To our beloved Sensei Prof. Susumu Horiguchi

## Acknowledgments

All praises goes to Almighty Allah (swt), the most merciful and sustainer, who has been showering his endless blessings on the author throughout of his life.

The authors are very much pleased to express my sincere and profound gratitude and profuse heartfelt thanks to late Prof. Susumu Horiguchi of GSIS at Tohoku university for his constant encouragement and kind guidance during this research work. We are deeply grateful to him for his enthusiasm and insight, which have made research a most enjoyable and fulfilling experience. His phenomenal depth of knowledge and ability to discern the key points of the research problem inspire us a lot. We are both incredibly proud and immensely lucky to become his students.

We have learned much from discussion with colleagues over the years including Prof. Y. Hibino (JAIST), Prof. M. Kaneko (JAIST), Dr. Y. Miura (Shonan IT), Dr. M. Fukushi (GSIS, Tohoku Univ), Dr. Y. Fukushima(Sophia Univ., Tokyo), Dr. R. Hayashi (Kanazawa IT), E. Horiguchi (JAIST) for their helpful discussion, comments, and suggestions during this research work. The authors are indebted to the to the Ministry of Education, Science, Sports, and Culture, Japan for the financial support of this research work.

Last but not least, the authors are heartfelt thankful to their family members for their bountiful forbearance and significant sacrifice and encouragement. They were putting up with many dreary evenings and weekends when we were doing this research work. Their tolerance an understanding made it possible for us to complete this endeavor.

## Contents

| A | Acknowledgments |           |                                                         | ii |
|---|-----------------|-----------|---------------------------------------------------------|----|
| 1 | Intr            | oduction  | n                                                       | 1  |
|   | 1.1             |           | etion                                                   | 1  |
|   | 1.2             |           | nection Networks                                        | 2  |
|   | 1.3             |           | ions and Goal                                           | 6  |
|   | 1.4             |           | ution of the Book                                       | 8  |
|   | 1.5             |           | s of this Book                                          | 9  |
| 2 | Inte            | rconnec   | tion Networks for Massively Parallel Computers          | 11 |
|   | 2.1             | Introduc  | etion                                                   | 11 |
|   | 2.2             | Definitio | ons                                                     | 13 |
|   |                 | 2.2.1 F   | Fundamental Definitions                                 | 13 |
|   |                 | 2.2.2 T   | Topological Characteristics of Interconnection Networks | 13 |
|   |                 | 2.2.3 L   | Layout Characteristics of Interconnection Networks      | 14 |
|   |                 | 2.2.4 I   | Dynamic Communication Performance Metrics               | 14 |
|   | 2.3             | Intercon  | nection Network Topologies                              | 14 |
|   |                 | 2.3.1     | Completely-Connected Networks                           | 15 |
|   |                 | 2.3.2 S   | Star Networks                                           | 15 |
|   |                 |           | Tree Networks                                           | 16 |
|   |                 | 2.3.4 H   | Hypercubic Networks                                     | 19 |
|   |                 |           | Array Networks                                          | 21 |
|   | 2.4             |           | nical Interconnection Network (HIN)                     | 24 |
|   |                 | 2.4.1     | Completely-Connected Network based HIN                  | 25 |
|   |                 |           | Free Network based HIN                                  | 27 |
|   |                 | 2.4.3 H   | Hypercube Network based HIN                             | 28 |
|   |                 | 2.4.4 A   | Array Network based HIN                                 | 30 |
|   | 2.5             | Conclusi  | ions                                                    | 35 |
| 3 | Hie             | rarchical | l Torus Network (HTN)                                   | 36 |
|   | 3.1             | Introduc  | etion                                                   | 36 |
|   | 3.2             | Architec  | eture of the HTN                                        | 37 |
|   |                 |           | Basic Module                                            | 37 |
|   |                 |           | Higher Level Interconnection                            | 38 |
|   |                 | 3.2.3 A   | Addressing and Routing                                  | 40 |
|   | 3.3             |           | letwork Performance                                     | 43 |

|   |     | 3.3.1 Node Degree                                        | <br>. 43  |
|---|-----|----------------------------------------------------------|-----------|
|   |     | 3.3.2 Diameter                                           |           |
|   |     | 3.3.3 Average Distance                                   | <br>. 46  |
|   |     | 3.3.4 Cost                                               | <br>. 48  |
|   |     | 3.3.5 Connectivity                                       | <br>. 48  |
|   |     | 3.3.6 Bisection Width                                    |           |
|   | 3.4 | Wafer Stacked Implementation                             |           |
|   |     | 3.4.1 3D Stacked Implementation                          |           |
|   |     | 3.4.2 Peak Number of Vertical Links                      |           |
|   |     | 3.4.3 Layout Area                                        | <br>. 56  |
|   |     | 3.4.4 Maximum Wire Length                                |           |
|   | 3.5 | Conclusions                                              |           |
| 4 | Dyr | namic Communication Performance of the HTN               | 63        |
|   | 4.1 | Introduction                                             | <br>. 63  |
|   | 4.2 | Routing Algorithm                                        | <br>. 64  |
|   |     | 4.2.1 Resources and Allocation Units                     |           |
|   |     | 4.2.2 Taxonomy of Routing Algorithm                      | <br>. 66  |
|   |     | 4.2.3 Primitive Considerations                           |           |
|   |     | 4.2.4 Channel Dependency Graph                           | <br>. 73  |
|   | 4.3 | Dimension-Order Routing (DOR) for HTN                    |           |
|   |     | 4.3.1 Routing Algorithm for HTN                          |           |
|   |     | 4.3.2 Deadlock-free Routing                              | <br>. 79  |
|   |     | 4.3.3 Minimum Number of Virtual Channels                 | <br>. 82  |
|   | 4.4 | Dynamic Communication Performance using DOR              | <br>. 83  |
|   |     | 4.4.1 Performance of Interconnection Networks            | <br>. 83  |
|   |     | 4.4.2 Simulation Environment                             | <br>. 84  |
|   |     | 4.4.3 Traffic Patterns                                   | <br>. 85  |
|   |     | 4.4.4 Dynamic Communication Performance Evaluation       | <br>. 88  |
|   |     | 4.4.5 Effect of Message Length                           | <br>. 102 |
|   |     | 4.4.6 Effect of the Number of Virtual Channels           | <br>. 103 |
|   | 4.5 | Adaptive Routing                                         | <br>. 105 |
|   |     | 4.5.1 Link-Selection (LS) Algorithm                      |           |
|   |     | 4.5.2 Channel-Selection (CS) Algorithm                   | <br>. 108 |
|   |     | 4.5.3 Combination of LS and CS (LS+CS) Algorithm         |           |
|   |     | 4.5.4 Deadlock-Free Routing                              | <br>. 110 |
|   | 4.6 | Router Cost and Speed                                    | <br>. 113 |
|   |     | 4.6.1 Router Gate Counts                                 | <br>. 113 |
|   |     | 4.6.2 Router Speed                                       | <br>. 114 |
|   | 4.7 | Dynamic Communication Performance using Adaptive Routing | <br>. 117 |
|   | 4.8 | Conclusions                                              | <br>. 122 |
| 5 |     | configuration Architecture and Application Mappings      | 125       |
|   | 5.1 | Introduction                                             |           |
|   | 5.2 | Reconfiguration Architecture of the HTN                  |           |
|   |     | 5.2.1 Reconfiguration Scheme                             | 126       |

|      | 7.3.3 Deadlock-Free Routing                                        | 167<br>168<br>169                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | 7.3.4 Static Network Performance                                   | 167<br>168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | 9                                                                  | 167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | 7 9 9 Decided Lines Desiting                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                    | cor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.3  |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.0  | v                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | · · · · · · · · · · · · · · · · · · ·                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.2  | Modified Hierarchical 3D-Torus Network                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7.1  | Introduction                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| terc |                                                                    | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mo   | dification of other Hierarchical Networks based on Torus-Torus In- | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.4  | Contradion                                                         | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6.4  |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0.3  |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.2  |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.2  |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6.1  | Introduction                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pru  | med Hierarchical Torus Network                                     | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.4  | Concrusions                                                        | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.4  |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 8                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5.3  | Application Mappings on HTN                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 5.2.2 System Yield of the HTN                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | 5.4<br>Pru<br>6.1<br>6.2<br>6.3<br>Mo<br>tero<br>7.1               | 5.3.1 Converge and Diverge 5.3.2 Bitonic Merge 5.3.3 Fast Fourier Transform (FFT) 5.3.4 Finding the Maximum 5.3.5 Processing Time 5.4 Conclusions  Pruned Hierarchical Torus Network 6.1 Introduction 6.2 Pruned Network 6.2.1 Pruned Torus Network 6.2.2 Pruned HTN 6.3 3D-WSI Implementation of the Pruned HTN 6.3.1 Peak Number of Vertical Links 6.3.2 Layout Area 6.4 Conclusion  Modification of other Hierarchical Networks based on Torus-Torus Interconnection 7.1 Introduction 7.2 Modified Hierarchical 3D-Torus Network 7.2.1 Interconnection of the MH3DT Network 7.2.2 Routing Algorithm 7.2.3 Deadlock-Free Routing 7.2.4 Static Network Performance 7.2.5 Dynamic Communication Performance 7.2.6 Summary |

## List of Figures

| 2.1  | Completely-connected networks for $N = 4$ , $N = 8$ , and $N = 12$         | 15 |
|------|----------------------------------------------------------------------------|----|
| 2.2  | (a) A star-connected network of nine nodes (b) Star graph network          | 16 |
| 2.3  | A 15 node binary tree network                                              | 17 |
| 2.4  | A 15 node X-tree network                                                   | 17 |
| 2.5  | The 2D mesh-of-trees. Leaf nodes from the original grid are denoted with   |    |
|      | black circles. Nodes added to form row trees are denoted with red squares, |    |
|      | and nodes added to form column trees are denoted with blue squares         | 18 |
| 2.6  | A fat-tree network                                                         | 18 |
| 2.7  | The Binary cube networks of zero, one, two, three, and four dimensions,    |    |
|      | the nodes are labeled using $n$ -bit binary numbers                        | 20 |
| 2.8  | (a) The 3-dimensional binary cube network (b) The 3-dimensional CCC.       |    |
|      | Labels for individual nodes in the CCC are binary cube node label and the  |    |
|      | adjacent link label                                                        | 21 |
| 2.9  | A four-node linear array and ring network                                  | 22 |
| 2.10 | A layout for a ring network which minimizes link lengths $(N = 8)$         | 22 |
| 2.11 | 2D mesh and torus networks with 4 nodes in each dimension                  | 23 |
| 2.12 | 3D mesh and torus networks with 4 nodes in each dimension                  | 24 |
| 2.13 | A level-2 MFC network with 8 clusters and the cluster size is 8            | 26 |
| 2.14 | An example of 16-node swapped network with the 4-node complete graph       |    |
|      | as its basis.                                                              | 26 |
| 2.15 | A pyramid network of 16 node                                               | 27 |
|      | A hierarchical clique network                                              | 28 |
|      | Fibonacci cubes                                                            | 29 |
|      | A HCN(2,2) network                                                         | 30 |
|      | Recursive diagonal torus network                                           | 31 |
|      | Standard 1D-SRT consisting of 32 nodes                                     | 32 |
|      | Level-2 interconnection of TESH network                                    | 33 |
|      | Interconnection of a Level-2 H3D-torus network                             | 34 |
|      | Interconnection of a Level-2 H3D-mesh network                              | 35 |
| 3.1  | Interconnection of HTN                                                     | 37 |
| 3.2  | Basic module of the HTN                                                    | 38 |
| 3.3  | Interconnection of a Level-2 HTN                                           | 39 |
| 3.4  | Interconnection of a Level-3 HTN                                           | 39 |
| 3.5  | Routing algorithm of the HTN                                               | 42 |
| 3.6  | Illustration of degree of HTN                                              | 43 |
| 3.7  | Diameter of networks as a function of number of nodes $(N)$                | 45 |
| 3.8  | Average distance of networks as a function of number of nodes (N)          | 47 |

| 3.9          | Average distance of various networks with 4096 nodes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 47  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.10         | Cost of different networks as a function of number of nodes $(N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48  |
| 3.11         | Illustration of connectivity for 2D-mesh network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 49  |
| 3.12         | Bisection width of networks as a function of number of nodes $(N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50  |
| 3.13         | Structure of 3D stacked implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52  |
| 3.14         | Structure of microbridge and feedthrough                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 52  |
| 3.15         | PE array in a silicon plane for wafer stacked-implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 53  |
| 3.16         | Vertical links of 2D-mesh network in 3D wafer stacked-implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 53  |
| 3.17         | Vertical links of 2D-torus network in 3D wafer stacked-implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53  |
| 3.18         | Interconnection scheme of 2D-torus in 3D stacked implementation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 54  |
| 3.19         | A comparison of peak number of vertical links of HTN with other networks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 56  |
| 3.20         | Layout area of 2D-torus for $N = 16$ , $L = 4$ and $p = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 58  |
| 3.21         | Normalized layout area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60  |
| 3.22         | 2D-planner realization of 3D-torus network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 61  |
| 4.1          | Units of resource allocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 66  |
| 4.2          | Wormhole routing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 68  |
| 4.3          | An example of the blocked wormhole-routed message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 68  |
| 4.4          | Time-space diagram of a wormhole-routed message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69  |
| 4.5          | An example of deadlock involving four packets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 70  |
| 4.6          | Virtual channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71  |
| 4.7          | Message blocking while physical channels remain idle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72  |
| 4.8          | Virtual channel allows to pass blocked message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72  |
| 4.9          | (a) A ring network with unidirectional channels. (b) The associated channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|              | dependency graph contains a cycle. (c) Each physical channel is logically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|              | split into two virtual channels. (d) A modified channel dependency graph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     |
|              | without cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74  |
|              | Deadlock configuration in (a) mesh network (b) torus network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76  |
| 4.11         | A set of routing paths created by the dimension order routing in a 2D-mesh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|              | network                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77  |
|              | Dimension-order routing algorithm for HTN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 80  |
|              | An example of message routing in HTN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 81  |
| 4.14         | Nonuniform traffic patterns on a $8 \times 8$ mesh networks: (a) dimension-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.7 |
| 4 1 5        | reversal traffic and (b) bit-reversal traffic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87  |
| 4.15         | Dynamic communication performance of dimension-order routing with uni-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |
|              | form traffic pattern on various networks: (a) 1024 nodes, different virtual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|              | channels, short message, and $q = 0$ (b) 1024 nodes, 3 virtual channels,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 00  |
| 1 1 <i>C</i> | short message, and $q = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 90  |
| 4.10         | Dynamic communication performance of dimension-order routing with uniform traffic matters are applied to the communication performance of dimension-order routing with uniform traffic matters are applied to the communication performance of dimension-order routing with uniform traffic matters are applied to the communication performance of dimension-order routing with uniform traffic matters are applied to the communication performance of dimension-order routing with uniform traffic matters are applied to the communication performance of dimension-order routing with uniform traffic matters are applied to the communication performance of dimension-order routing with uniform traffic matters are applied to the communication performance of dimension-order routing with uniform traffic matters are applied to the communication performance of the communica |     |
|              | form traffic pattern on various networks: (a) 256 nodes, 3 virtual channels,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|              | short message, and $q = 1$ (b) 512 nodes, 3 virtual channels, short message,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|              | and $q = 1$ , (c) 1024 nodes, 3 virtual channels, short message, and $q = 1$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
|              | (d) 1024 nodes, 3 virtual channels, medium-length message, and $q = 1$ , (e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.1 |
|              | 1024 nodes, 3 virtual channels, long message, and $q = 1, \dots \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 91  |

| 4.17 | Dynamic communication performance of dimension-order routing with uniform traffic pattern on various networks: (a) 256 nodes, 2 virtual channels,     |     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      | short message, and $q = 1$ (b) 256 nodes, 2 virtual channels, medium-length                                                                           |     |
|      | message, and $q = 1$ , (c) 256 nodes, 2 virtual channels, long message, and                                                                           |     |
|      | q = 1, (d) 1024 nodes, 2 virtual channels, short message, and $q = 1$ , (e)                                                                           |     |
|      | 1024 nodes, 2 virtual channels, medium-length message, and $q = 1$ , and (f)                                                                          |     |
|      | 1024 nodes, 2 virtual channels, long message, and $q = 1$                                                                                             | 92  |
| 4.18 | Dynamic communication performance of dimension-order routing with hot-                                                                                | _   |
| 1110 | spot traffic pattern on various networks: (a) 256 nodes, 3 virtual channels,                                                                          |     |
|      | 5% hot-spot traffic, short message, and $q = 1$ (b) 512 nodes, 3 virtual                                                                              |     |
|      | channels, 5% hot-spot traffic, short message, and $q = 1$ , and (c) 1024                                                                              |     |
|      | nodes, 3 virtual channels, 5% hot-spot traffic, short message, and $q=1$                                                                              | 94  |
| 4.19 | Dynamic communication performance of dimension-order routing with hot-                                                                                |     |
|      | spot traffic pattern on various networks: (a) 256 nodes, 3 virtual channels,                                                                          |     |
|      | 2% hot-spot traffic, short message, and $q=1$ (b) $256$ nodes, 3 virtual                                                                              |     |
|      | channels, 10% hot-spot traffic, short message, and $q = 1$ , (c) 1024 nodes,                                                                          |     |
|      | 3 virtual channels, $2\%$ hot-spot traffic, short message, and $q = 1$ , and (d)                                                                      |     |
|      | 1024 nodes, 3 virtual channels, 10% hot-spot traffic, short message, and                                                                              |     |
|      | q=1.                                                                                                                                                  | 95  |
| 4.20 | Dynamic communication performance of dimension-order routing with di-                                                                                 |     |
|      | mension reversal traffic pattern on various networks: (a) 256 nodes, 3 vir-                                                                           |     |
|      | tual channels, 2-dimensional reversal traffic, short message, and $q=1$ (b)                                                                           |     |
|      | 1024 node, 3 virtual channels, 2-dimensional reversal traffic, short message,                                                                         |     |
|      | ands $q = 1$ , (c) 256 nodes, 3 virtual channels, 3-dimensional reversal traffic,                                                                     |     |
|      | short message, and $q = 1$ , (d) 1024 nodes, 3 virtual channels, 3-dimensional                                                                        |     |
|      | reversal traffic, short message, and $q = 1, \dots, n$                                                                                                | 97  |
| 4.21 | Dynamic communication performance of dimension-order routing with bit-                                                                                |     |
|      | reversal traffic pattern on various networks: (a) 256 nodes, 3 virtual chan-                                                                          |     |
|      | nels, short message, and $q = 1$ (b) 512 nodes, 3 virtual channels, short                                                                             |     |
|      | message, and $q = 1$ , (c) 1024 nodes, 3 virtual channels, short message, and                                                                         |     |
|      | q = 1, (d) 1024 nodes, 3 virtual channels, medium-length message, and                                                                                 | 00  |
| 4 99 | q=1, and (e) 1024 nodes, 3 virtual channels, long message, and $q=1$                                                                                  | 98  |
| 4.22 | Dynamic communication performance of dimension-order routing with complement traffic pattern on various networks: (a) 256 pades 2 viitual shap        |     |
|      | plement traffic pattern on various networks: (a) 256 nodes, 3 virtual channels, short message, and $q = 1$ , (b) 512 nodes, 3 virtual channels, short |     |
|      | message, and $q = 1$ , (b) 312 nodes, 3 virtual channels, short message, and $q = 1$ , (c) 1024 nodes, 3 virtual channels, short message,             |     |
|      | and $q = 1$ (d) 1024 nodes, 3 virtual channels, medium-length message, and                                                                            |     |
|      | q = 1, and (e) 1024 nodes, 3 virtual channels, long message, and $q = 1$ 1                                                                            | INC |
| 1 23 | Dynamic communication performance of dimension-order routing with bit-                                                                                | 100 |
| 1.20 | flip traffic pattern on various networks: (a) 256 nodes, 2 virtual channels,                                                                          |     |
|      | short message, and $q = 1$ and (b) 1024 nodes, 2 virtual channels, short                                                                              |     |
|      | message, and $q = 1$ and (b) 1024 hodes, 2 virtual charmers, short                                                                                    | l   |
| 4.24 | Dynamic communication performance of large-size HTN by dimension-                                                                                     | .01 |
| 1.21 | order routing under various traffic patterns: 3 virtual channels, short message.1                                                                     | 102 |
| 4.25 | Average message latency divided by message length vs. network through-                                                                                |     |
|      | put of HTN: 1024 nodes, 2 VCs, and $q = 1, \dots, 1$                                                                                                  | 103 |

| 4.26       | Dynamic communication performance of dimension-order routing with dif-                                                                   |      |
|------------|------------------------------------------------------------------------------------------------------------------------------------------|------|
|            | ferent virtual channels and short message on the large-size HTN: (a) hot                                                                 |      |
|            | spot traffic, (b) bit reversal traffic, (c) 2-dimension reversal, (d) 3-dimension                                                        |      |
|            | reversal, and (e) complement traffic patterns                                                                                            | 104  |
| 4.27       | Routing messages in a $6 \times 6$ mesh from node $(0, i)$ to node $(i, 5)$ (for $0 \le 1$ )                                             |      |
|            | $i \leq 5$ ); (a) Using dimension order routing, five messages must traverse                                                             |      |
|            | the channel from $(0,4)$ to $(0,5)$ , (b) Using adaptive routing, all messages                                                           |      |
|            | proceed simultaneously                                                                                                                   | 106  |
| 4.28       | A $6 \times 6$ mesh with a faulty link from node $(3,2)$ to node $(3,3)$ . (a) With                                                      |      |
|            | dimension order routing messages from dark nodes to the shaded area can-                                                                 |      |
|            | not be delivered. (b) With adaptive routing, messages can be delivered                                                                   |      |
|            | between all pairs of nodes.                                                                                                              | 107  |
| 4.29       | Selection of physical link by link-selection algorithm                                                                                   | 108  |
|            | Link-selection algorithm for HTN                                                                                                         |      |
|            | Selection of virtual channels by channel-selection algorithm                                                                             |      |
| 4.32       | A block diagram of router architecture                                                                                                   | 114  |
|            | Comparison of dynamic communication performance of the HTN between                                                                       |      |
|            | DOR, LS, CS, and LS+CS algorithms with uniform traffic pattern: 1024                                                                     |      |
|            | nodes, 3 virtual channels, and $q = 1$                                                                                                   | 119  |
| 4.34       | Comparison of dynamic communication performance of the HTN between                                                                       |      |
|            | DOR, LS, CS, and LS+CS algorithms with 5% hot-spot traffic pattern:                                                                      |      |
|            | 1024 nodes, 3 virtual channels, short message, and $q = 1, \ldots, \ldots$                                                               | 120  |
| 4.35       | Comparison of dynamic communication performance of the HTN between                                                                       |      |
| 1.00       | DOR, LS, CS, and LS+CS algorithms with bit-reversal traffic pattern: 1024                                                                |      |
|            | nodes, 3 virtual channels, 16 flits, and $q = 1, \ldots, n$                                                                              | 120  |
| 4.36       | Comparison of dynamic communication performance of the HTN between                                                                       |      |
| 1.00       | DOR, LS, CS, and LS+CS algorithms with bit-flip traffic pattern: 1024                                                                    |      |
|            | nodes, 3 virtual channels, short message, and $q = 1, \dots, n$                                                                          | 121  |
| 4 37       | Comparison of dynamic communication performance of the HTN between                                                                       | 1-1  |
| 1.01       | DOR, LS, CS, and LS+CS algorithms with perfect shuffle traffic pattern:                                                                  |      |
|            | 1024 nodes, 3 virtual channels, short message, and $q = 1, \ldots, 10$                                                                   | 121  |
| 4 38       | Dynamic communication performance improvement by LS+CS algorithm                                                                         | 121  |
| 1.00       | over DOR algorithm (a) Maximum throughput enhancement and (b) Mes-                                                                       |      |
|            | sage latency reduction                                                                                                                   | 193  |
| 5.1        | Hierarchical redundancy of the HTN                                                                                                       |      |
| 5.2        | Different switch states for reconfiguration: (a) no connect, (b) north-to-                                                               | 141  |
| J.∠        | south and east-to-west, (c) north-to-west and south-to-east, and (d) north-                                                              |      |
|            | to-east and south-to-west connects                                                                                                       | 197  |
| 5.3        | Reconfiguration of a plane for the BM in the presence of 4 faulty PEs:                                                                   | 141  |
| 0.5        |                                                                                                                                          | 100  |
| <b>5</b> 1 | Diagonal                                                                                                                                 |      |
| 5.4        |                                                                                                                                          | 3120 |
| 5.5        | Reconfiguration of a plane for the BM in the presence of 4 faulty PEs:                                                                   | 100  |
| F 6        | Concatenated L-shape and inverse L-shape                                                                                                 |      |
| 5.6        | Yield for BM and Level-2 network vs. fault density without spare node Vield for BM and Level-2 network vs. fault density with spare node |      |
| 5.7        | Yield for BM and Level-2 network vs. fault density with spare node                                                                       |      |
| 5.8        | CONVERGE on a $4 \times 4$ 2D-mesh                                                                                                       | 133  |

| 5.9  | The total number of communication steps of the bitonic merge in different           |     |
|------|-------------------------------------------------------------------------------------|-----|
|      |                                                                                     | 139 |
| 5.10 | The total number of communication steps of the bitonic merge in different           |     |
|      | networks                                                                            | 139 |
| 5.11 | The total number of communication steps of the FFT in different networks            | 140 |
| 5.12 | The total number of communication steps for finding the maximum in                  |     |
|      | different networks                                                                  | 140 |
| 6.1  | A $(4 \times 4 \times 4)$ 3D-torus network (a) unpruned, (b) pruning along the z    |     |
|      | direction, $T_1$ , (c) pruning along the $x+y+z$ direction, $T_2$ , and (d) pruning |     |
|      | along the $x + y$ direction, disjoint network                                       | 144 |
| 6.2  | A $(4 \times 4)$ pruned torus obtained by pruning along the $x + y$ direction       | 145 |
| 6.3  | Pruned Hierarchical Torus Network $(m = 4, n = 4) \dots \dots \dots \dots$          | 146 |
| 6.4  | An illustration of Level-2 $HTN_3$                                                  | 146 |
| 6.5  | A comparison of peak number of vertical links of various HTN                        | 148 |
| 6.6  | Normalized layout area (1024 PEs, 16 Wafers, and 64 PEs/Wafer)                      | 148 |
| 7.1  | Basic module of the MH3DT network                                                   | 151 |
| 7.2  | Interconnection of a Level-2 MH3DT network                                          | 152 |
| 7.3  | Routing algorithm of the MH3DT network                                              | 154 |
| 7.4  | Dynamic communication performance of dimension-order routing with uni-              |     |
|      | form traffic pattern on various networks: 4096 nodes, 2 VCs, 16 flits               | 160 |
| 7.5  | Average transfer time divided by message length versus network through-             |     |
|      | put of MH3DT network: 4096 nodes, 2 VCs, 16 flits, Buffer Size 2 flits              | 161 |
| 7.6  | Dynamic communication performance of dimension order routing with uni-              |     |
|      | form traffic pattern on the MH3DT network: 4096 nodes, various virtual              |     |
|      | channels,, 16 flits, Buffer Size 2 flits                                            | 162 |
| 7.7  | Basic module of the TTN                                                             | 164 |
| 7.8  | Interconnection of a Level-2 TTN                                                    | 165 |
| 7.9  | Routing algorithm of the TTN                                                        | 166 |
| 7.10 | Dynamic communication performance of dimension-order routing with uni-              |     |
|      | form traffic pattern on various networks: 4096 nodes, 4 VCs, 16 flits, and          |     |
|      | q = 0.                                                                              | 171 |
| 7.11 | Dynamic communication performance of dimension-order routing with uni-              |     |
|      | form traffic pattern on various networks: 4096 nodes, 4 VCs, 16 flits, and          |     |
|      | q=1.                                                                                | 171 |
|      |                                                                                     |     |

## List of Tables

| 2.1 | A collection of types of interconnection networks used in commercial and |
|-----|--------------------------------------------------------------------------|
|     | experimental parallel computers                                          |
| 3.1 | Diameter of HTN with Level- $L$                                          |
| 3.2 | Comparison of degree and connectivity for various networks               |
| 3.3 | Parameters for layout area in 3D stacked implementation 59               |
| 3.4 | Comparison of maximum wire length of different networks 62               |
| 4.1 | The total number of links of various networks with 1024 node 89          |
| 4.2 | Maximum throughput of the HTN (Flits/Cycle/Node) 102                     |
| 4.3 | Gate counts for router modules                                           |
| 4.4 | Gate counts for HTN routers                                              |
| 4.5 | Delays for the router module                                             |
| 4.6 | Module delay constants for a 0.8 micron CMOS process                     |
| 4.7 | Module delay for a 0.8 micron CMOS process                               |
| 4.8 | Performance Improvement using selection algorithm over dimension-order   |
|     | routing                                                                  |
| 5.1 | The total number of communication steps on a network for bitonic merge,  |
|     | FFT, and finding the maximum                                             |
| 6.1 | Comparison of wiring complexity of various Level-2 HTN                   |
| 7.1 | Comparison of static network performance of various network with 4096    |
|     | node                                                                     |
| 7.2 | Comparison of static network performance of various network with 4096    |
|     | node                                                                     |