
Particle Swarm Modelling of a Flexible Beam Structure

M. Mohamad, Member, IEEE, M. O. Tokhi, Senior Member, IEEE, S.F Toha, Member, IEEE, I. Abd. Latiff

Department of Automatic Control and Systems Engineering

The University of Sheffield

Mappin Street, Sheffield, S1 3JD, United Kingdom

m.mohamad@sheffield.ac.uk

Abstract— This paper presents a particle swarm optimization

(PSO) algorithm with dynamic spread factor inertia weight

and its application to dynamic modeling of a flexible beam

structure. In this study, system identification scheme based on

PSO is formulated to obtain a dynamic model of the beam in

parametric form. A PSO algorithm with dynamic spread factor

inertia weight is proposed and its performance is assessed in

comparison to a standard PSO in modelling the flexible beam

structure.

Keywords- Particle swarm optimization, dynamic spread

factor, flexible beam structure, dynamic modeling

I. INTRODUCTION

Particle swarm optimisation (PSO) was developed by
Keneddy and Eberhart in 1995 as a new method in
evolutionary computation. Keneddy, a social psychologist
and Eberhart, an electrical engineer were trying to develop an
optimiser based on social behaviour model and they were
influenced by Heppner and Grenander’s work on simulating
the behaviour of bird flocking in finding cornfield. The
fundamentals of PSO come from theory of social sharing
presented by researchers in fish schooling. The theory states:
information sharing among each member of the group as,
discoveries and previous experiences, will give benefit more
than competition among them [1]. Based on the theory, PSO
adjusts the particle’s position based on its own experience
and other member’s discovery in each generation in finding
the optimum solution to the problem. This means, the
particles communicate with each other in every search
generation toward the optimum point.

As a method categorized under evolutionary computation
(EC), PSO shares many similarities with other EC methods
such as using population of random solution (stochastic
method), updating generation for optima searches, applying
fitness concept based on an objective function, and
adjustment done in position update is conceptually similar to
mutation applied in evolutionary programming. The only
difference is that PSO does not apply the survival of fittest
concept as others. This means that there is no competition
among particles, no elimination of the weakest particle,
indeed all particles share their information/discoveries and
will eventually converge to the same optimum point [2].

II. PARTICLE SWARM OPTIMISATION

 PSO starts with initialising a random population of
possible solutions called particles. A particle is a moving
point in the problem search space composed of three

dimensional vectors that store its current position, ix
→

 current

velocity, iv
→

 and the best position, ip
→

 achieved so far. Each

particle then evaluates the fitness of their current position
against an objective function, and the fitness value will
provide the best position achieved so far at the point of the
search. If the current fitness value is better than the best
fitness value in memory, then the current position will be set
as the best position. All the particles then will move to a new
position by updating their velocity using (1);

()

()ig

iititi

xprc

xprcwvv

−××+

−××+= −

2

1

2

1)1()(

 (1)

where vi(t) is the updated velocity of particle i, vi(t-1) is the
current velocity of particle i, c1 and c2 are constants, r1 and
r2 are uniformly distributed random numbers between 0 and
1, pi is personal best (pbest); the best position of particle i so
far, and pg is global best (gbest); the best position of the
particle in the entire population so far and xi is the current
position of particle i. The first modification to the original
algorithm was done by Shi and Eberhart in 1998, to give the
ability of exploration and exploitation to the particles by
introduced inertiaweight,w into the original equation. Since
then, equation (1) always known as original pso equation.

Once iv
→

 has been calculated, particles will update their

position according to

)()1()(tititi vxx += − (2)

Equation (1) describes the flying trajectory of particles.
There are 3 parts in (1) namely momentum part, cognitive
part and social part. Fig. 1 shows the effect of each part on
direction of the new velocity. It can be seen that the particles
are always been pulled toward pbest and gbest at every
generation.

2009 Third UKSim European Symposium on Computer Modeling and Simulation

978-0-7695-3886-0/09 $26.00 © 2009 IEEE

DOI 10.1109/EMS.2009.109

31

2009 Third UKSim European Symposium on Computer Modeling and Simulation

978-0-7695-3886-0/09 $26.00 © 2009 IEEE

DOI 10.1109/EMS.2009.109

31

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The International Islamic University Malaysia Repository

https://core.ac.uk/display/300382374?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1. Velocity update of particles in PSO

vi(t-1) is a momentum part where it provides the previous
velocity as a momentum to particles. Without this part, the
previous velocity is memory less and the new velocity will
only depend on the current position and global best position
(the cognitive part is unlikely in this case to exist). The
global best particle will not move until a new global best is
found and all particles tend to move toward the global best.
Therefore, the solution will solely depend on the initial
population, where the global best position of initial
population will be the solution unless there is another
acceptable solution presents on moving trajectory of particles
toward global best. Other than that, the search space is also
getting smaller in every generation and it can be concluded
that without the momentum part, equation (1) will likely
behave as a local search [3] . With the presence of the
momentum part, equation (1) will favour the global search
where the particle will have an ability to explore new areas
of the search space. The momentum part will pull the
particles toward previous moving trajectory, prevent the
particles from only moving toward the personal best position
and global best position and eventually update the velocity to
a new direction. The inertia weight provides a balance
between global search and local search. Higher value of w
results an overshoot or overflies particles, providing an
exploration behaviour (global search), while lower value of
w will shrink the search space providing exploitation ability
(local search). The mathematical equation representing this
concept is given as

221

)(
)(ωωωω +

−
×−=

MAXITER

iterMAXITER
 (4)

Linearly decreasing inertia weight from 0.9 to 0.4 over
time has shown significant improvement in performance
compared to constant inertia weight [3].

The cognitive part in the velocity update equation
represents personal discoveries of the particles. It pulls the
particles toward the personal best position achieved and
contributes to magnitude and direction of the new velocity. It
works like a memory, where one always tends to return to a
place with history of success. The random number will make
the particles to wander stochastically around the personal

best position and the cognition parameter controls the impact
of the personal best position on the new velocity. Like in the
second part, the third part also pulls particles toward some
best position stochastically, but this time toward the best
position achieved by the entire population. This social part
symbolizes the communication between each particle where
they share their personal discovery and experience, and
contribute to global best position. The social parameter, c2
same as c1, provides an impact of global best on the new
velocity direction and magnitude.Kennedy and Eberhart
proposed in the original PSO, that the cognitive and social
scaling parameters c1 and c2 are selected such that c1=c2=2,
in order to allow a mean of 1 (when multiplied by the
random numbers r1 and r2). [4] have proposed a time
varying acceleration coefficient (TVAC) along with time
varying inertia weight (TVIW) in order to avoid premature
convergence and to ensure convergence. TVAC is set with
large value of cognitive parameter, c1 and small value for
social parameter, c2 at the beginning in order to let the
particles explore around search space. As time varying, value
c1 will decrease and c2 will increase so that particles
eventually forget their own interest/history and keep attracted
towards global best position so that they will converge at
global optimum. The modification can be mathematically
represented as follows:

iif c
MAXITER

iter
ccc 1111)(+−= (5)

iif c
MAXITER

iter
ccc 2222)(+−= (6)

With this new modification, the PSO algorithm has
become more effective in avoiding premature convergence
for static problems.

The PSO algorithm thus described can be formulated as
below.

PSO Algorithm

1. Initialize particles randomly in the search space.

2. Assign random initial velocities for each particle.

3. Loop

4. Evaluate the fitness of each particle according to a
user defined objective function.

5. Compare particle’s fitness evaluation with current
pbest. Update pbest if current value is better than
pbesti.

6. Identify gbest

7. Calculate the new velocities for each particle using
equation 1, and limit it by Vmax.

8. Move the particles, equation (2).

9. If stopping criteria met, exit loop

10. End loop

pbesti

gbesti

x

xi

+1

pbesti- xi

gbesti- xi c2.r2(gbesti- xi)

c1.r1(pbesti- xi)

vi(t-1)

vi+1

ω.vi

momentum part

cognitive part

social part

3232

III. DYNAMIC SPREAD FACTOR

Dynamic spread factor was first introduced in 2009 and
found highly effective in improving major issues in basic
PSO like lack of diversity and premature convergence [5].As
discussed in section 2, suitable selection of the inertia weight
provides a balance between global and local exploration and
exploitation. In time varying inertia weight, the value of
inertia weight will decrease linearly as the iteration increases,
but this is slightly different in the PSO with spread factor
(SFPSO), where it continuously modifies the inertia weight
value based on the instantaneous spreading of the particles
from the global best, not solely based on the iteration time.
The instantaneous spreading of the particles or spread factor
depends on two factors, the spread of the particles and the
distance of the average particle with respect to global best
position. This used to calculate the inertia weight

article- gbest)/pposition) sum (abs(deviation

on)min(position)max(positispread

=

−=
 (7)

A momentum part is introduced to provide momentum to

the particles when the initial inertia weight has reached zero.
In this way local optima can be avoided. The spread factor
and inertia weight thus are obtained as;

min)max/()(5.0 xxdeviationspreadSF −+= (8)

))max_/(exp(iterationSFiterw ×−= (9)

momiterationSFiterw +×−=))max_/(exp((10)

 Where equation (8) and (9) comprise the basic SFPSO
and equations (8) and (10) comprise the SFPSO with
momentum factor.

IV. PARAMETRIC MODELLING OF FLEXIBLE BEAM

STRUCTURE

The PSO algorithms were employed to gain a parametric
model for flexible beam structure using the ARMA model
structure

)]4(),...,1(][,,,[

)]4(),...,1(][,,[)(

4321

43,21

−−+

−−−=
∧

kukubbbb

kykyaaaaky T

 (11)

where ai and bi are the parameters to be identified. 20001

input/output data values were obtained from a fixed-free
flexible beam structure simulated within Matlab/Simulink
using finite difference technique. The PSO algorihm was
used to obtain the parameter ai and bi that give the smallest
mean square error (MSE) between the measured system
output and the ARMA model predicted output.

The particle swarm optimisation begins with initialize a
population of swarm containing 20 particles with 8
variables. The particles was distributed randomly in search
space within the range [-2,+2]. The first 4 rows in all
particles were assigned to b1,..,b4 and the next 4 rows to
a1,…,a4. The predicted output based on equation (8) is
calculated using actual input and output data and parameters
from particles. The objective function of the optimisation

process is the mean square error between actual output and
predicted output. This is given as:

n

kyky

xf

n

k

2

1

)()(

)(

∑
=

∧

−

= (12)

Where n=20001. The process continues for each particle
and follows the steps in PSO algorithm.

Beside the objective function, [6] has proposed stability
constraint to be satisfied in PSO algorithm so that the
algorithm will give a solution of a stable model. By adding
this constraint along objective function, it help particles to
avoid a solution that lead to unstable model rather than get a
set of parameters with best minimum error, but produce
unstable model after long iteration. A model is a stable
model when all the poles of its discrete transfer function are
within the unity circle. If any pole is outside unity circle,
then it is unstable model. In order to avoid unstable solution
leading the optimisation process, a penalty value was added
into the objective value (fitness value) of a particle, so it will
favour a stable solution to be selected as a leading particle in
search space. The pse-do code for this process is shown
below:

Step 1: Assign elements of a particles as b1,….,b4 and
a1,….,a4

Step 2: Form transfer function, H(z) taking all element
such as

43
2

2
3

1
4

43
2

2
3

1)(
azazazaz

bzbzbzb
zH

++++

+++
=

Step 3: Calculate poles of the transfer function (roots of
the denominator)

Step 4: Modify objective value,

 If [poles] > 1, then f(x) = f(x) + penalty value

 Else f(x) = f(x)

V. RESULTS AND DISCUSSION

The performance of SFPSO in modelling the flexible

beam was studied in comparison to the PSO with linear
variant inertia weight (LVIW) with 3 different acceleration
coefficient settings. Each algorithm was run 10 times and
results of run with the smallest MSE were recorded. Table 1
shows the acceleration coefficient parameter for different
setting.

TABLE I. ACCELERATION COEFFICIENT SETTING

Setting C1 C2

 Original 2 2

TVC1 (2.5 – 0) 2

TVAC (2.5 – 0) (0 – 2.5)

3333

TABLE II. RESULTS

Parameter Selection Min MSE Iteration
Dead

Time

PSO TVAC 6.86E-11 585 400

Original PSO 9.30E-11 607

SFPSO MOM 0.1 TVC1 1.03E-10 253 112

SFPSO MOM 0.4 1.16E-10 706 299

SFPSO MOM 0.2 1.17E-10 396 197

SFPSO TVC1 1.29E-10 218

SFPSO MOM 0.3 TVC1 1.34E-10 492 244

PSO TVC1 1.34E-10 436

SFPSO MOM 0.1 1.36E-10 243 140

SFPSO MOM 0.3 1.47E-10 537 211

SFPSO TVAC 1.62E-10 443

SFPSO MOM 0.2 TVC1 1.76E-10 313 244

SFPSO MOM 0.4 TVAC 1.77E-10 899 810

SFPSO MOM 0.2 TVAC 2.27E-10 564 221

Original SFPSO 2.30E-10 145

SFPSO MOM 0.4 TVC1 2.79E-10 601 373

SFPSO MOM 0.1 TVAC 2.94E-10 646 146

SFPSO MOM 0.3 TVAC 4.01E-10 553 510

Table 2 shows the results of the PSO algorithms with
different parameter settings. The two main results which will
be evaluated for the performance analysis are the MSE and
the numbers of iterations convergence achieved by each
algorithm.

It is noted that the smallest MSE is achieved by PSO
TVAC with 6.86x10

-11
, the original PSO achieved 9.3x10

-11

and the largest MSE was 4.01x10
-10

 as achieved by SFPSO
TVAC with a momentum factor of 0.3 while other
algorithms achieved solutions with MSEs between 1.03x10

-10

and 2.94x10
-10

. The analysis found that the differences
between these MSE values are not very significant and it can
be deduced that all the algorithms give acceptable solution in
parametric modelling of the flexible beam system.

Since all the MSE values were within acceptable region, it
is further shown that the SFIW gave a much faster solution
(low iteration number) when compared to LVIW. The
fastest algorithm convergence was achieved with original
SFPSO, which gave a solution only after 145 iterations,
while original PSO converged after 607 iterations. For TVC1
setting; SFPSO converged at 218 iterations whereas to PSO
TVC1converged at 436 iterations, and the trend was the
same with TVAC setting; SFPSO converged at 443 iterations
and PSO at 585 iterations.

The effect of the spread factor on the inertia weight can be
seen in Fig 2. Wide spreading particles from the best fitness
position will result in higher inertia weight (global search)
and when the particles start moving toward the optimum
solution, the inertia weight value will decrease to allow a
local search. It is interesting to see that the inertia value can
also increase and decrease again, because it is not solely
depended on the iteration but on the two spread factors. Once

the particles are within the locality of the best position, the
inertia weight will fall down to zero value, forcing the
algorithm to converge at less iterations compared to linearly
varying inertia weight method (LVIW).

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
w

Figure 2. Dynamic spread factor inertia weight

By adding a momentum part into inertia weight
calculation, the iteration taken is increasing with the
momentum. The higher the momentum, the longer the
algorithm will take to converge. This effect can be seen from
fig 3 for the original and TVC1 acceleration coefficient
setting.

436

899

553564

646

443

585 601

492

313
253

218

706

537

396

607

145

243

0

100

200

300

400

500

600

700

800

900

1000

O
rig

ina l P
SO

O
rig

ina l S
FPSO

SFPSO M
OM

 0
.1

SFPSO M
OM

 0
.2

SFPSO M
OM

 0
.3

SFPSO M
OM

 0
.4

PSO T
VC1

SFPSO T
VC1

SFPSO M
OM

 0
.1

 T
VC1

SFPSO M
OM

 0
.2

 T
VC1

SFPSO M
OM

 0
.3

 T
VC1

SFPSO M
OM

 0
. 4

 T
VC1

PSO T
VAC

SFPSO T
VAC

SFPSO M
OM

 0
. 1

 T
VAC

SFPSO M
OM

 0
.2

 T
V AC

SFPSO M
OM

 0
.3

 T
VAC

SFPSO M
OM

 0
.4

 T
VAC

0.00E+00

5.00E-11

1.00E-10

1.50E-10

2.00E-10

2.50E-10

3.00E-10

3.50E-10

4.00E-10

4.50E-10

Iteration Max

Stuck local

minima
Min Mse

Figure 3. Comparison chart

Momentum part also creates a dead time phenomena were
the particles get stuck at local optima on early iterations for
long times before the algorithms eventually converge to an
optimum solution. Fig 4 shows the dead time problem for
TVAC setting where the SFIW has not worked very well
with this setting, as all the algorithms took longer to stop
(above 500 iterations). This problem occurs due to the
longer global search caused by the TVAC setting where the
particles take longer time to forget their own interest and it is
shown by dead time problem that result in higher iterations
to converge. It is thus shown that SFIW will provide a good
solution with original or TVC1 acceleration coefficient
setting while SFIW will take longer time with TVAC setting.

3434

0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

-7

No.of Iteration

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

SFPSO TVAC

PSO TVAC

SFPSO 0.1 MOM

SFPSO 0.2 MOM

SFPSO 0.3 MOM

SFPSO 0.4 MOM

Figure 4. Convergence profile for SFPSO with TVAC setting

The eight variables for the ARMA model were obtained
and the transfer function was formed,

0.5701 s^4 - 1.496 s^3 + 1.798 s^2 - 1.177 s + 0.3044

--

s^5 - 0.6887 s^4 - 0.2939 s^3 - 0.2048 s^2 + 0.3855 s - 0.1977

 (13)

Figure 5 shows that the predicted output of PSO model
follows the plant output very well in time domain. . The
frequency domain plot (Figure 6) of the predicted PSO
model and plant outputs indicates that the model has
successfully captured the system dynamics of the first 5
dominant mode.The pole-zero diagram (Figure 7) shows
that all the poles lie inside the unit circle whereas some
zeros are outside. This indicates that the model is stable and
non-minimum phase model.The model reached an MSE
level of 0.00005337 (Figure 8). Correlation validation of
model is shown in Figure 9,10,11,12 and 13. It is noted that
all the five correlation functions are within the 95%
confidence bands indicating that the model behaviour is
unbiased and close to that of the real system.

0 1 2 3 4
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

-3

Time(s)

D
is

p
la

c
e
m

e
n
t(
m

)

Plant

Pso model

Figure 5. Actual and predicted output

0 50 100 150
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Frequency (Hz)

M
a
g
n
itu

d
e
 (
d
e
g
/H

z
)

Plant

Pso model

Figure 6. Power spectral density of actual and predicted PSO

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Pole-Zero Map

Real Axis
Im

a
g
in

a
ry

 A
x
is

Figure 7. Pole-zero diagram

0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

mse = 5.3373e-005

Time (sec)

E
rr
o
r
(n

o
rm

a
lis

e
d
)

Figure 8. Mean square error between plant and predicted model

3535

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lag

Figure 9. Auto-correlation validation test

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lag

Figure 10. Cross-correlation of input-residuals

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lag

Figure 11. Cross-correlation of input square-residuals

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lag

Figure 12. Cross-correlation of input square-residual square

-1.5 -1 -0.5 0 0.5 1 1.5

x 10
4

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

lag

Figure 13. Cross-correlation of residual and (input*residual)

VI. CONCLUSION

The PSO with SFIW and momentum factor has been
introduced and its performance with 3 different acceleration
coefficients setting namely, original, TVC1 and TVAC
setting in parametric modelling of a flexible beam system.It
has been founded that the dynamic spread factor PSO
method achieved optimum solution with faster convergence.

ACKNOWLEDGMENT

M.Mohamad acknowledges the support of a financial

research fellowship of the Universiti Teknologi Malaysia

(UTM) and Ministry of Higher Education Malaysia.

REFERENCES

[1] Kennedy, J. and R. Eberhart. Particle swarm optimization. in

Neural Networks, 1995. Proceedings., IEEE International

Conference on. 1995.

[2] Shi, Y. and R.C. Eberhart. Empirical study of particle swarm

optimization. in Evolutionary Computation, 1999. CEC 99.

Proceedings of the 1999 Congress on. 1999.

[3] Yuhui, S. and C.E. Russell, Parameter Selection in Particle

Swarm Optimization, in Proceedings of the 7th International

Conference on Evolutionary Programming VII. 1998, Springer-

Verlag.

[4] Ratnaweera, A., S.K. Halgamuge, and H.C. Watson, Self-

organizing hierarchical particle swarm optimizer with time-

varying acceleration coefficients. Evolutionary Computation,

IEEE Transactions on, 2004. 8(3): p. 240-255.

[5] I. Abd Latiff, and M. O. Tokhi, “Fast convergence strategy for

particle swarm optimization using spreading factor,”

Proceedings of the IEEE Congress on Evolutionary

Computation, Trondheim, Norway, 18-21 May 2009

[6] M. S. Alam, and M. O. Tokhi, “Modelling of a twin rotor

system: a particle swarm optimisation approach,” Proceedings

of the Institution of Mechanical Engineers, Part G: Journal of

Aerospace Engineering, vol. 221, 2007, pp. 353-375.

3636

