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Abstract

In this Letter, we apply the homotopy-perturbation method (HPM) to obtain approximate analytical solutions of the time-dependent Emden–
Fowler type equations. We also present a reliable new algorithm based on HPM to overcome the difficulty of the singular point at x = 0. The
analysis is accompanied by some linear and nonlinear time-dependent singular initial value problems. The results prove that HPM is very effective
and simple.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, a lot of attention has been focused on the studies of singular initial value problems (IVPs) in the second-order or-
dinary differential equations (ODEs). Many problems in mathematical physics and astrophysics related to the diffusion of heat
perpendicular to the surface of parallel planes can be modelled by the heat equation [1],

(1)yxx + r

x
yx + af (x, t)g(y) + h(x, t) = yt , 0 < x � L, 0 < t < T, r > 0

subject to the boundary conditions

(2)y(0, t) = α, y′(0, t) = 0,

where α is a constant and f (x, t)g(y) + h(x, t) is the nonlinear heat source, y(x, t) is the temperature, and t is the dimensionless
time variable. For steady-state case, and r = 2, h(x, t) = 0, Eq. (1) becomes

(3)y′′ + 2

x
y′ + af (x)g(y) = 0, y(0, t) = α, y′(0, t) = 0,

which is known as Emden–Fowler equation where f (x) and g(y) are some given function of x and y respectively. When f (x) = 1
and a = 1, Eq. (3) reduces to the Lane–Emden equation with specified f (y) was used to model several phenomena in mathematical
physics and astrophysics such as the theory of stellar structure, the thermal behavior of a spherical cloud of gas, isothermal gas
sphere and theory of thermionic currents [2–4]. In this analysis, we also study the wave type equations with singular behavior of
the form

(4)yxx + r

x
yx + af (x, t)g(y) + h(x, t) = ytt , 0 < x � L, 0 < t < T, r > 0
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where y(x, t) is the displacement of the wave at the position x and time t . The approximate solutions to the above problems were
presented by Shawagfeh [5] and Wazwaz [6–8] using the Adomian decomposition method (ADM) [9]. Recently Wazwaz [10]
employed ADM to solve Eq. (3). Sometimes it is a very intricate problem to calculate the so-called Adomian polynomials involved
in ADM. Another powerful and more convenient analytical technique, called the homotopy-perturbation method (HPM), was first
proposed by He in [11] and was further developed and improved by He [12–17]. In recent years, the application of HPM in nonlinear
problems has been devoted by scientists and engineers were appeared [18–36]. Recently, Ramos [37] applied HPM to the Volterra
integral form of the Lane–Emden equation without time dependence for y. Very recently, in our work [38] we applied the standard
HPM successfully to solve various types of singular initial value problems but there is no time dependence for y.

The solution of the time-dependent Emden–Fowler equation as well as variety of linear, nonlinear singular IVPs in quantum
mechanics and astrophysics is numerically challenging because of singularity behavior at the origin. The singularity behavior that
occurs at the point x = 0, is the main difficulty in the analysis of Eqs. (4) and (1). In this Letter, we present a reliable algorithm
based on the HPM to obtain the exact and/or approximate analytical solutions of the time-dependent Emden–Fowler type equations
where y depends on the position x and on the time t as well. Comparisons with the solutions obtained by the ADM [1] shall be
made.

2. Basic ideas of HPM

Homotopy-perturbation method (HPM) is a novel and effective method, and can solve various nonlinear equations. To illustrate
the basic ideas of the HPM, we consider the following general nonlinear differential equation:

(5)A(y) − f (r) = 0, r ∈ Ω,

with boundary conditions

(6)B(y, ∂y/∂n) = 0, r ∈ Γ,

where A is a general differential operator, B ia a boundary operator, f (r) is a known analytic function, and Γ is the boundary of
the domain Ω .

The operator A can be generally divided into two parts L and N , where L is linear, while N is nonlinear. Therefore Eq. (5) can
be written as follows:

(7)L(y) + N(y) − f (r) = 0.

We construct a homotopy of Eq. (5) y(r,p) :Ω × [0,1] → � which satisfies

(8)H(y,p) = (1 − p)
[
L(y) + L(y0)

] + p
[
A(y) − f (r)

] = 0, r ∈ Ω,

which is equivalent to

(9)H(y,p) = L(y) − L(y0) + pL(y0) + p
[
N(y) − f (r)

] = 0,

where p ∈ [0,1] is an embedding parameter and y0 is an initial approximation which satisfies the boundary conditions. It follows
from Eqs. (8) and (9) that

(10)H(y,0) = L(y) − L(y0) = 0 and H(y,1) = A(y) − f (r) = 0.

Thus, the changing process of p from 0 to 1 is just that of y(r,p) from y0(r) to y(r). In topology this is called deformation and
L(y)−L(y0) and A(y)−f (r) are called homotopic. Here the embedding parameter is introduced much more naturally, unaffected
by artificial factors; further it can be considered as a small parameter for 0 � p � 1. So it is very natural to assume that the solution
of (8) and (9) can be expressed as

(11)y(x) = u0(x) + pu1(x) + p2u2(x) + · · · .
According to HPM, the approximate solution of Eq. (5) can be expressed as a series of the power of p, i.e.,

(12)y = lim
p→1

y = u0 + u1 + u2 + · · · .

The convergence of series (12) has been proved by He in his paper [13].
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3. Alternative approach of HPM

In this section, we shall introduce a reliable new algorithm to handle time-dependent singular initial value problems (IVPs) in
a realistic and efficient way considering time-dependent Emden–Fowler equation as a model problem. The HPM will be applied
in a straightforward manner, but with a new choice for the differential operator L. It is well known that HPM generally begins
by separating linear and nonlinear parts in the problem, but this procedure does not always give satisfactory result in the singular
IVPs [39]. However, a slight change is necessary to overcome the singularity behavior at x = 0. The alternative approach here is to
define the operator L in terms of the second order derivatives, yxx + ryx/x, contained in the problem.

Now we construct a homotopy into Eq. (1) which satiesfies the following relation

(13)yxx + r

x
yx − y0xx − r

x
y0x + p

(
y0xx + r

x
y0x + af (x, t)g(y) + h(x, t) − yt

)
= 0,

where p ∈ [0,1] is an embedding parameter and y0 is an initial approximation which satisfies the boundary conditions. Let us
consider the solution form of Eq. (1)

(14)y(x) = u0(x, t) + pu1(x, t) + p2u2(x, t) + · · · ,
and the initial approximation

(15)y0 = α +
x∫

0

x−r

x∫
0

xrh(x, t) dx dx.

Now substituting (14) into (13) and (2) and equating the coefficients of like powers of p, we get

(16)u0xx + r

x
u0x − y0xx − r

x
y0x = 0, u0(0, t) = α, u0x(0, t) = 0,

(17)u1xx + r

x
u1x + y0xx + r

x
y0x + af (x, t)g(u0) + h(x, t) − u0t = 0, u1(0, t) = 0, u1x(0, t) = 0,

(18)u2xx + r

x
u2x + af (x, t)g(u1) − u1t = 0, u2(0, t) = 0, u2x(0, t) = 0,

(19)u′′
3 + r

x
u3x + af (x, t)g(u2) − u2t = 0, u3(0, t) = 0, u3x(0, t) = 0.

Now we can easily solve the above equations for u0, u1, u2 and u3, etc. using the Maple package. Finally, if four-term approximation
is enough, then we can write,

(20)y � u0 + u1 + u2 + u3.

The above procedure we also can apply to solve the wave type equations (4).

4. Applications of alternative approach of HPM

In order to assess both the applicability and the accuracy of HPM, we apply the proposed alternative approach of HPM to several
singular time-dependent Emden–Fowler type equations as indicated in the following examples.

4.1. Case: time-dependent Lane–Emden type

4.1.1. Example 1
First we consider the following linear, homogeneous time-dependent Lane–Emden equation,

(21)yxx + 2

x
yx − (

6 + 4x2 − cos t
)
y = yt ,

subject to the boundary conditions

(22)y(0, t) = esin t , yx(0, t) = 0.

We now construct a homotopy which satisfies the following relation:

(23)yxx + 2

x
yx − y0xx − 2

x
y0x + p

(
y0xx + 2

x
y0x − (

6 + 4x2 − cos t
)
y − yt

)
= 0,

where p ∈ [0,1] is an embedding parameter and y0 is an initial approximation which satisfies the boundary conditions. We assume
the initial approximation y0 = esin t .
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Now substituting (14) into (23) and (22) and equating the coefficients of like powers of p, we get

(24)u0xx + 2

x
u0x − y0xx − 2

x
y0x = 0, u0(0, t) = esin t , u0x(0, t) = 0,

(25)u1xx + 2

x
u1x + y0xx + 2

x
y0x − (

6 + 4x2 − cos t
)
u0 − u0t = 0, u1(0, t) = 0, u1x(0, t) = 0,

(26)u2xx + 2

x
u2x − (

6 + 4x2 − cos t
)
u1 − u1t = 0, u2(0, t) = 0, u2x(0, t) = 0,

(27)u3xx + 2

x
u3x − (

6 + 4x2 − cos t
)
u2 − u2t = 0, u3(0, t) = 0, u3x(0, t) = 0.

Solving these equations, we obtain the following solutions for u0, u1, u2 and u3, etc.,

(28)u0(x, t) = esin t ,

(29)u1(x, t) = esin t

(
x2 + 1

5
x4

)
,

(30)u2(x, t) = esin t

(
3

10
x4 + 13

105
x6 + 1

90
x8

)
,

(31)u3(x, t) = esin t

(
3

70
x6 + 17

630
x8 + 59

11 550
x10 + 1

3510
x12

)
.

Finally, the approximate solution in a series form is

(32)y(x, t) � esin t

(
1 + x2 + x4

2! + x6

3! + x8

4! + · · ·
)

,

and this will, in the limit of infinitely many terms, yield the closed-form solution,

(33)y(x, t) = ex2+sin t ,

which is the same as the solution obtained by Wazwaz [1] using ADM.

4.1.2. Example 2
Now we consider the following linear nonhomogeneous equation

(34)yxx + 2

x
yx − (

5 + 4x2)y = yt + (
6 − 5x2 − 4x4),

subject to the boundary conditions

(35)y(0, t) = et , yx(0, t) = 0.

We construct a homotopy in the following form:

(36)yxx + 2

x
yx − y0xx − 2

x
y0x + p

(
y0xx + 2

x
y0x − (

5 + 4x2)y − yt − 6 + 5x2 + 4x4
)

= 0.

By the same manipulations as in the previous examples and assuming the initial approximation y0(x) = et + x2 − 1
4x4 − 2

21x6, we
have

(37)u0xx + 2

x
u0x − y0xx − 2

x
y0x = 0, u0(0, t) = et , u0x(0, t) = 0,

(38)u1xx + 2

x
u1x + y0xx + 2

x
y0x − (

5 + 4x2)u0 − u0t − 6 + 5x2 + 4x4 = 0, u1(0, t) = 0, u1x(0, t) = 0,

(39)u2xx + 2

x
u2x − (

5 + 4x2)u1 − u1t = 0, u2(0, t) = 0, u2x(0, t) = 0,

(40)u3xx + 2

x
u3x − (

5 + 4x2)u2 − u2t = 0, u3(0, t) = 0, u3x(0, t) = 0.

Solving these equations, we obtain the following solutions for u0, u1, u2 and u3, etc.,

(41)u0(x, t) = et + x2 − 1

4
x4 − 2

21
x6,

(42)u1(x, t) = x2et + 1
x4et + 1

x4 + 11
x6 − 31

x8 − 4
x10,
5 4 168 1512 1155
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(43)u2(x, t) = 3

10
x4et + 13

105
x6et + 5

168
x6 + 223

12 096
x8 + 1

90
x8et + 241

166 320
x10 − 59

92 664
x12 − 8

121 275
x14,

u3(x, t) = 3

70
x6et + 25

12 096
x8 + 17

630
x8et + 73

38 016
x10 + 59

11 550
x10et + 1

3510
x12et + 449

864 864
x12 + 8473

681 080 400
x14

(44)− 16 327

1 543 782 240
x16 − 16

20 738 025
x18.

Finally, the approximate solution in a series form is

(45)y(x, t) � x2 + et

(
1 + x2 + x4

2! + x6

3! + x8

4! + · · ·
)

,

and this will, in the limit of infinitely many terms, yield the closed-form solution,

(46)y(x, t) = x2 + ex2+t ,

which is the same as the solution obtained by Wazwaz [1] using ADM.

4.2. Case: Singular wave-type equations

4.2.1. Example 3
In this section, we consider the following nonhomogeneous singular wave-type equation

(47)yxx + 2

x
yx − (

5 + 4x2)y = ytt + (
12x − 5x3 − 4x5),

subject to the boundary conditions

(48)y(0, t) = e−t , yx(0, t) = 0.

We construct a homotopy in the following form:

(49)yxx + 2

x
yx − y0xx − 2

x
y0x + p

(
y0xx + 2

x
y0x − (

5 + 4x2)y − ytt − 12x + 5x3 + 4x5
)

= 0.

Carrying out the steps involved in the alternative approach of HPM and assuming the initial approximation y0(x) = e−t + x3 −
1
6x5 − 1

14x7, we have

(50)u0xx + 2

x
u0x − y0xx − 2

x
y0x = 0, u0(0, t) = e−t , u0x(0, t) = 0,

(51)u1xx + 2

x
u1x + y0xx + 2

x
y0x − (

5 + 4x2)u0 − u0t t − 12x + 5x3 + 4x5 = 0, u1(0, t) = 0, u1x(0, t) = 0,

(52)u2xx + 2

x
u2x − (

5 + 4x2)u1 − u1t t = 0, u2(0, t) = 0, u2x(0, t) = 0,

(53)u3xx + 2

x
u3x − (

5 + 4x2)u2 − u2t t = 0, u3(0, t) = 0, u3x(0, t) = 0.

Solving these equations, we obtain the following solutions for u0, u1, u2 and u3, etc.,

(54)u0(x, t) = e−t + x3 − 1

6
x5 − 1

14
x7,

(55)u1(x, t) = x2e−t + 1

5
x4e−t + 1

6
x5 + 19

336
x7 − 43

3780
x9 − 1

462
x11,

(56)u2(x, t) = 3

10
x4e−t + 13

105
x6e−t + 5

336
x7 + 1

90
x8e−t + 319

30 240
x9 + 8

6237
x11 − 1171

3 783 780
x13 − 1

27 720
x15,

u3(x, t) = 3

70
e−t x6 + 17

630
e−t x8 + 5

6048
x9 + 59

11 550
e−t x10 + 97

114 048
x11 + 1

3510
e−t x12 + 12 127

45 405 360
x13

(57)+ 1627

108 972 864
x15 − 10 733

2 315 673 360
x17 − 1

2 633 400
x19.

Thus, finally, the approximate solution in a series form is

(58)y(x, t) � x3 + e−t

(
1 + x2 + x4

2! + x6

3! + x8

4! + · · ·
)

,



310 M.S.H. Chowdhury, I. Hashim / Physics Letters A 368 (2007) 305–313
and this will, in the limit of infinitely many terms, yield the closed-form solution,

(59)y(x, t) = x3 + ex2−t ,

which is the same as the solution obtained by Wazwaz [1] using ADM.

4.2.2. Example 4
Now we consider the following nonhomogeneous wave-type equation

(60)yxx + 4

x
yx − (

18x + 9x4)y = ytt − 2 − (
18x + 9x4)t2,

subject to the boundary conditions

(61)y(0, t) = 1 + t2, yx(0, t) = 0.

We construct a homotopy in the following form:

(62)yxx + 4

x
yx − y0xx − 4

x
y0x + p

(
y0xx + 4

x
y0x − (

18x + 9x4)y − ytt + 2 + (
18x + 9x4)t2

)
= 0.

Carrying out the steps involved in the alternative approach of HPM and assuming the initial approximation y0(x) = 1 + t2 − t2x3 −
1
5x2 − 1

6 t2x6, we have

(63)u0xx + 4

x
u0x − y0xx − 4

x
y0x = 0, u0(0, t) = 1 + t2, u0x(0, t) = 0,

(64)u1xx + 4

x
u1x + y0xx + 4

x
y0x − (

18x + 9x4)u0 − u0t t + 2 + (
18x + 9x4)t2 = 0, u1(0, t) = 0, u1x(0, t) = 0,

(65)u2xx + 4

x
u2x − (

18x + 9x4)u1 − u1t t = 0, u2(0, t) = 0, u2x(0, t) = 0,

(66)u3xx + 4

x
u3x − (

18x + 9x4)u2 − u2t t = 0, u3(0, t) = 0, u3x(0, t) = 0.

Solving these equations, we obtain the following solutions for u0, u1, u2 and u3, etc.,

(67)u0(x, t) = 1 + t2 − t2x3 − 1

5
x2 − 1

6
t2x6,

(68)u1(x, t) = 1

5
x2 + x3 + t2x3 − 7

50
x5 + 1

6
x6 − 1

6
t2x6 − 4

165
x8 − 1

9
t2x9 − 1

120
x12t2,

u2(x, t) = 7

50
x5 + 1

3
x6 + 1

3
t2x6 − 79

6600
x8 + 1

9
x9 + 1

18
x9t2 − 9497

762 300
x11 − 7

360
x12t2 + 1

120
x12 − 31

31 416
x14

(69)− 23

5400
x15t2 − 1

5040
x18t2,

u3(x, t) = 239

6600
x8 + 1

18
x9t2 + 1

18
x9 + 11 441

1 524 600
x11 + 1

45
x12t2 + 1

36
x12 − 565 423

362 854 800
x14 + 1

1800
x15t2 + 23

5400
x15

(70)− 215 233

528 731 280
x17 − 151

226 800
x18t2 + 1

5040
x18 − 1093

54 192 600
x20 − 11

132 300
x21t2 − 1

362 880
x24t2.

Thus, the approximate solution in a series form is

(71)y(x, t) � t2 +
(

1 + x3 + x6

2! + x9

3! + x12

4! + · · ·
)

,

and this will, in the limit of infinitely many terms, yield the closed-form solution,

(72)y(x, t) = t2 + ex3
,

which is the same as the solution obtained by Wazwaz [1] using ADM.
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4.3. Case: Nonlinear models

4.3.1. Example 5
We now consider the following nonlinear time dependent equation

(73)yxx + 5

x
yx + (

24t + 16t2x2)ey − 2x2ey/2 = yt ,

subject to the boundary conditions

(74)y(0, t) = 0, yx(0, t) = 0.

Now, based on our alternative approach of HPM, we now construct a homotopy of Eq. (73) which satisfies the following relation:

(75)yxx + 5

x
yx − y0xx − 5

x
y0x + p

(
y0xx + 5

x
y0x − (

24t + 16t2x2)ey − 2x2ey/2 − yt

)
= 0.

Now we assume the initial approximation y0 = 0 and substituting (14) into (75) and (74) and equating the coefficients of like powers
of p, we get

(76)u0xx + 5

x
u0x − y0xx − 5

x
y0x = 0, u0(0, t) = 0, u0x(0, t) = 0,

u1xx + 5

x
u1x + y0xx + 5

x
y0x + (

24t + 16t2x2)(1 + u0 + 1

2
u2

0 + 1

6
u3

0

)
− 2x2

(
1 + 1

8
u2

0 + 1

2
u0 + 1

48
u3

0

)
− u0t = 0,

(77)u1(0, t) = 0, u1x(0, t) = 0,

u2xx + 5

x
u2x + (

24t + 16t2x2)(u1 + u0u1 + 1

2
u2

0u1 + 1

6
u3

0u1

)
− 2x2

(
1

2
u1 + 1

16
u2

0u1 + 1

4
u0u1

)
− u1t = 0,

(78)u2(0, t) = 0, u2x(0, t) = 0,

u3xx + 5

x
u3x − (

24t + 16t2x2)(1

2
u2

0u2 + 1

2
u0u

2
1 + u0u2 + u2 + 1

2
u2

1 + 1

4
u2

0u
2
1 + 1

6
u3

0u2

)

(79)− 2x2
(

1

4
u0u2 + 1

2
u2 + 1

16
u2

0u2 + 1

8
u2

1 + 1

16
u0u

2
1

)
− u2t = 0, u3(0, t) = 0, u3x(0, t) = 0.

Solving these equations, we obtain the following solutions for u0, u1, u2 and u3, etc.,

(80)u0(x, t) = 0,

(81)u1(x, t) = −2tx2 +
(

1

16
− 1

2
t2

)
x4,

(82)u2(x, t) =
(

3

2
t2 − 1

16

)
x4 +

(
11

15
t3 − 3

40
t

)
x6 +

(
1

12
t4 − 1

64
t2 + 1

1536

)
x8,

u3(x, t) =
(

3

40
t − 7

5
t3

)
x6 +

(
7

64
t2 − 61

60
t4 − 11

7680

)
x8 +

(
101

2400
t3 − 491

2100
t5 − 37

22 400
t

)
x10

(83)+
(

43

9216
t4 − 5

288
t6 − 7

18 432
t2 + 5

589 824

)
x12.

Hence, the approximate series solution is

(84)y(x, t) � −2

(
tx2 − t2x4

2
+ t3x6

3
− t4x8

4
+ · · ·

)
,

and this will, in the limit of infinitely many terms, yield the closed-form solution,

(85)y(x, t) = −2 ln
(
1 + tx2),

which is the same as the closed-form solution obtained by Wazwaz [1] using ADM.
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4.3.2. Example 6
Finally, we consider the following nonlinear time dependent homogeneous equation

(86)yxx + 6

x
yx + (

14t + x4)y + 4ty lny = ytt ,

subject to the boundary conditions

(87)y(0, t) = 1, yx(0, t) = 0.

Now we construct a homotopy which satisfies the following relation

(88)yxx + 6

x
yx − y0xx − 6

x
y0x + p

(
y0xx + 6

x
y0x − (

14t + x4)y + 4ty lny

)
− ytt = 0.

Considering the initial approximation y0 = 1 and substituting (14) into (88) and (87) and equating the coefficients of like powers
of p, we get

(89)u0xx + 6

x
u0x − y0xx − 6

x
y0x = 0, u0(0, t) = 1, u0x(0, t) = 0,

(90)u1xx + 6

x
u1x + y0xx + 6

x
y0x + (

14t + x4)u0 + 4tu0 lnu0 − u0t t = 0, u1(0, t) = 0, u1x(0, t) = 0,

(91)u2xx + 6

x
u2x + (

14t + x4)u1 + 4t (u1 + u1 lnu0) − u1t t = 0, u2(0, t) = 0, u2x(0, t) = 0,

(92)u3xx + 6

x
u3x + (

14t + x4)u2 + 4tu2 + 2tu2
1

u0
+ 4tu2 lnu0 − u2t t = 0, u3(0, t) = 0, u3x(0, t) = 0.

Solving these equations, we obtain the following solutions for u0, u1, u2 and u3, etc.,

(93)u0(x, t) = 1,

(94)u1(x, t) = − 1

66
x6 − tx2,

(95)u2(x, t) = 1

2
t2x4 + 7

572
tx8 + 1

13464
x12,

(96)u3(x, t) =
(

1

66
− 1

6
t3

)
x6 − 67

12 870
t2x10 − 965

18 290 844
tx14 − 1

5 574 096
x18.

Hence, the approximate series solution is

(97)y(x, t) � 1 − tx2 + t2x4

2! − t3x6

3! + t4x8

4! + · · · ,
and this will, in the limit of infinitely many terms, yield the closed-form solution,

(98)y(x, t) = e−tx2
,

which is the same as the closed-form solution obtained by Wazwaz [1] using ADM.

5. Conclusions

In this Letter, we present a reliable algorithm based on the HPM to solve time-dependent singular IVPs. The obtained solu-
tions are compared with the Adomian’s decomposition method. All the examples show that the results of the present method are
the same as with those obtained by the Adomian’s decomposition method which illustrate the validity and accuracy of this pro-
cedure. The HPM has many merits and more advantages than the Adomian’s decomposition method. The main advantage of this
method is to overcome the difficulties arising in finding Adomian polynomials and also the calculation in HPM are very simple and
straightforward. Very recently, the HPM has been used by many scientist and Engineers because of it’s reliability and the reduction
in the size of computations. It is shown that the homotopy-perturbation method is a promising tool for both linear and nonlinear
time-dependent singular IVPs.

Acknowledgements

The authors would like to acknowledge the financial supports received from the Academy of Sciences Malaysia under the
SAGA grant No. P24c (STGL-011-2006), the Malaysian Technical Cooperation Program and the International Islamic University
Chittagong, Bangladesh.



M.S.H. Chowdhury, I. Hashim / Physics Letters A 368 (2007) 305–313 313
References

[1] A.M. Wazwaz, Appl. Math. Comput. 166 (2005) 638.
[2] S. Chandrasekhar, Introduction to the Study of Stellar Structure, Dover, New York, 1967.
[3] H.T. Davis, Introduction to Nonlinear Differential and Integral Equations, Dover, New York, 1962.
[4] O.U. Richardson, The Emission of Electricity from Hot Bodies, Logmans Green, London, 1921.
[5] N.T. Shawagfeh, J. Math. Phys. 34 (9) (1993) 4364.
[6] A.M. Wazwaz, Appl. Math. Comput. 118 (2001) 287.
[7] A.M. Wazwaz, Appl. Math. Comput. 128 (2002) 45.
[8] A.M. Wazwaz, Appl. Math. Comput. 173 (2006) 165.
[9] G. Adomian, Comput. Math. Appl. 27 (1994) 145.

[10] A.M. Wazwaz, Appl. Math. Comput. 161 (2005) 543.
[11] J.H. He, Comput. Methods Appl. Mech. Engrg. 167 (1–2) (1998) 57.
[12] J.H. He, Appl. Math. Comput. 156 (2004) 527.
[13] J.H. He, Comput. Methods Appl. Mech. Engrg. 178 (3/4) (1999) 257.
[14] J.H. He, Int. J. Non-Linear Mech. 35 (1) (2000) 37.
[15] J.H. He, Appl. Math. Comput. 135 (2003) 73.
[16] J.H. He, Appl. Math. Comput. 156 (2004) 527.
[17] J.H. He, Non-Perturbative Methods for Strongly Nonlinear Problems, Die Deutsche Bibliothek, Germany, 2006.
[18] S. Abbasbandy, Appl. Math. Comput. 172 (2006) 431.
[19] P.D. Arief, T. Hayat, S. Asghar, Int. J. Nonlinear Sci. Numer. Simul. 7 (4) (2006) 399.
[20] A. Beléndez, A. Hernández, T. Beléndez, C. Neipp, A. Márquez, Eur. J. Phys. 28 (2007) 93.
[21] A. Beléndez, T. Beléndez, A. Márquez, C. Neipp, Chaos Solitons Fractals, doi:10.1016/j.chaos.2006.09.070, in press.
[22] J. Biazar, H. Ghazvini, Phys. Lett. A 366 (1–2) (2007) 79.
[23] L. Cveticanin, J. Sound Vibration 285 (2005) 1171.
[24] M.S.H. Chowdhury, I. Hashim, O. Abdulaziz, Phys. Lett. A, doi:10.1016/j.physleta.2007.04.007, in press.
[25] M. El-Shahed, Int. J. Nonlinear Sci. Numer. Simul. 6 (2005) 163.
[26] G.M. Abd El-Latif, Appl. Math. Comput. 169 (2005) 576.
[27] D.D. Ganji, Phys. Lett. A 355 (2006) 337.
[28] D.D. Ganji, A. Rajabi, Int. Commun. Heat Mass Transfer 33 (2006) 391.
[29] V. Marinca, Arch. Mech. 58 (2006) 223.
[30] V. Marinca, N. Herisanu, Acta Mech. 184 (2006) 231.
[31] O. Turgut, Y. Ahmet, Chaos Solitons Fractals 34 (2) (2007) 989.
[32] A. Rajabi, Phys. Lett. A 364 (1) (2007) 33.
[33] A. Rajabi, D.D. Ganji, H. Taherian, Phys. Lett. A 360 (2007) 570.
[34] A.M. Siddiqui, R. Mahmood, Q.K. Ghori, Phys. Lett. A 352 (2006) 404.
[35] A.M. Siddiqui, R. Mahmood, Q.K. Ghori, Int. J. Nonlinear Sci. Numer. Simul. 7 (1) (2006) 7.
[36] Z. Odibat, S. Momani, Phys. Lett. A 365 (5–6) (2007) 351.
[37] J.I. Ramos, Chaos Solitons Fractals, doi:10.1016/j.chaos.2006.11.018, in press.
[38] M.S.H. Chowdhury, I. Hashim, Phys. Lett. A 365 (5–6) (2007) 439.
[39] M.S.H. Chowdhury, I. Hashim, Phys. Scr., submitted for publication.

http://dx.doi.org/10.1016/j.chaos.2006.09.070
http://dx.doi.org/10.1016/j.physleta.2007.04.007
http://dx.doi.org/10.1016/j.chaos.2006.11.018

	Solutions of time-dependent Emden-Fowler type equations  by homotopy-perturbation method
	Introduction
	Basic ideas of HPM
	Alternative approach of HPM
	Applications of alternative approach of HPM
	Case: time-dependent Lane-Emden type
	Example 1
	Example 2

	Case: Singular wave-type equations
	Example 3
	Example 4

	Case: Nonlinear models
	Example 5
	Example 6


	Conclusions
	Acknowledgements
	References


