 
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 As we see WV ≠ , the players receive different values. This 
difference, may be, is due to the fact that the authors have taken 
different adequacy margins )011.0 ,01.0 ,08.0(~~

21 == pp  and 

)17.0 ,15.0 ,14.0(~~
21 == qq  at the defuzzifaction step (see pages 148-

149 in Bector & Chandra (2005) ). 
 We notice also that these results are close to ours when the confidence 

level is 1=α :  

 )1(x ( ) 4/19 , 15/19  = =(0.7894, 0.2105), ( ) 19/15, 4/19 )1( =y = 

(0.2105, 0.7894) and )1()1( wv = =161.05. In Bector et al. (2004a) 

the approach depends on the first Yager’s index Yager (1981) given 

by F( d
~

) = 

∫
∫

U

L

U

L

d

d

d

d

dxx

dxxx

 )(

 )(

μ

μ
 (the centroid of d

~
), where d

~
is a fuzzy 

number and (.)μ is its membership function. The index function F(.) 

is used along with adequacies 1
~p and 2

~q for ranking the fuzzy 

numbers involved in the constraints of the obtained pair of dual fuzzy 
linear programming problems. If the players change the index, the 
solution of the game has to be recalculated. 

(iii) When α =1, the fuzzy game (4) corresponding to (10) reduces to the 
following crisp matrix game  

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

18090

156180MA
  (15) 

 the entries of which are the main values of the fuzzy entries of the 
game (10). The solution of the game (15) is 02105) (0.7894,   =x ,

  0.7894) (0.2105,   =y the value of the game is v =161.05. Replacing

α  by 1 in (13)-(14), we get the same solution. Indeed, we obtain 

 )0.2105 ,7894.0()1( =x ( ) 4/19 , 15/19  = ,   , 0.7894) (0.2105, )1( =y and 

)1()1( wv = =161.05 (see Tables 3 and 4). Moreover, it is clear that 

when 1→α , the solution (13)-(14) of the fuzzy game (10) tends to 
the solution of the crisp matrix game (15). Our solution is exactly the 
same as the one obtained in Vijay et al. (2007), for α =1. 
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Table 3. 

α  
1 x (α ) 2 x (α ) v(α ) 

1/3 0.77247 0.22753 160.81 
1/2 0.7766 0.2234 160.86 
2/3 0.7808 0.2192 160.92 
1 0.7894 0.2105 161.05 

Table 4. 

α  
1 y (α ) 2 y (α ) w(α ) 

1/3 0.22753 0.77247 160.81 
1/2 0.2234 0.7766 160.86 
2/3 0.2192 0.7808 160.92 
1 0.2105 0.7894 161.05 

 
(iv) The game (10) has been also treated using the Li’s multiobjective 

approach Li (1999). The following results have been obtained for 

Player I, ( )  19/4, 15/19  =x  and *~v =( ∗∗∗
UL vvv ,, )=(155.0025, 161.05, 

164.736); 

 for Player II, ( )    19/15, 19/4  =y  and *~w =( ∗∗∗
UL www ,, )=(155.264, 

161.05, 171.052). 
 
It is interesting to notice that the optimal strategies ( )  19/4, 15/19  =x , 

( )    19/15, 19/4  =y and the main value ** wv = =161.05 are exactly the same 

as for the crisp matrix game (15), the entries of which are the main values of 
the entries of the fuzzy matrix game (10), respectively. Further, by solving the 
crisp matrix game  

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

17580

150175LA
  (16) 

the entries of which are the lower bounds of the fuzzy entries of the game (10), 

we get the value of the game Lv = 155.208, which is between ∗
Lv =155.0025 

and ∗
Lw =155.264. Next, by solving the crisp matrix game  
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

190100

158190UA
  (17) 

the entries of which are the upper bounds of the fuzzy entries of the game (10), 

we get the value of the game Uv =166.393, which is between ∗
Uv =164.736 and 

∗
Uw =171.052. It would be interesting to find out whether this relation between 

the proposed solution in Li (1999) and Li & Yang (2004) and the solutions of 
the crisp matrix games (15)-(17) is true, in general, for matrix games of type 
(10) (fuzzy matrix games with TFN payoffs), in which case, it makes sense to 
propose the solution consisting of the optimal strategies of the crisp matrix 

game corresponding to (15) and the fuzzy value ),,(~
UL vvvv = , where v , 

Lv and Uv  are the values of the crisp matrix games corresponding to (15)-(17) 

respectively, as a solution to the considered game. The advantage of this 
solution over the Li’s would be its computational simplicity, since it reduces to 
the resolution of three independent crisp matrix games. 

The following example is taken from Maeda (2003). 
 
Example 3.3. (Computation of α -NL solution) Consider the fuzzy game 

defined by the fuzzy payoff matrix  

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

08
~

10
~

9

65
~

108
~

1~
A

  (18) 

It is assumed that the entries of A
~

 are the following STFNs, )5,180(08
~

1 =
, )6,156(65

~
1 = , )10,90(0

~
9 = . Let us compute an α -NL solution of this game 

by Procedure 3.1, assuming p = 1/2. 
 
Step1. Ask the players to provide α -cut levels. Assume that they have 

chosen 1α and 2α  respectively. Let α =Max{ 1α , 2α } in order to satisfy the 

choice of both players.  
First we solve the problem in general, then, at the end, we will assume 

concrete values for 1α and 2α .  
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α]~[ ija
 = { ija

/ αμ   )(~ ≥ija a
ij

} = [
αα U

ij
L
ij aa ,

], 2,1  =i , 2,1  =j , then 

using Remark 3.2, we obtain [ ] [ ]ααα  5 175 , 5185  180 −−= ,

[ ] [ ]ααα  6 162 , 6 150  156 −+= , and 
[ ] [ ]ααα  10 100 , 10 80  90 −+=

. 
Further, we have 2/122 ××=mnp =2, then 

   2   and   / )(    
,

ij2/1

⎭
⎬
⎫

⎩
⎨
⎧

=∈== ∑
ji

ij TT ββββ . 

Compute the matrix njmi
L
ij

L
ij

U
ijij aaaA ≤≤≤≤+−= 1 ,1)  )  ( (  ααα

β β , 

2/1T∈β . Since the payoffs are STFNs, according to Remark 3.2 

 
=+−= ≤≤≤≤ njmi

L
ij

L
ij

U
ijij aaaA 1 ,1)  )  ( (  ααα

β β
  

 
( ) njmi

L
ijijij ahA ≤≤≤≤+−= 1 ,1)   2  2 (  α

β βα
=  

  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−++−
++−++−

) 5 175(  5)2  2() 10 80(  10)2  2(

) 6 150(  6)2  2() 5 175(  5)2  2(

2221

1211

αβααβα
αβααβα

  

Step 2. Construct and solve the pair of optimization problems 
corresponding to problems (8)-(9). We have  

vMax  

 vxx   )) 10 80(  10)2  2((  )) 5 175(  5)22(( 212111 ≥++−+++− αβααβα   

 vxx   )) 5 175(  5)2 2((   )) 6 150(  6)2 2(( 222121 ≥++−+++− αβααβα   

2,1    ,0   ,121 =≥=+ ixxx i , 2/1T∈β
.  

wMin   

 wyy   )) 6 150(  6)2  2((  )) 5 175(  5)2  2(( 212111 ≤++−+++− αβααβα   

 wyy   ))5  175(  5)2  2((  ))10  80(  10)2  2(( 222121 ≤++−+++− αβααβα   
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Table 5. 

α  
1 x (α ) 2 x (α ) 11 β  12 β  21 β  22 β  v(α ) 

1/3 0.7638 0.2362 1.0000 0.0000 0.0000 1.0000 159.30 
1/2 0.7978 0.2022 0.9999 0.9999 0.0000 0.0000 162.52 
2/3 0.7725 0.2275 1.0000 1.0000 0.0000 0.0000 162.62 
1 0.7895 0.2105     161.05 

Table 6. 

α  
1 y (α ) 2 y (α ) 11 β  12 β  21 β  22 β  w(α ) 

1/3 0.2234 0.7786 1.0000 0.0000 0.9999 0.0000 159.08 
1/2 0.2185 0.7815 0.9999 0.0000 1.0000 0.0009 159.52 
2/3 0.2159 0.7841 1.0000 0.0000 1.0000 0.0000 159.99 
1 0.2105 0.7895     161.05 

 
2,1  ,0   ,121 =≥=+ jyyy j , 2/1T∈β .   

By Nimbus software Miettinen & Mäkelä (2006), we obtain the following 
solutions for different values of α  

Note that in Tables 5 and 6, for all values of 1≠α , we have ∑ ijβ =2. 

Here also in both tables we do not provide ijβ values for α =1, because the 

game (4) corresponding to (18) reduces to a crisp matrix game. 
 
Remark 3.4. Assuming, for instance, that the players have concretely 

chosen the cut-levels 1α =1/2, 2α =2/3, respectively. Let α =Max 

{1/2,2/3}=2/3. The corresponding α -NL solution to the considered game 
with the cut-level 2/3 is  

 )2275.0,7725.0()3/2( =x , )7841.0 ,2159.0()3/2( =y ,  

 62.162)3/2( =v  and 99.159)3/2( =w .  

Maeda (2003) has obtained the following optimal strategies for the game (18) 
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),(* 21
∗∗= xxx = (

μ
μ

μ
μ

12108

223
,

12108

1085

+
+

+
+ ), ),(* 21

∗∗= yyy = (

λ
λ

λ
λ

12108

1085
,

12108

223

+
+

+
+ ), (19) ]1,0[, ∈λμ , as Nash equilibrium of the bimatrix 

game  

 BG( λμ , )=( )(),(,, 22 μλ AASS − )  

where  

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

=
λλ
λλ

λ
108520100

1216210185
)(A

,  

and 

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

=
μμ
μμ

μ
108520100

1216210185
)(A

   

For μλ = , the game BG( λμ , ) reduces to the crisp matrix (zero-sum) 

game 

 G( λ )=( ))(,, 22 λASS ),  

Maeda (2003) has also showed that his results are the same as in Compos 
(1989), when μλ = . However, the approach of Campos cannot be used for

μλ ≠  as Maeda pointed out. For the particular case μλ = =1/2, the crisp 

matrix game G( λ ), becomes G( 2/1 )=( ))2/1(,, 22 ASS ), where  

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

18090

156180
)2/1( MAA

  (20) 

that is, we obtain the matrix the entries of which are the main values of the 

entries of the fuzzy matrix game (18). On the other hand, when 1=α , the 
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game (4) corresponding to (18) reduces to the matrix game (20) as well, hence 

our solution coincides with Maeda’s solution when 1=α  in our model and 

μλ = =1/2 in Maeda’s model. Indeed, when 1=α , our solution of the game 

(18) is given by Tables 5 and 6 )2105.0,7895.0()1( =x ,

)7895.0 ,2105.0()1( =y , and 05.161)1()1( == wv . Putting μλ = =1/2 

in (19), we get the same solution. Note that Maeda did not give any game or 
fuzzy interpretation of the parameters μλ ,  involved in his model. 

 
Remark 3.5. Our approach for solving fuzzy matrix games is different 

from the existing approaches (Bector et al., 2004a; Bector et al., 2004b; Bector 
& Chandra, 2005; Campos, 1989; Li, 1999; Li & Yang, 2004; Maeda, 2003; 
Nishizaki and Sakawa, 1995, 1997, 2001; Vijay et al., 2005a, 2005b; Vijay et 
al., 2007). From a theoretical point of view, we introduce Nature as a third 
player that represents the uncertainty involved in the game and use the 
Laplace’s principle of insufficient reason to describe the players’ beliefs about 
the behavior of Nature towards them. Nature has no payoff, its strategies vary 
in the α -cuts of the fuzzy payoffs. We have used the α -cuts to defuzzify the 
game, and the pair of optimization problems (8)-(9) we obtain is different from 
that obtained in existing approaches, it contains the additional variable β and 

its constraints are not linear. Compared to the Maeda (2003) and Li (1999) 
approaches, our approach is more general in the sense that in Maeda (2003) 
and Li (1999) it is assumed that the payoffs are TFNs (STFNs for the case of 
Maeda (2003)), while in our approach the payoffs are assumed to be fuzzy 
intervals with bounded support as defined by Dubois and Prade. Our method 
differs from that of Campos (1989) and Bector et al. (2004a) in the sense that 
we do not use any ranking (index) function to defuzzify the game. Moreover, 
the solution we propose is flexible in the sense that it is related to the cut-level 

α =max{ 21 ,αα }, where 21 ,αα  are determined by Player I and Player II 

respectively, while in Campos (1989), Bector et al. (2004a) and Vijay et al 
(2005b) the solution depends essentially on the Yager’s index function chosen. 
In Nishizaki & Sakawa (1995) a fuzzy goal is defined for the Player I and a 
new crisp payoff, based on the membership functions of the fuzzy expected 
payoff and the fuzzy goal, is introduced for this player as a degree of 
attainment of his fuzzy goal. Our approach differs from the latter approach in 
the sense that we do not use fuzzy goals and the fuzzy expected payoff of 
Player I to define our solution. Moreover, from computational point of view, 
our approach reduces to the resolution of a pair of independent crisp nonlinear 
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programming problems with linear objective function and quite simple 
nonlinear constraints (quadratic but not involving squared variables), while in 
Nishizaki & Sakawa (1995) the computation of the solution requires the 
resolution of a nonlinear programming problem. Finally, compared to Vijay et 
al. (2007), in our approach we do not use any fuzzy ordering or relation to 
express the preferences of players over the fuzzy payoffs or fuzzy expected 
payoffs. Moreover, the initial fuzzy matrix game is transformed into a special 
crisp three person game. 

4. CONCLUSION 

In this paper we have presented a new approach for solving matrix two-
person zero-sum games with fuzzy payoffs. Our approach differs from the 
existing ones in the sense that it does not use any ranking of fuzzy numbers, 
the payoffs are assumed to be fuzzy intervals with bounded support as defined 
by Dubois and Prade, and it introduces Nature as a third player that expresses 
the uncertainty involved in the game. The Laplace’s principle of insufficient 
reason is used to represent the beliefs of player about the behavior of Nature 
towards them. In addition, we provided a quite simple procedure for the 
computation of the α -NL solution of the game that reduces to solving a pair 
of independent crisp nonlinear programming problems. Finally, we think that 
extending this new approach for solving other types of non cooperative games 
with fuzzy payoffs and/or fuzzy goals may be a worthy direction of research. 
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