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Abstract— This paper presents an investigation into dynamic 

simulation and controller optimization based on genetic algorithms 

(GAs) for a single-link flexible manipulator system in vertical plane 

motion.  The dynamic model of the system is derived using the 

Lagrange equation and discretised using the finite difference (FD) 

method. GA optimization is used to optimize the parameters of the 

proportional-integral-derivative (PID) based controllers for control 

of rigid-body and flexible motion dynamics of the system. The 

important point is to evaluate the range of PID parameter which 

used in the GAs programmed to find the best value of this 

parameter. Comparative performance assessment of the control 

approaches are presented and discussed in the time and the 

frequency domains. 

Keywords-PID; genetic algorithm; single-link flexible 

manipulator 

I.  INTRODUCTION 

Flexible manipulators are known to offer several 
advantages in comparison to their rigid counterparts [1], [2], 
[3]. Lightweight elastic single-link robot manipulators are 
capable of improving the speed of operation and handling 
larger payloads in comparison to rigid manipulators with the 
same actuator capabilities [1], [2]. Therefore, lots of research 
interest in flexible manipulators for industrial applications. 
This is due to several advantages associated with flexible 
manipulators. These include higher gross motion speeds, 
reduced cost for mechanical subsystem, energy efficiency due 
to smaller actuators for the same cycle times, portability and 
improved mobility of manipulator arms, safety due to reduced 
moving mass, and reduced mounting requirements. However, 
the control of such systems due to their flexible motion 
dynamics, with changing payloads, is challenging and 
requires sophisticated and complex control methods [4]. A 
simulation environment characterising a single-link flexible 
manipulator in vertical motion is utilized in this work.  

Proportional-integral-derivative (PID) control is used due 
to its wide-spread use in industrial control applications. The 
PID controller attempts to correct the error between a 
measured process variable and a desired set point by 
calculating and then outputting a corrective action that can 
adjust the process accordingly. 

Moreover genetic algorithm (GA) is used to optimize the 
parameters of a PID-based controller of the manipulator 
system in vertical motion.  Genetic algorithms (GAs) are used 

to develop controllers placed in the feedforward path (PID), 
feedforward and feedback paths (PIDPID) and with iterative 
learning control (PIDILC) for control of rigid-body motion 
and flexible motion dynamics of the system. Input and output 
data from the simulation are collected and used with GA to 
obtain suitable controller parameters of the system. 
Simulation results of the response of the manipulator system 
with the developed controllers are presented and a 
comparative assessment of the performance of the developed 
controllers with PID, PIDPID and PIDILC controller is 
provided.  

II. THE FLEXIBLE MANIPULATOR SYSTEM 

Figure 1 shows an outline description of the single-link 
flexible manipulator system under consideration in this work, 

where hp IMIE  and  , , , ρ  are Young's modulus, area 

moment of inertia, mass density per unit length, payload mass 
and hub inertia respectively. This consists of an aluminum 
cylindrical type flexible manipulator, with characteristic 
parameters shown in Table I, driven by two motors at the 
hub, for horizontal and vertical motion, respectively. The 
measurement sensors consist of an accelerometer at the end-
point of the manipulator for measurement of end-point 
acceleration, shaft encoders and tachometers, at the hub of the 
manipulator, for measurement of hub angle and hub velocity 

respectively. The length l  of the manipulator is assumed to 
be constant, and the effect of axial force is neglected.  
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Figure 1.   Outline of the flexible manipulator 
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The flexible manipulator system can be modelled as a 

pinned-free flexible beam, incorporating inertia at the hub and 
payload mass at the end-point (see Figure 2). With an angular 

displacement zθ  and an elastic deflection zu , the total (net) 

displacement (x,t)
z

y  of a point along the manipulator at a 

distance x  from the hub can be described as a function of 

both the rigid body motion (t)zθ  and elastic deflection 

(x,t)zu  as: 

(x,t)(t) + u xθ(x,t)y zzz =          (1) 

Using the Hamilton’s extended principle with associated 
kinetic, potential and dissipated energies of the system, a 
fourth order partial differential equation (PDE) representing 
the manipulator motion can be obtained as: 
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where m=mass per unit length, l=length of manipulator, 
Mp=payload, θ1= θz= angular displacement, θ2=angle of 
payload normal to the  OX and  g=gravity normal to the 
manipulator. A simulation algorithm based on finite 
difference discretisation of equation (2) has been developed 
[5],[6] and used in this paper as a platform for GA 
optimisation approach.  
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Figure 2. Schematic of the flexible manipulator in XZ plane 

TABLE I.  PARAMETER OF THE FLEXIBLE MANIPULATOR SYSTEM 

Flexible Manipulator 

Parameter Notation Value 

Length L(m) 1.0 

Diameter D(m) 0.0045 

Material - Aluminium 

Cross Sectional Area A(m2) 1.5904X 10-5 

mass m(kg/m) 4.3101X 10-2 

Hub Inertia Ih(kgm2) 5.85X 10-4 

Young ‘s Modulus E(N/m2) 71X 109 

Flexible Manipulator 

Parameter Notation Value 

Second moment of 

Inertia 
I (kgm2) 2.0129X 10-11 

III. THE ALGORITHMS 

A.  Genetic Algorithms 

Genetic algorithm (GA) optimization is based on natural 
selection and natural genetics [7]. Genetic algorithms 
constitute stochastic search methods that have been used in a 
wide spectrum of applications such as control structure design 
[8]. GA is used with a randomly initialized population 
representing parameters of the two PID controllers denoted 
by k1, k2, k3, k4, k5 and k6 parameter; and ILC controller 
marked by Γ, Φ and Ψ [9]. The fitness function used is based 
on output error minimisation, e(t) between the input and 
feedback hub-angle of the system, and is given as: 
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B. Control Structure 

Proportional-integral-derivative (PID) control is widely 
used in industrial control applications.  The PID algorithm 
can be described as [10]: 

dt

de

d
kdtteiktepktu +∫+= )()()(                     (4) 

where u(t) is the control variable, e(t) is the control error.  
 
The ILC scheme has previously been used for control of a 

flexible manipulator [11]. In the current work a PID-type 
learning scheme is combined with feedforward PID for 
control of the flexible manipulator system. 

kkk edtddt )/(1 Γ+Ψ+Φ+= ∫+ ηη      (5) 

where 1+kη =next control signal, kη = current control signal, 

ke = current error input 

Figures 3 and 4 show MATLAB-SIMULINK realisation of 

the flexible manipulator simulation and control. The 

simulation of the flexible manipulator is conducted with the 

four outputs namely hub-angle, hub-velocity, end-point 

acceleration and end-point residual. Low-pass (LP) filters each 

with cut-off frequency of 80 Hz is used to band limit the system 

response to the first three resonance modes for each output. 

Furthermore, to decouple the flexible motion control loop from the 

rigid body dynamics a high-pass filter for each output with a cut-off 

frequency 5 Hz is used. The system is operated with damping 

ratio, Ds=0 and without payload. 
PID controller is the most dominating form of feedback in use 

today where more than 90% of all control loops are PID [10]. Most 

loops are in fact PI because derivative action is not used very often. 

Strength of the PID control is that it also deals with important 

practical issues such as actuator saturation and integrator windup. 

Beside the development of design methods for PID control, there 

are some difficult problems that remain to be solved such as there is 

no characterization of the process where PID control is useful. 
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More details about the control strategy of PID, PIDPID 
and PIDILC scheme of horizontal motion are discussed in [9]. 

 
Figure 3. Open loop flexible manipulator simulation with bang-bang 

torque input [2] 

 

 

 

 

 

 

 

Figure 4. Closed loop control scheme for Flexible Manipulator  

C. Input  signal 

A bang-bang torque input with amplitude of ± 0.6 Nm and 

duration of 4 seconds is used to excite the system. Bang-bang 

torque is used for positive and negative direction of the flexible 

manipulator motion. This is shown in Figure 5. The total simulation 

time is set to 12 seconds and the system behaviour at the hub and 

end-point observed and recorded. 
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(b) Frequency domain 

Figure 5. Bang-bang input signal 

IV. SIMULATION RESULTS 

Figure 6 shows the convergence of the GA over 80 generations 

during optimisation of the PID, PIDPID and PIDILC controllers.  

The best individual achieved an MSE of 1.0688X10-5 with PIDPID 

control whereas, PID and PIDILC achieved an MSE of 1.0803X10-5 

after 80 generations. Table II shows the corresponding controller 

parameters achieved. The performance of the system with the three 

control schemes is assessed in this section with payloads of Mp= 0 

gram. Table III and IV show numerical values of the performance 

of the system with the three control approaches. It is noted that PID 

and PIDPID gave the best maximum overshoot output 30.4423˚ and 

30.4424˚, respectively.  Both controls also gave the best steady-

states output 30.0035˚ and 30.0037˚, respectively. PIDILC had the 

steady-state output 30.0038˚. PIDILC gave the maximum overshoot 

value of 1.484% whereas PID controller gave 1.474% overshoot. 

PIDPID controller on the other hand lead to overshoot value of 

1.475%. The settling time for PID, PIDPID and PIDILC controller 

were the same 1.949 second, with the rise time of 0.373 second. 

Moreover, the response of the system was settled in 1.95 seconds 

for all controls, resulting the good performance of the flexible 

manipulator. Table IV shows the maximum value of the hub-
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velocity, end-point acceleration and end-point residual. It is noted 

that PID control resulted in the best performance, followed by 

PIDPID control and PIDILC.  

Figures 7-10 show the system response in time and frequency 

domains with the three controllers, PID, PIDPID and PIDILC. The 

resonance frequencies and the magnitude of the vibration are 

depicted in Table V. All controllers gave the same resonance 

frequency values, which were at 13.645 Hz, 44.834 Hz and 92.5936 

Hz, respectively. A similar trend is observed with the PID and 

PIDPID controllers, where the best reduction in the magnitude of 

vibration was achieved with PIDPID control compared with PID 
and PIDILC.  
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Figure 6. GA convergence over 80 generations 

TABLE II.  CONTROL  PARAMETER  AFTER 80 GENERATIONS 

Controller 
Parameters 

PID PIDPID PIDILC 

K1 2.6911 2.6911 2.6911 

K2 
2.2474X 10-

4 
2.2474X 10-4 2.2474X 10-4 

K3 
1.3499X 10-

2 
1.3499X 10-2 1.3499X 10-2 

K4 - 5.5134X 10-2 - 

K5 - 1.2527X 10-4 - 

K6 - 1.75 - 

Φ - - 5.2181X 10-1 

Γ - - 6.3225X 10-4 

Ψ - - 1.1925X 10-4 

 
 
 
 

TABLE III.  HUB ANGLE  PERFORMANCE OF THE FLEXIBLE 

MANIPULATOR 

Controller 
Parameters 

PID PIDPID PIDILC 

Rise 

Time(sec.) 
0.373 0.373 0.373 

Settling 
Time(sec.) 

1.949 1.949 1.949 

% overshoot 1.474 1.475 1.484 

% 
Undershoot 

4.205 4.206 4.206 

 
 

TABLE IV.  MAX.IMUM VALUE OF THE RESPONSE 

Controller 
Profile 

PID PIDPID PIDILC 

Hub-angle 
(deg.) 

30.4423 30.4424 30.4425 

Hub-

velocity(deg
./sec) 

76.7067 76.7079 76.7081 

End-point 

Acceleration 
(deg./sec2) 

194.586 191.847 191.535 

End-point 

Residual 
(m) 

1.045X 10-2 1.050X 10-2 1.060X 10-2 

 

TABLE V.  RESONANCE FREQUENCY AND MAGNITUDE OF  END POINT 

RESIDUAL RESPONSE 

Controller 
Profile 

PID PIDPID PIDILC 

Mode 1 (Hz) 13.645 13.645 13.645 

Magnitude 1 

(deg./Hz) 
1.1547 1.36X 10-2 1.189 

Mode 2 (Hz) 44.834 44.834 44.834 

Magnitude 2 

(deg./Hz) 
3.39X 10-2 2.2275X 10-4 2.782X 10-2 

Mode3 (Hz) 92.593 92.593 92.593 

Magnitude 3 

(deg./Hz) 
1.09X 10-3 2.1991X 10-4 1.111X 10-3 

 
 

V.  CONCLUSIONS 

The development of PID controller with PID and ILC feedback 

control strategy for vibration reduction based on genetic algorithms 

for flexible manipulators in vertical plane motion has been 

presented. A combined feedforward and feedback control structure 

for control of rigid-body and flexible motion dynamics of a flexible 

robotic manipulator has been considered. A GA-optimisation 

strategy for design of PID controllers in the forward and feedback 

paths of the control structure has been investigated. Furthermore, a 

GA-optimisation strategy for design of PID controllers in the 

forward and ILC controller incorporated with end-point 

acceleration feedback paths of the control structure has been 

investigated and the performance of the developed control approach 

has been assessed in comparison to previously reported PIDPID 
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control, and it has been demonstrated that good performance is 

achieved with the proposed approach.  The control scheme has 

shown to perform well in reducing the vibration at the end-point of 

the manipulation. 

.   
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Figure 7. Hub-angle with Ds=0 and without payload 
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Figure 8. Hub-velocity with Ds=0 and without payload 
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Figure 9. End-point acceleration with Ds=0 and without payload 
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Figure 10. End-point residual with Ds=0 and without payload 
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