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Abstract— This paper presents a particle swarm optimization 

(PSO) algorithm with dynamic spread factor inertia weight 

and its application to dynamic modeling of a flexible beam 

structure. In this study, system identification scheme based on 

PSO is formulated to obtain a dynamic model of the beam in 

parametric form. A PSO algorithm with dynamic spread factor 

inertia weight is proposed and its performance is assessed in 

comparison to a standard PSO in modelling the flexible beam 

structure.  
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I.  INTRODUCTION  

Particle swarm optimisation (PSO) was developed by 
Keneddy and Eberhart in 1995 as a new method in 
evolutionary computation. Keneddy, a social psychologist 
and Eberhart, an electrical engineer were trying to develop an 
optimiser based on social behaviour model and they were 
influenced by Heppner and Grenander’s work on simulating 
the behaviour of bird flocking in finding cornfield. The 
fundamentals of PSO come from theory of social sharing 
presented by researchers in fish schooling. The theory states: 
information sharing among each member of the group as, 
discoveries and previous experiences, will give benefit more 
than competition among them [1]. Based on the theory, PSO 
adjusts the particle’s position based on its own experience 
and other member’s discovery in each generation in finding 
the optimum solution to the problem. This means, the 
particles communicate with each other in every search 
generation toward the optimum point.  

As a method categorized under evolutionary computation 
(EC), PSO shares many similarities with other EC methods 
such as using population of random solution (stochastic 
method), updating generation for optima searches, applying 
fitness concept based on an objective function, and 
adjustment done in position update is conceptually similar to 
mutation applied in evolutionary programming. The only 
difference is that PSO does not apply the survival of fittest 
concept as others. This means that there is no competition 
among particles, no elimination of the weakest particle, 
indeed all particles share their information/discoveries and 
will eventually converge to the same optimum point [2]. 

II. PARTICLE SWARM OPTIMISATION 

      PSO starts with initialising a random population of 
possible solutions called particles. A particle is a moving 
point in the problem search space composed of three 

dimensional vectors that store its current position, ix
→

 current 

velocity, iv
→

 and the best position, ip
→

 achieved so far. Each 

particle then evaluates the fitness of their current position 
against an objective function, and the fitness value will 
provide the best position achieved so far at the point of the 
search. If the current fitness value is better than the best 
fitness value in memory, then the current position will be set 
as the best position. All the particles then will move to a new 
position by updating their velocity using (1); 
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where vi(t) is the updated velocity of particle i, vi(t-1) is the 
current velocity of particle i, c1 and c2 are constants, r1 and 
r2 are uniformly distributed random numbers between 0 and 
1, pi is personal best (pbest); the best position of particle i so 
far, and pg is global best (gbest); the best position of the 
particle in the entire population so far and xi is the current 
position of particle i. The first modification to the original 
algorithm was done by Shi and Eberhart in 1998, to give the 
ability of exploration and exploitation to the particles by 
introduced inertiaweight,w into the original equation. Since 
then, equation (1) always known as original pso equation. 

Once iv
→

 has been calculated, particles will update their 

position according to  

)()1()( tititi vxx += −  (2) 

 

Equation (1) describes the flying trajectory of particles. 
There are 3 parts in (1) namely momentum part, cognitive 
part and social part. Fig. 1 shows the effect of each part on 
direction of the new velocity. It can be seen that the particles 
are always been pulled toward pbest and gbest at every 
generation.  
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Figure 1.  Velocity update of particles in PSO 

vi(t-1) is a momentum part where it provides the previous 
velocity as a momentum to particles. Without this part, the 
previous velocity is memory less and the new velocity will 
only depend on the current position and global best position 
(the cognitive part is unlikely in this case to exist). The 
global best particle will not move until a new global best is 
found and all particles tend to move toward the global best. 
Therefore, the solution will solely depend on the initial 
population, where the global best position of initial 
population will be the solution unless there is another 
acceptable solution presents on moving trajectory of particles 
toward global best. Other than that, the search space is also 
getting smaller in every generation and it can be concluded 
that without the momentum part, equation (1) will likely 
behave as a local search [3] . With the presence of the 
momentum part, equation (1) will favour the global search 
where the particle will have an ability to explore new areas 
of the search space. The momentum part will pull the 
particles toward previous moving trajectory, prevent the 
particles from only moving toward the personal best position 
and global best position and eventually update the velocity to 
a new direction. The inertia weight provides a balance 
between global search and local search. Higher value of w 
results an overshoot or overflies particles, providing an 
exploration behaviour (global search), while lower value of 
w will shrink the search space providing exploitation ability 
(local search). The mathematical equation representing this 
concept is given as 
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Linearly decreasing inertia weight from 0.9 to 0.4 over 
time has shown significant improvement in performance 
compared to constant inertia weight [3]. 

The cognitive part in the velocity update equation 
represents personal discoveries of the particles. It pulls the 
particles toward the personal best position achieved and 
contributes to magnitude and direction of the new velocity. It 
works like a memory, where one always tends to return to a 
place with history of success. The random number will make 
the particles to wander stochastically around the personal 

best position and the cognition parameter controls the impact 
of the personal best position on the new velocity. Like in the 
second part, the third part also pulls particles toward some 
best position stochastically, but this time toward the best 
position achieved by the entire population. This social part 
symbolizes the communication between each particle where 
they share their personal discovery and experience, and 
contribute to global best position. The social parameter, c2 
same as c1, provides an impact of global best on the new 
velocity direction and magnitude.Kennedy and Eberhart 
proposed in the original PSO, that the cognitive and social 
scaling parameters c1 and c2 are selected such that c1=c2=2, 
in order to allow a mean of 1 (when multiplied by the 
random numbers r1 and r2). [4] have proposed a time 
varying acceleration coefficient (TVAC) along with time 
varying inertia weight (TVIW) in order to avoid premature 
convergence and to ensure convergence. TVAC is set with 
large value of cognitive parameter, c1 and small value for 
social parameter, c2 at the beginning in order to let the 
particles explore around search space. As time varying, value 
c1 will decrease and c2 will increase so that particles 
eventually forget their own interest/history and keep attracted 
towards global best position so that they will converge at 
global optimum. The modification can be mathematically 
represented as follows: 
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With this new modification, the PSO algorithm has 
become more effective in avoiding premature convergence 
for static problems. 

The PSO algorithm thus described can be formulated as 
below. 

PSO Algorithm 

1. Initialize particles randomly in the search space. 

2. Assign random initial velocities for each particle. 

3. Loop  

4. Evaluate the fitness of each particle according to a 
user defined objective function. 

5. Compare particle’s fitness evaluation with current 
pbest. Update pbest if current value is better than 
pbesti.  

6. Identify gbest 

7. Calculate the new velocities for each particle using 
equation 1, and limit it  by Vmax. 

8. Move the particles, equation (2). 

9. If stopping criteria met, exit loop 

10. End loop 
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III. DYNAMIC SPREAD FACTOR 

Dynamic spread factor was first introduced in 2009 and 
found highly effective in improving major issues in basic 
PSO like lack of diversity and premature convergence [5].As 
discussed in section 2, suitable selection of the inertia weight 
provides a balance between global and local exploration and 
exploitation. In time varying inertia weight, the value of 
inertia weight will decrease linearly as the iteration increases, 
but this is slightly different in the PSO with spread factor 
(SFPSO), where it continuously modifies the inertia weight 
value based on the instantaneous spreading of the particles 
from the global best, not solely based on the iteration time. 
The instantaneous spreading of the particles or spread factor 
depends on two factors, the spread of the particles and the 
distance of the average particle with respect to global best 
position. This used to calculate the inertia weight 

article- gbest)/pposition)  sum (abs(deviation 

on)min(position)max(positispread

=

−=
 (7) 

 
A momentum part is introduced to provide momentum to 

the particles when the initial inertia weight has reached zero. 
In this way local optima can be avoided. The spread factor 
and inertia weight thus are obtained as; 

min)max/()(5.0 xxdeviationspreadSF −+=  (8) 

))max_/(exp( iterationSFiterw ×−=                    (9) 

momiterationSFiterw +×−= ))max_/(exp(                  (10) 

 Where equation (8) and (9) comprise the basic SFPSO 
and equations (8) and (10) comprise the SFPSO with 
momentum factor.  

IV. PARAMETRIC MODELLING OF FLEXIBLE BEAM 

STRUCTURE 

The PSO algorithms were employed to gain a parametric 
model for flexible beam structure using the ARMA model 
structure  
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where ai and bi are the parameters to be identified. 20001 

input/output data values were obtained from a fixed-free 
flexible beam structure simulated within Matlab/Simulink 
using finite difference technique. The PSO algorihm was 
used to obtain the parameter ai and bi that give the smallest 
mean square error (MSE) between the measured system 
output and the ARMA model predicted output.  

The particle swarm optimisation begins with initialize a 
population of swarm containing 20 particles with 8 
variables. The particles was distributed randomly in search 
space within the range [-2,+2]. The first 4 rows in all 
particles were assigned to b1,..,b4 and the next 4 rows to 
a1,…,a4. The predicted output based on equation (8) is 
calculated using actual input and output data and parameters 
from particles. The objective function of the optimisation 

process is the mean square error between actual output and 
predicted output. This is given as: 
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Where n=20001. The process continues for each particle 
and follows the steps in PSO algorithm. 

Beside the objective function, [6] has proposed stability 
constraint to be satisfied in PSO algorithm so that the 
algorithm will give a solution of a stable model. By adding 
this constraint along objective function, it help particles to 
avoid a solution that lead to unstable model rather than get a 
set of parameters with best minimum error, but produce 
unstable model after long iteration. A model is a stable 
model when all the poles of its discrete transfer function are 
within the unity circle. If any pole is outside unity circle, 
then it is unstable model. In order to avoid unstable solution 
leading the optimisation process, a penalty value was added 
into the objective value (fitness value) of a particle, so it will 
favour a stable solution to be selected as a leading particle in 
search space. The pse-do code for this process is shown 
below: 

Step 1: Assign elements of a particles as b1,….,b4  and 
a1,….,a4 

Step 2: Form transfer function, H(z) taking all element 
such as 
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Step 3: Calculate poles of the transfer function (roots of 
the denominator) 

Step 4: Modify objective value,  

 If  [poles] > 1, then f(x) = f(x) + penalty value 

  Else f(x) = f(x) 

V. RESULTS AND DISCUSSION 

 
The performance of SFPSO in modelling the flexible 

beam was studied in comparison to the PSO with linear 
variant inertia weight (LVIW) with 3 different acceleration 
coefficient settings. Each algorithm was run 10 times and 
results of run with the smallest MSE were recorded. Table 1 
shows the acceleration coefficient parameter for different 
setting. 

TABLE I.   ACCELERATION COEFFICIENT SETTING 

Setting C1 C2 

 Original 2 2 

TVC1  (2.5 – 0)  2 

TVAC  (2.5 – 0)  (0 – 2.5) 
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TABLE II.  RESULTS 

Parameter Selection Min MSE Iteration 
Dead 

Time  

PSO TVAC 6.86E-11 585 400 

Original PSO 9.30E-11 607  

SFPSO MOM 0.1 TVC1 1.03E-10 253 112 

SFPSO MOM 0.4 1.16E-10 706 299 

SFPSO MOM 0.2 1.17E-10 396 197 

SFPSO TVC1 1.29E-10 218  

SFPSO MOM 0.3 TVC1 1.34E-10 492 244 

PSO TVC1 1.34E-10 436  

SFPSO MOM 0.1 1.36E-10 243 140 

SFPSO MOM 0.3 1.47E-10 537 211 

SFPSO TVAC 1.62E-10 443  

SFPSO MOM 0.2 TVC1 1.76E-10 313 244 

SFPSO MOM 0.4 TVAC 1.77E-10 899 810 

SFPSO MOM 0.2 TVAC 2.27E-10 564 221 

Original SFPSO 2.30E-10 145  

SFPSO MOM 0.4 TVC1 2.79E-10 601 373 

SFPSO MOM 0.1 TVAC 2.94E-10 646 146 

SFPSO MOM 0.3 TVAC 4.01E-10 553 510 

 

Table 2 shows the results of the PSO algorithms with 
different parameter settings. The two main results which will 
be evaluated for the performance analysis are the MSE and 
the numbers of iterations convergence achieved by each 
algorithm.  

It is noted that the smallest MSE is achieved by PSO 
TVAC with 6.86x10

-11
, the original PSO achieved 9.3x10

-11
 

and the largest MSE was 4.01x10
-10

 as achieved by SFPSO 
TVAC with a momentum factor of 0.3 while other 
algorithms achieved solutions with MSEs between 1.03x10

-10 

and 2.94x10
-10

.  The analysis found that the differences 
between these MSE values are not very significant and it can 
be deduced that all the algorithms give acceptable solution in 
parametric modelling of the flexible beam system. 

Since all the MSE values were within acceptable region, it 
is further shown that the SFIW gave a much faster solution 
(low iteration number) when compared to LVIW.  The 
fastest algorithm convergence was achieved with original 
SFPSO, which gave a solution only after 145 iterations, 
while original PSO converged after 607 iterations. For TVC1 
setting; SFPSO converged at 218 iterations whereas to PSO 
TVC1converged at 436 iterations, and the trend was the 
same with TVAC setting; SFPSO converged at 443 iterations 
and PSO at 585 iterations.  

The effect of the spread factor on the inertia weight can be 
seen in Fig 2. Wide spreading particles from the best fitness 
position will result in higher inertia weight (global search) 
and when the particles start moving toward the optimum 
solution, the inertia weight value will decrease to allow a 
local search. It is interesting to see that the inertia value can 
also increase and decrease again, because it is not solely 
depended on the iteration but on the two spread factors. Once 

the particles are within the locality of the best position, the 
inertia weight will fall down to zero value, forcing the 
algorithm to converge at less iterations compared to linearly 
varying inertia weight method (LVIW). 
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Figure 2.  Dynamic spread factor inertia weight 

By adding a momentum part into inertia weight 
calculation, the iteration taken is increasing with the 
momentum. The higher the momentum, the longer the 
algorithm will take to converge. This effect can be seen from 
fig 3 for the original and TVC1 acceleration coefficient 
setting.  
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Figure 3.  Comparison chart 

Momentum part also creates a dead time phenomena were 
the particles get stuck at local optima on early iterations for 
long times before the algorithms eventually converge to an 
optimum solution. Fig 4 shows the dead time problem for 
TVAC setting where the SFIW has not worked very well 
with this setting, as all the algorithms took longer to stop 
(above 500 iterations). This problem occurs  due to the 
longer global search caused by the TVAC setting  where the 
particles take longer time to forget their own interest and it is 
shown by dead time problem that result in higher iterations 
to converge. It is thus shown that SFIW will provide a good 
solution with original or TVC1 acceleration coefficient 
setting while SFIW will take longer time with TVAC setting. 
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Figure 4.  Convergence profile for SFPSO with TVAC setting 

The eight variables for the ARMA model were obtained 
and the transfer function was formed, 

0.5701 s^4 - 1.496 s^3 + 1.798 s^2 - 1.177 s + 0.3044 

-------------------------------------------------------------- 

s^5 - 0.6887 s^4 - 0.2939 s^3 - 0.2048 s^2 + 0.3855 s - 0.1977 

      (13) 

Figure 5 shows that the predicted output of PSO model 
follows the plant output very well in time domain. . The 
frequency domain plot (Figure 6) of the predicted PSO 
model and plant outputs indicates that the model has 
successfully captured the system dynamics of the first 5 
dominant mode.The pole-zero diagram (Figure 7) shows 
that all the poles lie inside the unit circle whereas some 
zeros are outside. This indicates that the model is stable and 
non-minimum phase model.The model reached an MSE 
level of 0.00005337 (Figure 8). Correlation validation of 
model is shown in Figure 9,10,11,12 and 13. It is noted that 
all the five correlation functions are within the 95% 
confidence bands indicating that the model behaviour is 
unbiased and close to that of the real system. 
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Figure 5.  Actual and predicted output 
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Figure 6.  Power spectral density of actual and predicted PSO  
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Figure 7.  Pole-zero diagram 
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Figure 8.  Mean square error between plant and predicted model 

 

3535



-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lag

 

Figure 9.  Auto-correlation validation test 
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Figure 10.  Cross-correlation of input-residuals 
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Figure 11.  Cross-correlation of input square-residuals 
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Figure 12.  Cross-correlation of input square-residual square 
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Figure 13.  Cross-correlation of residual and (input*residual) 

VI. CONCLUSION 

The PSO with SFIW and momentum factor has been 
introduced and its performance with 3 different acceleration 
coefficients setting namely, original, TVC1 and TVAC 
setting in parametric modelling of a flexible beam system.It 
has been founded that the dynamic spread factor PSO 
method achieved optimum solution with faster convergence.  
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