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A b s t r a c t 

Reconstruction of the original DNA sequence in sequencing by hybridization 
approach (SBH) due to a large number of possible combinations requires a 
computational support. In the paper, a new method of sequencing has been 
proposed. T w o algorithms based on its idea have been implemented and tested: for 
the case of an ideal hybridization experiment (complete data) and for more general 
case, when some data are missing, like in the real experiment. Authentic DNA 
sequences have been used for testing. A parallel version of the second algorithm has 
been also implemented and tested. The quality of the reconstruction is satisfactory 
for the library of oligunucleotides of length 9, and 100, 200 and 300-bp long 
sequences. A way to a further decrease of the computation time is also suggested, 
k e y w o r d s : DNA sequencing, sequencing by hybridization, oligonucleotide 
hybridization, parallel computing 

1. Introduction 
A recognition of DNA sequences, as a part of a wide stream of activities 

aiming to complete our knowledge about biochemical basis of life, attracts 
researchers from various domains. Three main fields of activities can be 
distinguished in this area: DNA sequencing aiming to discover the exact sequence 
of nucleotides in a relatively short DNA segment (100-300 bp long), DNA 
assembling - which assembles the sequenced fragments into longer (1000-10000 bp 
long) contigs and DNA mapping - where one deals with whole chromosomes and 
tries to place marked DNA fragments (usually genes) on certain chromosome 
region. This paper deals with DNA sequencing. Our method is based on 
hybridization experiment, several versions of which have been proposed, e.g., by 
Drmanac et al. 1989, Khrapko et al. 1989. Southern et al. 1992 and Markiewicz et 
al. 1994. 
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Before presenting the method let us set up the problem more precisely. In 
general, the hybridization experiment is based on a property of single stranded 
nucleic acids to form a complex (antiparallel) with a complementary strand of 
nucleic acid. Shorter fragments of nucleic acids (oligonucleotides) are used in 
hybridization experiments and thus, a formation of a complex indicates the 
occurrence of a sequence complementary to oligonucleotide in nucleic acid. As a 
result of the experiment we obtain a set S of all l-long oligonucleotides which are 
known to hybridize with the investigated DNA sequence N of length n (i.e., they are 
substrings of string N). In case of ideal data we have thus 

cases, however, we can obtain less then n -l +1 fragments, either due to 
experimental problems or as a result of the structure of sequence N (for example, it 
can contain repeated subsequences). Moreover, we assume no positive errors, i.e., 
each fragment (oligonucleotide) present in S is a part of the original sequence. The 
goal is to reconstruct the original sequence from the given set S. 

Till now, several methods for assembling the original sequence have been 
proposed, e.g., by Khrapko et al. 1989, Pevzner 1989, and Bains 1991. Lysov 
suggests looking for a Hamiltonian path in a special graph (its vertices are elements 
of 5, an edge between vertices exists if and only if they overlap on length l- 1). 
Since the problem of the Hamiltonian path is known to be NP-hard (thus unlikely to 
admit polynomial time algorithms), Pevzner proposes an interesting transformation 
of such a graph. As a result of the transformation one gets a new graph in which the 
Eulerian path is looked for. This establishes the complexity of the problem since the 
problem of the Eulerian path can be solved in polynomial time. However, the 
Pevzner's method cannot deal correctly with cases when some data are missing. 
Bains' proposal is most similar to ours, but also does not take care of missing data. 
All these papers analyze sequential approaches, whereas significant speed-up can be 
obtained by applying parallel procedures. 

In this paper a new method for DNA sequencing is proposed. Two algorithms 
based on its idea have beem developed and implemented: for the case of an ideal 
hybridization experiment (complete data) and for more general case, when some 
data are missing, like in the real experiment. A parallel version of the second (more 
general) algorithm is also discussed. 

The structure of the paper is as follows. In Section 2 we present the sequential 
versions of the method for ideal data cases and for cases when data are incomplete, 
respectively. A modification of the method for long l is also presented. Some 
remarks on the implementation, test results and their analysis are included in Section 
3. Section 4 contains a description of the parallel implementation of the second 
algorithm. 

2. The method and its sequential implementation 
Our method is rather a brute force one but thanks to the structure of the data it 

is expected to terminate fast in case when set S is complete, i.e., 
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where A: is a number of oligonucleotides 

present in N missing in S), the method behaves less optimistically but always 
generates a correct sequence (in case only one is possible) or sequences. 

The basic idea behind it is as follows. Suppose k = 0. Then a complete tree of 
all possible sequences of length n is starttet to be built. The tree is constructed in the 
depth first search way. At each level m there are 4m nodes, due to 4 nucleotides 
present in DNA. As soon as it is possible (at level /) one tries to cut off (not to 
construct further) these branches that contain fragments not appearing in S. 

Computational experiments have shown that in the case when 

sequence can be reconstructed unambiguously (in some cases, although the data are 
complete, due to the data structure the original sequence cannot be reconstructed 
unambiguously) an average depth of the tree built (except for the correct branch) is 
close to I. 

The algorithm below (presented in a Pascal like language) describes this idea 
in a more detailed way. Initially the parameters of the procedure Reconstruct 
are as follows: S — the set of fragments obtained from the experiment. Sequence 
— the reconstructed sequence (initially empty), level — current level in the tree 

(initially 1). The result (or results, when the reconstruction is ambiguous) is output 
in the line o u t p u t [Sequence). 

Algorithm 1: the case of complete data (k = 0) 

Reconstruct (S, Sequence, level) 
begin 

for c in ['A', 'C', 'G', 'T'] do 
begin 

Sequence := Sequence + c; 
if level < 1 then 

Reconstruct (S, Sequence, level + 1 ) ; 
else 
begin 

if fragment of last 1 nucleotides 
in Sequence = any x in S then 

if level = n then 
output (Sequence) ; 

else 
Reconstruct (S - x, Sequence, level + 1); 

end 
Sequence := Sequence - c; 

end 
end 

In the second case, where there are k defects in set S, i.e., 
the process of building the tree changes (although general idea of the method 
remains the same). Constructing the tree one allows each branch to contain at most k 
fragments of length l not included in S. Then each branch is checked against this 
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property starting at level l. Thus, one may implement this idea in the form of 
Algorithm 2. (The parameter i is the number of accepted fragments not present in 

S.) 

Algorithm 2: the case of incomplete data (k > 0) 

Reconstructl (S, Sequence, level, i) 
begin 

for c in [ ' A ' , 'C*, ' G ' , ' T '] do 
begin 

Sequence := Sequence + c; 
if level < 1 then 

Reconstructl (S, Sequence, level + 1, i ) ; 
else 
begin 

if f r a g m e n t of l a s t 1 n u c l e o t i d e s 
in Sequence = any x in S then 

if level = n then 
output (Sequence); 

else 
Reconstructl (S - x, Sequence, level + 1, i ) ; 

else if i < k then 
if level = n then 
output (Sequence) ; 

else 
Reconstructl (S, Sequence, level + 1 , i + 1 ) ; 

end 
Sequence := Sequence - c; 

end 
end 

Let us illustrate these two algorithms with simple examples. 

Figure 1. An exemplary 
tree for the original 
sequence ACGTCAT 
(Example 1) as constructed 
by Algorithm 1 
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Example 1: 
In Fig. 1 a process of reconstructing a DNA sequence from the set of 

oligonucleotides S = {ACG, CGT, GTC, TCA, CAT}, where l = 3, is presented. 
Now set S is complete, i.e., k = 0, and the original sequence ACGTCAT can be 
unambiguously reconstructed. Other branches has been cut off. 
Example2: 

Let us now consider the case when number k of oligonucleotides missing in 
set S is greater than 0 (cf. Fig. 2). We assume N = ACGTCAT, S = {ACG, GTC, 
TCA, CAT}, n = 1, l = 3, k = 1. Let us trace how exemplary two branches of the tree 
have been constructed. First let us notice that k = 1, e.g., one and only one 
oligonucleotide of length l - 3 may be inserted while a branch is constructed. 
Consider branch AACG. The oligonucleotide AAC may be accepted. It does not 
appear in set S, but one is allowed to accept one oligonucleotide (since k = 1) not 
appearing in S. Introduction of such an oligonucleotide is marked as 
is chosen from S since it is the only oligonucleotide in S which may be appended to 
the AAC. One is no longer allowed to choose any oligonucleotide from the outside 
of S. Moreover, it is no longer possible to extend the branch AACG since no 
oligonucleotide from S may be appended to this sequence. Now, consider branch 
ACGTCAT that is the only correct result of the reconstruction. First CGT 
been appended to ACG as the missing oligonucleotide. Thus, the limit of 
oligonucleotides from the outside of S has been exhausted. From now on only 
oligonucleotides from S may be appended to the constructed sequence. The 
following oligonucleotides have been appended in order: GTC, TCA, CAT resulting 
in the original sequence ACGTCAT. Other branches of the tree can be also 
considered although the tree presented in the Fig. 2 is not complete. 

Figure 2. A tree for Example 2 
(incomplete data) 

As one can notice, the most time consuming part of the process is a 
construction of the complete tree down to level l (l + k in case of k defects). Thus, in 
order to speed up the computation, the starting fragment of the sequence to be 
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reconstructed should be known. In fact, it is often known - especially when it w a s 
used as a primer (or part of it) in PCR amplification (Saiki et al. 1988). If, for some 
reasons, the starting fragment is not known, one could modify the algorithm. 
Branches of the tree before they reach level l would be cut off . At each level 
between k and l + k one would have to check if the fragment generated can be a pail 
of any element of S. In other words, one would not wait until level l + k is reached 
but would try to cut off the superfluous branches earlier. 

3. Results of the computational experiment 
A computational experiment has been carried out to evaluate our method from 

the computational point of v iew. We have rather tried to experimentally find out 
dependencies between various parameters than to perform a theoretical analysis. 
First, we have used real DNA fragments that are known to be less random than 
stochasticaly generated sequences. This causes all methods to behave worse than in 
case of randomly generated DNA. To test our method we have used 100, 200 and 
300 bp long fragments taken from 40 various real DNA sequences. Al l the 
sequences come from GenBank (a database of investigated DNA fragments 
maintained by the National Institute of Health); the accession numbers are given in 
the appendix. From each sequence corresponding data sets S (as the results of a 
theoretical hybridization experiment) for l 

on charts presented below is an average of 40 results obtained for various sequences. 
Al l the results presented has been obtained on HP Apollo 9000/750 workstation in 
the Poznań Supercomputing and Networking Center. 

When analyzing data from the GenBank we realized firstly, that the number 
of " b a d " sequences, i.e., sequences for which k > 0 as a result of repeated fragments, 
not exactly meets the formula presented by Southern et al. 1992. This formula 
describes the probability with which all oligonucleotides occur in the sequence only 
once: 

where r = n - l + 1 is the number of oligonucleotides, 1 = 4l. 

Figure 3. Comparison of the 
probability of the occurrence of 
repeated fragments in DNA 
sequences against theoretical 
estimations 
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The sequences we have used behave worse than expected because of the 
presence of repeated fragments. In Fig. 3 the behaviour of real DNA sequences 
against theoretical estimation is compared. The upper three lines in Fig. 3 illustrate 
the theoretical probability calculated from the above formula. The corresponding 
lower three series are calculated from real sequences probabilities. The real DNA 
sequences contain repeated fragments more frequently than we would expect. It 
follows that in real hybridization experiments defects will occur quite often. 

The first set of experiments has been conducted for the case of no defects, i.e., 
k = 0. Suprisingly, although the full tree size grows exponentially, the time used by 
Algorithm 1 grows linearly only. This is illustrated in Fig. 4, where in Fig. 4a a 
global dependency of the computation time on the length of the original sequence 
(n) and the length of oligonucleotides (l) and in Fig. 4b the results for l = 8, 9, 10, 
are depicted more precisely. 

Figure 4a. 4b. Computation time of Algorithm 1 vs. the length of the original sequence (n) and the 
length of oligonucleotides (1) 

In case of an existence of some defects one could expect that increasing k 
would cause our algorithm to consume exponentially more time. This is because the 
number of branches which cannot be cut off at level m is 4m. In case of k > 0 the 
complete tree has to be constructed down to level l + k. The experiment has proved 
the above hypothesis. The increase of computation time in such a situation is 
presented in Fig. 5. 
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Figure 5. An impact of the 
number of "defects" k on 
the computation time for 
length n = 100 

Another interesting factor measured by us concerns an average value of a 

number of defects (resulting from the structure of the sequences), i.e., 

, since bigger k is, longer branches in the tree one 
have to consider and bigger the computation time is. Figure 6 illustrates the 

on different values of n and l. One can observe, that by increasing 

Figure 6. An average 
computation time (in sec.) vs. 
the length of oligonucleotides 
(for various lengths n of a 
reconstructed sequence) 

ler.gtn ol ol igonucleotides (I) 

length l of oligonucleotides one obtains a smaller 
S. This should result in decreasing average computation time. The observed 
behaviour of the average computation time is however somewhat suprising. As 
illustrated in Fig. 7 the average computation time (vs. the length of oligonucleotides 

l for various lengths n of a reconstructed sequence) initially decreases, what 

(cf. Fig. 6). The following increase of the 
computation time corresponds in turn to the situation, where the increasing length of 
oligonucleotides l has no longer effect on the value of k but the depth of the tree to 
be built completely (down to the level l + k) still increases. 
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Figure 7. Increasing the length 
of oligonucleotides 1 results in 
lower average value of k 

A very important factor in sequence reconstruction is ambiguity. One is 
usually interested in a selection of parameters assuring unambiguous reconstruction 
and at the same time possibly a limited experimental effort. Curves in Fig. 8 indicate 
that oligonucleotides of length 9 guarantee satisfactory results in most cases, while 
10-base long oligonucleotides assure a very good reconstruction. 

Figure 8. Number of generated 
sequences vs. the length of 
oligonucleotides (1) and the 
length of sequences (n) 

The results of our experiments indicate, that a suitable length of 
oligonucleotides in a library used in the hybridization experiment would be 9 for 200 
and even 300-base long sequences. For shorter fragments oligonucleotides of length 
8 could be used but this can lead to an ambiguous reconstruction. 

4. Parallel implementation of the method 
Parallel implementation of the method can be constructed based on the 

sequential version described above. Below we present an outline of this strategy. 
At certain level m of the tree one splits the computations of the algorithm 

among a number of processes. Splitting the work at level m results in generating 
4m chunks which can be treated independently from each other. The value of m 
should be less than l, otherwise most of the branches can be already cut off before 
reaching level m. A suitable number of potentially identical (regarding their 
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processing times) processes facilitates the proper load balancing of the parallel 
system (i.e. a dynamic assignment of processes to processors in such a way that the 
processing time of the whole job is minimized). 

The load balancing strategy we have used is very simple, but leads to 
satisfactory results. The whole computation process is controlled by a single process 
called master. It builds the tree down to level m and, after that, sends requests to 
slave processes. Each of the slave processes performs only one chunk of work at a 
time. Once it is ready with its task, it sends the results to the controlling master 
process. The master process sends the next piece of work to the free slave process if 
the computation is not yet completed. 

During computational experiments we have tested the parallel version of 
Algorithm 2 (as the more general one). It has been developed using PVM system 
(Geist et al. 1994) and implemented on HP Apollo 9000/750 workstation. For the 
evaluation of an experiment we have not used a real distributed heterogeneous 
system, like usual PVM based systems, because the estimation of the speed-up and 
efficiency would not be simple in that case. Instead, we have run several PVM 
daemon processes on a single machine. Then the speed-up has been computed as the 
quotient of the CPU time of the sequential version of the algorithm divided by the 
maximum CPU time used by the slave processes plus the master process CPU time. 
We did not use the wall time to determine the speed-up because it is strongly 
connected with the current load of the machine. On a dedicated system we expect 
the results to be similar to these obtained in simulation assuming we can omit the 
communication time. 

Figure 9 illustrates the results of the parallel simulation. Each point in the Fig. 
9 and 10 represents an average value of 40 runs for different data sets. As one can 
notice, the speed-up obtained is nearly linear and does not depend on the number of 
processes applied. Such a good result has been obtained thanks to the proposed load 
balancing algorithm. 

In Fig. 10 the efficiency (defined as the quotient of the speed-up divided by 
the number of processes performing the task) of the parallel version of the algorithm 
is presented. It goes worse with the increasing number of processes but remains still 
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above 87%. This result was obtained by breaking the workload in a proper number 
of pieces making the efficient load-balancing possible. 

Figure 10. The efficiency of 
the parallel algorithm 

5. Conclusions 
We have presented a sequential and a parallel implementation of a new 

method for DNA sequencing from the data that come as a result of the hybridization 
experiment. The presented method finds all possible sequences that can be 
reconstructed from the provided data even if the data are incomplete. Having done a 
lot of computational experiments a reasonable trade-off between experimental and 
computational effort and unambiguity of reconstructed sequence has been pointed 
out. 

Future work should be concentrated on two subjects. Firstly, an efficient 
method dealing with ambiguously reconstructed sequences should be developed. An 
interaction with existing knowledge about DNA structures could be used at the first 
stage. Experimental feedback at the second stage cannot be omitted. Secondly, the 
implementation of the parallel version of the method in real (heterogeneous, non-
dedicated) environment should be investigated in more details. 
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