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Abstract. In this paper, the 1st and 2nd order gas-kinetic BGK scheme is developed and tested 
for its ability in solving the two-dimensional compressible inviscid flow fields. The BGK 
(Bhatnagar-Gross-Krook) scheme uses the collisional Boltzmann equation as the governing 
equation for flow evolutions. Second-order BGK scheme is also developed for flow 
simulation. This is achieved by means of reconstructing the initial data via MUSCL 
(Monotone Upstream-Centered Schemes for Conservation Laws) method. In addition, a 
multisage TVD (Total Variation Diminishing) Runge-Kutta method is employed for the time 
integration of the finite volume gas-kinetic scheme. A typical two-dimensional regular 
reflection of an oblique shock wave from a solid surface is chosen for testing the accuracy 
and robustness of the BGK scheme. The computational results are validated against the 
numerical results of Roe’s scheme.  
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1 INTRODUCTION 

The development of numerical schemes for compressible simulations has attracted much 
attention in the past years. Godunov-type schemes and flux vector splitting schemes are 
among those most notable and successful numerical schemes. In the family of Godunov-type 
schemes, Roe’s FDS (Flux Difference Splitting) scheme [8] has enjoyed great popularity 
owing to its accuracy for simulating compressible inviscid flows. Through this method, the 
average state flux Jacobian satisfying the Rankine-Hugoniot relation is introduced to solve 
exactly the locally linearized Euler equations and can capture a shock within one 
computational cell.  

A typical Godunov-type finite volume scheme has two stages [1], reconstruction stage for 
constructing initial cell-averaged values at cell interfaces and evolution stage for computing 
flow variables at later times by solving the physical governing equations. The evolution stage 
of the Godunov-type scheme is based on the Riemann solution, while the gas-kinetic scheme 
is based on the simplified Boltzmann equation [3]. The BGK scheme is different from other 
Bolzmann-type schemes, which solve the collisionless Boltzmann equation by neglecting the 
collision term of the Boltzmann equation. With the inclusion of collision term in the 
Boltzmann equation, the BGK scheme take into account the particle collisions in the whole 
gas evolution process within a time step, from which a time-dependent gas distribution 
function and the resulting numerical fluxes at the cell interface are obtained [9]. A particular 
strength of the BGK scheme lies precisely where most Godunov-type FDS schemes often fail, 
such as carbuncle phenomenon, positivity, and entropy condition. 

The advancement of gas-kinetic BGK scheme for compressible flow simulations and other 
applications has attracted much attention and become matured in the last decade. Xu [3] 
introduced Jameson’s SLIP formulation to construct high-order BGK schemes. In 2000, Chae 
[10] and Kim proposed a modified gas-kinetic BGK scheme by introducing the Prantl number 
correction into flux calculations. While in 2002, Yeefeng [9] and Jameson extended the gas-
kinetic BGK scheme to three-dimensional compressible flows. Lately Xu [4] has used BGK 
scheme to solve ideal MHD equations.  

In this paper, the authors will present numerical results for the two-dimensional 
compressible inviscid regular shock reflection problem in term of first- and second-order 
accuracy of the BGK scheme. Then, these results are validated via Roe’s scheme.  

2 GAS-KINETIC THEORY 

The hydrodynamic equations for two-dimensional system of Euler equations are given by  
( ) ( ) ,0=∂+∂+∂ WGWFW yxt            (1) 

where 
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Where ρ , Uρ , Vρ  and ρε  are the mass, x-momentum, y-momentum and energy density 
respectively and p  is the pressure. The Euler equations could be approximated by the 
Bolztmann equation in the gas evolution stage [2,3].  

The Boltzmann equation in the two-dimensional case is  

( )ffQvfuff yxt ,=++ ,     (2) 
where f  is the gas-distribution function, u  and v  the particle velocities, and ( )ffQ ,  is the 
collision term. The collision term is an integral function, which accounts for the binary 
collisions. In most cases, the collision term can be simplified and the BGK model is one of 
them,  

( ) ( ) τfgffQ −=, ,      (3) 
where g  are the equilibrium state and τ  the collision time.  

The Euler equations could only be recovered from the Boltzmann equation when the 
equilibrium state g , is a Maxwellian:  

( ) ( )( )2222
2

ξλ

π
λρ +−+−−

+







= VvUu

K

eg ,    (4) 

where ξ  is a K  dimensional vector, which accounts for the internal degrees of freedom, such 
as molecular rotation and vibrations, and 22

2
2

1
2

Kξξξξ +++= K , U and V  are the 
corresponding macroscopic flow velocities in the x- and y-direction respectively. The 
dimensional vector, K  is related to the specific heat ratioγ , and for two-dimensional gas 
flow,  

( ) ( )124 −−= γγK ,      (5) 

where, for a diatomic gas 4.1=γ . Hence, the value of K  correspond to 3. In the equilibrium 
state, λ  is related to the macroscopic variables ( )ρερρρ ,,, VU  through the relation, 

( )22
2
14

2
VU

K
+−

+
=

ρρε
ρλ ,    (6) 

The pressure p  is related to ρ  and λ  through the following relation,  

λ
ρ

2
=p       (7) 
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The relation between the gas distribution function f  and the macroscopic variables is given 
by 

   ( ) ∫== ξψρερρρ α dudvdfVUW T,,, ,    (8) 

where Kdddd ξξξξ K21= , and  

    ( )( )Tvuvu 222
2
1,,,1 ξψα ++= ,    (9) 

are known as the moments.  
The fluxes for the corresponding macroscopic variables could also be obtained using 

similar approach as above and is given as 

 ( )( ) , , ,
T

U VF W F F F F u f dudvdρ ρ ρ ρε αψ ξ= = ∫        (10) 

  ( ) ∫== ξψαρερρρ dudvdfvGGGGWG T
VU ,,,)(               

In addition, the conservation principle for mass, momentum, and energy during the course of 
particle collisions requires ),( ffQ  to satisfy the compatibility condition 

   ( ) .3,2,1,0, ==∫ αξψα dudvdffQ              (11) 

The finite volume gas-kinetic scheme for the 2-D case is derived as  

  ( ) ( )21,21,,21,21
1

−+−+
+ −

∆
∆

−−
∆
∆

−= jijijiji
n

i
n

i GG
y
tFF

x
tWW ,            (12) 

where t∆  the step size in time,  x∆ and y∆ the mesh size in x- and y-direction, while jiF ,21+  
and 2/1, +jiG  are the numerical fluxes across cell interfaces.   

3 NUMERICAL SCHEME 

In this section, the first- and second-order two-dimensional BGK scheme would be 
considered. The scheme uses the fact that the Euler equations are the moments of the 
Boltzmann equation when the distribution function is Maxwellian. The first-order collisional 
scheme or better known, as the BGK scheme will be developed first. Lastly, a method of 
extending the first-order scheme to second-order will be reviewed. 

3.1 1st-order BGK scheme 

The BGK scheme is based on the Boltzmann equation with existing collision term, in 
which the collision term could be simplified to a form similar to that found in Eq. (3). Thus, 
the governing equation for the BGK scheme is expressed as [5] 

     
τ

fgvfuff yxt
−

=++               (13) 
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Equation (13) with the collision term described by Eq. (3) is known as the BGK model of the 
Boltzmann equation. From Eq. (13), it can be shown that the compatibility condition (11) 
naturally becomes 

    .3,2,1,0 ==
−

∫ αξψ
τ α dudvdfg            (14) 

The general solution of f of the BGK model at the cell interface (xi+1/2, yj) is obtained as 

 ( ) ( ) ( ) ( )∫ −−+= −−−t

o
ttt vtyutxfedtevutyxgvutyxf

0

//' ,,',,,,','1,,,,, ττξ
τ

ξ          (15) 

where x’ = xi+1/2 – u(t – t’) and y’ = yj – v(t – t’) are particle trajectories and fo is the initial 
non-equilibrium distribution function at t = 0.  

For the initial condition of two constant states around a cell interface, xi+1/2,j,  
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where H(u) is a Heaviside function. With the assumption of constant equilibrium state go in 
space and time, the solution f of the BGK model given by Eq. (15) can be expressed as 
follows: 
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In the current 1st-order BGK scheme, the term τ/te−  is assumed to be a constant and is 
denoted by the symbolη , where [ ]1,0∈η . Thus, the final distribution function at the cell 
interface jix ,21+  for the BGK scheme could be interpreted as 

     ( ) OOji fgf ηη +−=+ 1,21               (18) 
The equilibrium state Og  could be defined by applying the compatibility condition (14) at the 
cell interface jix ,21+  which yields, 
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Where the corresponding average macroscopic flow variables ( )ερρρρ ,,, VU  at the cell 
interface could be determined by evaluating the moments of the equilibrium state in Eq. (19). 

Therefore, the final numerical fluxes across the cell interface could be determined by using 
Eq. (10) and Eq. (18) which yields the following relations, 

    ( ) f
ji

e
jiji FFF ,21,21,21 1 +++ +−= ηη             (20) 
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where e
jiF ,21+ is the equilibrium flux function and f

jiF ,21+  is the non-equilibrium or free stream 
flux function. For the numerical flux, Gi,j+1/2 across the cell interface between cells (i,j) and 
(i,j+1), similar techniques can be used.  

3.2 2nd-order BGK scheme 

In order to extend the 1st-order BGK scheme to 2nd-order, a method known as the MUSCL-
type approach is adopted [1,4]. The requirement for any high-order scheme required that 
interpolation technique be used in the reconstruction of the cell averaged mass, momentum, 
and energy densities. Thus, a linear approximation of the initial data on each cell is equivalent 
to a second-order space discretization. In addition, the TVD shock capturing properties of the 
high-resolution scheme are achieved via the use of non-linear limiter. In this extension, a 
minmod limiter is used to obtain a piecewise linear representation of the cell averaged 
macroscopic variables. Hence, the left and right states of the conservative variables at a cell 
interface jix ,21+  could be obtained through the non-linear reconstruction of the initial data and 
are given as 
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where the superscripts L, and R correspond to the left and right side at a considered cell 
interface. While, Lψ , and Rψ  are the minmod limiters, which are given by 
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where Lr , and Rr  are given by 
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From the reconstructed left and right states of the conservative variables, the second-order 
numerical fluxes across the cell interface could simply be evaluated using the formulation 
given by Eq. (20) for BGK scheme by understanding the following facts, 
  1st-order numerical flux:  ( )jijiji WWFF ,1,

)1(
,21 , ++ =  

  2nd-order numerical flux:  ( )R
ji

L
jiji WWFF ,21,21

)2(
,21 , +++ =  

In addition, a Runge-Kutta time stepping scheme is also adopted for the time integration 
method, where a three stage Runge-Kutta method of second-order accuracy in time is 
employed into the second-order gas-kinetic schemes and is given as [6], 
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with 21,41 21 == αα .  For the second-order scheme, the interpolated pressure jump lp  and 

rp  around a cell interface can naturally be used as a switch function for the parameterη , such 
as [4] 
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βη exp1 ,               (25) 

where β  can be some constant. 
Similar procedures are followed in the reconstruction of initial data for 2nd-order numerical 

flux function Gi,j+1/2 across cell interfaces.     

4 RESULTS AND DISCUSSIONS 

4.1 Compressible inviscid regular shock reflection 

This test case is a two dimensional compressible inviscid flow problem and it’s taken from 
Ref. 3. The physical domain itself is rectangular of length 4 and height 1 divided into 60 x 20 
rectangular grids with 15/1=∆x  and 20/1=∆y . Dirichlet conditions are imposed on the left 
and upper boundaries as 

( ) ( ) ( )
( ) ( ) ( )52819.1,50633.0,61934.2,69997.1,,,

0.4/0.1,0.0,9.2,0.1,,,

,1,
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−=

=

tx

ty

pVU

pVU

ρ
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These conditions are based on the assumptions that the left boundary is a supersonic inflow 
condition while the upper boundary is set to satisfy the shock-jump relations with a shock 
angle equal to 29 degree. The bottom boundary is a reflecting wall and supersonic outflow 
condition is applied along the right boundary.  

The integration in time is carried out until 1000 time steps, at which the solution reaches a 
steady state. The pressure contours as well as pressure distributions along the middle line in 
the y-direction for both 1st-order and 2nd-order schemes are shown in Fig. 1 to 6. The results 
for BGK scheme are compared with the results obtained from Roe’s scheme.  Figure 1 and 2 
displayed the pressure contours for BGK and Roe’s schemes at 1st-order accuracy, 
respectively, while Fig. 4 and 5 showed the pressure contours for both schemes at 2nd-order 
accuracy. Lastly, Fig. 3 and 6 showed the pressure distributions at centerline for both schemes 
with 1st- and 2nd-order accuracy, respectively. Examining the figures, one may say that there is 
a good agreement between the BGK and the Roe’s schemes’. In addition to the numerical 
results for the pressure, the convergence histories of both schemes are also displayed in Fig. 7. 
From this figure, it clearly shows that the BGK scheme converges faster than the Roe’s 
scheme. For a  given 1000 time steps, the BGK scheme converges at 887 time iterations while 
the Roe’s scheme converges at 906 time iterations. 
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5 CONCLUSION 

From the Boltzmann equation, the gas-kinetic BGK scheme for the two-dimensional 
compressible inviscid flows is developed. The algorithms with 1st-order and 2nd-order 
accuracy are successfully applied to simulate two-dimensional flows. Analyzing the results 
revealed that the BGK scheme is able to produce numerical results that are comparable, 
robust, and as accurate as the Roe’s scheme. In addition, the BGK scheme proved that it is 
more efficient than the Roe’s scheme.  

REFERENCES 

[1] Hirsch, K., “The Numerical Computation of Internal and External Flows”, John Wiley 
& Sons, Vol. 2 1990.  

[2] Xu, K., “Entropy Analysis of Kinetic Flux Vector Splitting Schemes for the 
Compressible Euler Equations”, ICASE Report, 99-5, 1999.  

[3] Xu, K., “Gas-Kinetic Scheme for Unsteady Compressible Flow Simulations”, von 
Karman Institute for Fluid Dynamics Lecture Series, 1998-03, 1998. 

[4] Xu, K., “Gas-Kinetic Theory Based Flux Splitting Method for Ideal 
Magnetohydrodynamics”, ICASE Report, 98-53, 1998. 

[5] Xu, K., “A Gas-Kinetic BGK Scheme for the Compressible Navier-Stokes Equations”,   
ICASE Report, 2000-38, 2000.  

[6] Choi, H. and Liu, J. G., “The Reconstruction of Upwind Fluxes for Conservation Laws: 
It’s Behavior in Dynamic and Steady State Calculations”, J. Comput. Phys., 144, 237-
256, 1998.   

[8] Roe, P. L., “Approximate Riemann Solvers, Parameter Vectors and Difference 
Schemes”, J. Comput. Phys., 43, 357-372, 1981. 

[9]   Ruan, Y. and Jameson, A., “Gas-Kinetic BGK Method for Three-Dimensional       
Compressible Flows”, AIAA Paper, 2002-0550, 2002.  

[10]  Chae, D. S., Kim, C. A and Rho, O. H., “Development of an Improved Gas-Kinetic 
BGK Scheme for Inviscid and Viscous Flows”, J. Comput. Phys., Vol. 158, PP 1-27, 
2000. 

[11]  Ong, J. C., Omar, A. A. and Waqar, A., “The Accuracy of Gas-Kinetic Schemes  
    for Solving Compressible Inviscid Flow Problems”, International Conference  
   on Scientific and Engineering Computation, Singapore, Dec. 2002. 

 
 



Ong J. Chit, Ashraf A. Omar, Waqar Asrar and Megat M. Hamdan 

9 

X (m)

Y
(m
)

0 1 2 3 40

0.2

0.4

0.6

0.8

1
1st-order BGK scheme

 
Figure 1: Pressure contours for the 1st-order BGK scheme. 
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Figure 2: Pressure contours for the 1st-order Roe’s scheme. 
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Figure 3: Pressure distribution at the centerline for 1st-order BGK and Roe’s schemes. 
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Figure 4: Pressure contours for the 2nd-order BGK scheme. 
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Figure 5: Pressure contours for the 2nd-order Roe’s scheme. 
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Figure 6: Pressure distribution at the centerline for 2nd-order BGK and Roe’s schemes. 
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Figure 7: Convergence history of the residual of pressure with the Roe’s and BGK schemes.  
 


