
COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 5 , 7 - 1 9 (1 9 9 9)

HIGH-PERFORMANCE COMPUTING
ON HETEROGENEOUS SYSTEMS

WOJCIECH CENCEK

Quantum Chemistry Group, Department of Chemistry,
A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

Abstract: A model two-processor heterogeneous computer consisting of one scalar and one vector processor
is analyzed in terms of its performance. It is demonstrated that on mixed-type (scalar-vector) applications
it is much more effective than a homogeneous environment. Various models of the job distribution are
introduced. A working implementation in the field of quantum chemistry is presented.

1. INTRODUCTION

Parallel and distributed computing is currently one of the hottest topics in both computer
sciences and industry. This clearly reflects the fact that the growth of our needs and expectations
is even faster than the amazing progress in microprocessor technology witnessed by us during
these years. The main obstacle in an effective design and use of multiprocessor machines is
the complicated logic of such computing environment, which has to cope with interprocessor
communication, synchronization, memory access conflicts and other problems. The ultimate goal,
the Holy Graal of parallel computing, is the "Metacomputer" - a gigantic machine (perhaps even
the whole Internet) which fully automatically takes the users' requests and allocates the jobs
optimally using its distributed heterogeneous resources. Such machine would be able to
parallelize the codes without any intervention of the users to whom it would seem to be a single,
infinitely powerful processor. Unfortunately, we are still somewhere around the beginning of
the long road to this comfortable situation. The parallelization of all but trivial tasks requires
a considerable effort of the programmer and the efficiency (in terms of computing time reduction
relative to the number of busy processors) is often quite low which signifies a waste of resources
and makes the whole business questionable.

One way to use the resources more efficiently is the distribution of the computation among
processors of different types, i. e. the heterogeneous rather than homogeneous environment.
Intuitively it is obvious that two processors with comparable average power but different
architectures perform differently depending on specific features of performed operations. Hence,
some calculations run faster on the first processor while other are better suited for the second one.
Assigning different parts of the job to different processors should then help to reduce
the computation time. The aim of this paper is to yield a strict quantitative analysis of such
situation. It will be assumed that each processor has its own private memory. This distributed

memory model is more general than the shared memory because it leaves complete freedom in
combining together individual processing units which can in fact be separate machines connected
by a network. The only way of exchanging information between nodes is the explicit message

user
Tekst maszynowy
CMST 5(1) 7-19 (1999)

user
Tekst maszynowy
DOI:10.12921/cmst.1999.05.01.07-19

user
Tekst maszynowy

8 High-performance Computing on Heterogeneous Systems

passing. For such structure the name "multicomputer" used for example by Foster [1] seems to

be more appropriate than "multiprocessor". It will be also assumed throughout the paper that the

time needed to send and receive messages is small compared with the calculations i. e. that

the communication cost can be neglected. All our performance predictions should be therefore

understood as upper bounds to what can be gained in real systems.

2. SCALAR AND VECTOR PROCESSING

When looking for criteria according to which a job should be distributed among different

processors, the most obvious factor is how efficient the particular nodes are on scalar and on

vector problems. Vector computations involve indexed variables and run efficiently on machines

featuring specialized vector registers (like Cray X-MP, Y-MP, or C-90 series) or fast caching and

pipeline mechanisms (like Intel i860). In scalar computations other factors - like faster CPU

clocks - are more important. Although with the advent of modern superscalar RISC chips

the traditional distinction between scalar and vector machines has been weakened, the speed of

particular machines still depends strongly on the type of performed operations. Table I presents

execution times of a scalar and a vector benchmark on the computers listed below. The bench-

marks are taken from the real-life quantum chemistry code described in Sect. 5.

SGI RI0000 Silicon Graphics Origin 200, processor MIPS R10000 180 MHz

Operating system: IRIX64 6.4

Compiler: Mongoose Fortran 7.11

Compiling command: f77 -64 -mips4 -03

Libraries: BLAS (libblas.a)

SGI R8000 Silicon Graphics Indigo 2, processor MIPS R8000 75 MHz

Operating system: IRIX64 6.2

Compiler: Mongoose Fortran 7.10

Compiling command: f77 -64 -mips4 -03

Libraries: BLAS (libblas.a)

NS-860 Microway Number Smasher, processor Intel 860-XR40 MHz

Operating system: MSDOS 5.0

Compiler: Microway NDP Fortran-860 4.Id

Compiling command: mf860n -on

Libraries: Kuck & Associates Library (libkden.a, libkmath.a)

Pentium IBM PC compatible, processor Intel Pentium 100 MHz

Operating system: MSDOS 5.0

Compiler: Microway NDP Fortran-486 3.20

Compiling command: mf486 -n2 -n3 -on -OL

Libraries: none

Cray EL Cray Y-MP EL 33 MHz

Operating system: Unicos 8.0.4.2

W. Cencek 9

Compiler: Cray Fortran CFT77 6.0.2.0

Compiling command: cf77 -dp -Ovector3 -Oscalar3

Libraries: Cray Research Scientific Library (libsci.a)

Cray J916 Cray J916 100 MHz

Operating system: Unicos 9.0.2.4

Compiler: Cray Fortran CFT77 6.0.4.24

Compiling command: cf77 -dp -Ovector3 -Oscalar3

Libraries: Cray Research Scientific Library (libsci.a)

Cray T3E Cray T3E-900, processors DEC Alpha 450 MHz

Operating system: Unicos/mk 1.5.2

Compiler: Cray Fortran CF90 3.0.1.0

Compiling command: f90 -dp -Oaggress,pipeline3,scalar3,vector3

Libraries: Cray Research Scientific Library (libsci.a)

HP 715 Hewlett-Packard 715, processor PA-RISC 50 MHz

Operating system: HP-UX 10.20

Compiler: HP Fortran/S700 10.20.02

Compiling command: f77 +03

Libraries: BLAS, Lapack (libblas.a, liblapack_hppa.a)

IBM SP2 IBM 9076 Scalable POWERparallel System, processors POWER2 66 MHz

Operating system: AIX 4.1.4

Compiler: AIX XL Fortran 03.02

Compiling command: f77 -03

Libraries: BLAS (libblas.a)

Table I. Times (in seconds) from the scalar (ts) and vector (tv) benchmark

What counts is the fact that the orders of computers (according to the growing speed) in both

cases differ significantly. For example, Cray EL happens to be the slowest of all the computers (!)

10 High-performance Computing on Heterogeneous Systems

in the scalar test, but among the fastest in the vector test. To assess quantitatively the relative

performance of the machines we proceed as follows. In each of the possible pairs we assign

the label "S" (scalar) to one of the machines and the label "V"(vector) to the other, which can be

Table II. The values of δv (upper) and δs (lower) for different pairs of computers

done in two ways, so that we have in total ordered pairs for the N computers. For each

ordered pair we calculate - using the numbers listed in Table I - two following quantities:

(1)

where the label in parenthesis denotes the machine a given test was run on. δs. is the ratio of

the scalar speed of S to the scalar speed of V. Similarly, δv denotes the ratio of the vector speed

of V to the vector speed of S. All the calculated values of δs and δv are listed in Table II. Note that

the product of each two numbers lying symmetrically with respect to the main diagonal is equal

to 1 because this symmetry corresponds to the exchange of the computer labels in Eq. 1. The most

interesting situation occurs if both δs and δv for a given ordered (V, S)-pair are greater than 1

(e. g., all the pairs where V is Cray J916 or Cray EL and S is a workstation). In such cases, the

machine chosen as V is faster than S on the vector test and simultaneously S is faster than V on

the scalar test. If we now imagine that the scalar and vector computations are not separate tasks

but rather parts of one job, it is obvious that the job should be distributed in such way that a larger

fraction of the vector part should be assigned to V and vice versa. Various models of such

distributions are presented in Section 3, while Section 4 deals with performance predictions for

these models.

W. Cencek 11

Obviously, the values of δs and δv in Table II have no universal meaning and would be

different if other scalar and vector tests had been applied. While the speed of scalar calculations

only slightly depends on the task, the vector performance is more sensitive to the vector length

and other factors. Nevertheless, both the parameters are a useful measure of the relative per-

formance of different computers, especially if one is able to recalculate them for a narrow class

of applications one is interested in.

The discussion in this and the next section is restricted to heterogeneous systems consisting

of two arbitrary machines S and V. Firstly, since we consider only two distinct types of parts with

significantly different characters, all the main ideas and effects resulting from the heterogeneity

can be described in terms of such a model. Secondly, it can always be generalized by treating S

and V as subsystems consisting of numbers of processors. We will call S scalar and V vector

processor, but their actual performance does not affect our discussion and one should treat S and

V just as labels.

Let us imagine a computer job which is a sequence of scalar (s1, s2,...) and vector (v1, v2,...)

parts. These parts can be represented graphically as rectangles whose areas are proportional to

the number of operations in the given parts. The rectangles are placed one after another along the

horizontal axis denoting the elapsing time. The height of each rectangle therefore corresponds

directly to the speed of the computation in the particular part. To illustrate these rules, Fig. 1

presents the job executed without any distribution, i. e. either on S or on V. To facilitate further

discussion, this particular example is constructed in such a way that the total execution times on

both machines, t(S) and t(V), are equal and amount to 10 seconds. This restriction will be

removed in the next section, where a general definition of the speedup on a heterogeneous system

will be introduced. Note that the label in the rectangle indicates that the given part of the job is

executed on the pertinent machine. Let ts (t v) denote the overall time spent by a given machine

in all scalar (vector) parts when the job is not distributed. Then

The simplest possibility, which can be used even when none of the parts si and vi is

parallelizable, consists in assigning each part entirely to the processor that executes it faster, for

example the scalar parts to S and the vector parts to V, as seen on the left plot of Fig. 2. We will

call this Model 1. Its two main features are full specialization (each processor does only what it

can do best) and zero concurrence (at no moment both processors run in parallel). The shortest

time needed to finish the whole job on the system is clearly

3. HETEROGENEOUS DISTRIBUTION MODELS

(2)

(3)

12 High-performance Computing on Heterogeneous Systems

Fig. 1. A job running sequentially on a scalar (upper) machine S or a vector (lower) machine V

If, for example, ts(S) = 3 seconds, tv(S) = 7 seconds, t s(V) = 9 seconds and tv(V) = 1 second, (note

that the times correspond precisely to our figures) then each of the two machines alone requires

10 seconds and the best time achievable by the whole system is only 4 seconds. This simple

example illustrates two important facts: that the superlinear speedup (larger than the number of

processors used - here 2.5 times faster on 2 processors) is not unusual on heterogeneous systems

and that concurrence is not the only way to speed up the program execution. The reason is that

the distribution of the job avoids the bottlenecks present in a single machine (the vector parts on

S and the scalar parts on V).

One step further would be to parallelize the scalar parts leaving the vector ones to be executed

sequentially on V (as seen on the right plot of Fig. 2) or vice versa. In this scheme, which we will

call Model 2, processor V helps to execute the scalar parts which can be therefore finished faster

than in Model 1. If the work is well load-balanced, i. e. each processor is assigned the fraction

of each si which is proportional to its speed, then both finish the si's at the same time. The speed

(reciprocal of time) of the heterogeneous system at the scalar parts is then the sum of the com-

ponent speeds:

(4)

(5)

and the total execution time is

Using the same values of ts(S), ts(V) t v (S) and tv(V) as in the previous example we get in this

case t = 3.25 seconds. The improvement is achieved thanks to a significant degree of concurrence,

though the specialization is not complete. The analogous reasoning can be made in the case where

only the vector parts instead of the scalar parts are parallelized.

W, Cencek 13

Fig. 2. Model 1 (left) and Model 2
(right) of the distribution

Fig. 3. Model 3 (left) and Model 4 (right)
of the distribution

Note that the diagrams in Fig. 2 and in subsequent figures in this section can easily be

constructed with the correct width (i. e., the correct total execution time) by complying with two

simple rules. Firstly, the area of each si and vi rectangle (number of operations) remains the same

as in the sequential executions (Fig. 1). Secondly, the height of each sub-rectangle (the pro-

cessor's speed), e. g. "V" in s1"-subrectangle, is the same as the height of the corresponding

rectangle in Fig. 1.

Still better performance is possible if all the parts of our job are parallelized, as presented on

the left plot of Fig. 3. Ensuring good load balance also in the vector parts one gets

and

which amounts in our example to 3.125 seconds. This scheme (Model 3) exhibits full concurren-

ce (neither of the two processors is ever idle) but only partial specialization.

The degree of specialization can be augmented without destroying concurrence only at

a coarser granularity of parallelism, i. e. if the scalar parts could be done in parallel with the

vector ones (Model 4), as illustrated on the right plot of Fig. 3. If ts(S) happens to be equal to

tv(V), the scalar and vector parts are finished simultaneously, each done exclusively by "its"

processor (full concurrence + full specialization). The execution time then is t = ts(S) = tv(V). If

(6)

14 High-performance Computing on Heterogeneous Systems

one of the processors finishes its work first (like V in Fig. 3), it takes over the appropriate fraction

of the work left to the second processor. In this case t can be expressed as

(8)

and amounts to only 2.5 seconds in our example. However, Model 4 is seldom applicable,

because it requires the order of computations to be changed, which is possible only if vector and

scalar parts are mutually independent. In real jobs calculations of the scalar parts will most likely

depend on the results of the vector parts and vice versa, which in our example means that, for

example, v1 cannot start before s1 has been finished.

4. SPEEDUP ON A HETEROGENEOUS SYSTEM

In order to compare quantitatively the behaviour of all the models with one another and with

homogeneous systems it is necessary to introduce an appropriate performance measure, such as

speedup. For the case of a homogeneous multiprocessor system, an obvious and well-known

speedup definition is

where t is the execution time on the system and t1 on the single processor. A difficulty arises

immediately in the heterogeneous case, since t1 is, in general, not uniquely defined and depends

on the processor on which it is measured. In fact, the very notion of the "speedup" is far from

being strict in this situation. From the economical point of view, it is reasonable to understand

the speedup - rather restrictively - as the performance improvement relative to the best single-

processor situation, i. e. to choose

as suggested, for example, in Refs. [2] and [3], In our two-processor models we have

(10)

(9)

(11)

By putting into (11) the expressions for t(S) and t(V) from (2) and for t from (3), (5), (7), or

(8), one can obtain the speedup S in each model as functions of 4 variables: ts(S), tv(S), ts(V) and

tv(V). These functions are homogeneous of the order zero, i. e. invariant with respect to

the simultaneous multiplication of all the variables by the same constant (which is rather obvious,

because the speedup does not depend on the units in which all the times are expressed). This

W. Cencek 15

means that 3 variables are also sufficient, the simplest choice being to set e. g. ts(S) to 1 and to

express the others in units of ts(S). However, each of these variables depends on the properties

of both the job and the processor and such functions would not be easy to interpret. A more

useful set is to take δs and δv from Eqs. 1, which depend only on the employed computer pair, and

the third parameter

(12)

scalar jobs). Its concrete value depends also on the machine that plays the role of S, but for each

choice of the (S, V)-pair it orders uniquely all the possible jobs according to the relative contri-

bution of the vector and scalar operations. The speedup can now be expressed in terms of δs; δv,

and xs for each of the distribution models. In the following equations, D = δvδs xs - δv xs - δv + 1.

(14)

(15)

(16)

An interesting question is: What is the highest possible speedup Smax (i. e. that achievable if

the proportion of scalar to vector operations in the job is optimal) for a given pair of computers?

(13)

but must be done with some care due to the interval definitions of S.

= 0 for xs, which is straightforward To obtain the answer one has to solve the equations

which characterizes the job and takes values from xs = 0 (purely vector jobs) up to xv = (purely

16 High-performance Computing on Heterogeneous Systems

Fig. 4. Maximal speedup Smax achievable in Model 1 (upper left), Model 2 (upper right), Model 3 (lower
left), and Model 4 (lower right) as a function of δs (horizontal axes) and δv (vertical axes)

S m a x computed as a function of δs and δv is plotted in Fig. 4. In general, high speedup values

are possible if both δv and δs are large (the upper right corners of the plots). This is easy to

understand, because large δv and δs. mean that each processor is significantly faster than its

partner at this part of the job this processor is mainly assigned to. In Model 3 the lower left comer

(relative areas of the S- and V-sub-rectangles in the left plot of Fig. 3), whereas in the other three

models the label V is always ascribed to the processor which alone computes the vector parts vi.

The graduate performance improvement when going from Model 1 up to Model 4 is also

nicely seen as the movement of contours with given values of ,Sm a x from the plots' upper right

corners towards the centers. In Model 1 (without concurrence!) quite large values are necessary

to obtain the superlinear (greater than 2) speedup. However, as seen on the first plot in Fig. 4, any

pair of computers with δv > 1 and δs > 1 can execute the job faster than on the single processor,

is equally good, because this model is invariant with respect to the exchange (V S), or

equivalently , which can be compensated by changing distribution ratios

W. Cencek 17

which is especially valuable if the parallelization of the individual vector and (or) scalar parts of

the job is not possible or prohibitively complicated. In the last two models, any such pair is alrea-

dy sufficient to obtain (at some class of jobs - remember the role of xs) the superlinear speedup.

The main message from our analysis is that heterogeneous computing on an appropriate

combination of scalar and vector computers can be much more effective than homogeneous

computing. Remember that Fig. 4 illustrates just the two-processor configuration, where

the speedup on homogeneous machines cannot exceed 2!

5. EXAMPLE IMPLEMENTATION

The ideas outlined in the previous sections can be applied to any computational problem

fulfilling the following two criteria. Firstly, it should consist of distinctive scalar and vector parts.

Secondly, the amount of scalar and vector operations to be done should be of similar orders of

magnitude if one expects to gain really something from heterogeneity. In fact, such mixed-type

applications are very common in practice. We will focus now on one example taken from the

work of our Quantum Chemistry Group at the Adam Mickiewicz University [4, 5].

The central problem of quantum chemistry consists in solving the molecular (or atomic)

Schrödinger equation

(17)

(18)

(19)

where is a linear operator defined for each quantum system. The total energy of the molecule,

E, and its so-called wave function, Ψ, are to be found. The knowledge of Ψ allows one to cal-

culate in a straight-forward way all static properties of the molecule. However, analytical

solutions of Eq. (17) are not known and one has to look for approximations. In the most general

linear variational method, the unknown wave function Ψ is expanded as a combination of some

basis functions Φi

which leads to the linear matrix equation for the vector c of the best parameters ci

In the above equation, H and S are matrices built up of integrals computed with the basis

functions

(20)

(21)

and dV stands for the integration over the full domain. It can be shown that the approximate value

of E resulting from (19) is always higher than the true solution of (17). This yields a criterion of

18 High-performance Computing on Heterogeneous Systems

the good choice of the basis functions Φi in Eq. (18): The computed value of E should be as low

as possible. If the Φi's depend on some parameters, it is possible to optimize them looking for

the minimum of the energy. These variations are, however, nonlinear and the minimum is found

in laborious iterations rather than from a closed equation. The computational scheme of the search

can be written as follows:

1) Choose starting values of the nonlinear parameters in {Φ i}.

2) Solve the matrix equation (19).

3) Modify the nonlinear parameters.

4) Compute the new values of the matrix elements (20) and (21).

5) Goto 2.

In practice, steps 2-5 have to be repeated thousands or millions of times to make the nonlinear

parameters converge. The modifications in step 3 (with negligible execution time) take place in

only one basis function at a time, therefore only one row of each matrix needs to be updated in

step 4. Step 4 involves long sequences of floating point additions, multiplications, divisions, and

calls to the square root and exponential functions and is a typical scalar problem. Time needed

to compute 512 pairs hij and sij for a typical three-electron molecule is what we used as the scalar

benchmark ts in Table I. Step 2 is purely vector and can be coded as calls to standard Lapack and

BLAS routines. tv in Table I corresponds to the solution of Eq. 19 of the order 512. One can see

in Table I that both the times are of the same orders of magnitude which means that distribution

on a heterogeneous system should be particularly efficient. So far, we have developed only

Model 1 and Model 2 distributions of the code and implemented them on the system composed

of Pentium 100 Mhz and Number Smasher machines (see descriptions in Sect. 2). Obviously,

both components are rather outdated compared with what is currently available. However, this

is an ideal pair for test purposes because of its low cost and the fact that both parameters δs = 2.9

and δv = 3.1 are relatively large (see Table II). By putting these values in Eqs. (13) and (14) and

maximizing S with respect to δs one obtains Smax = 1.98 in Model 1 and Smax = 2.30 in Model 2,

which can also be approximately found from Fig. 4. In real calculations, the highest speedup in

Model 1, S = 1.50 was obtained in the optimization of a 150-term wave function of the H2

molecule (K= 150 in Eq. 18), and in Model 2, S = 2.13, for a 600-term wave function of the He2

+

molecule. These speedups are lower than predicted for two reasons. Firstly, the predicted Smax

correspond actually to particular jobs where the fraction of scalar and vector operations is optimal

(see the discussion in Sect. 4). Secondly, the predictions neglect the communication cost.

However, it is nice to see the confirmation of the superlinear speedup in Model 2, a phenomenon

which could not be possible without the appropriate use of the heterogeneous environment.

6. CONCLUSIONS

The calculations reported in the previous section are rather preliminary but clearly confirm

that the heterogeneous environment allows one to use computational resources very efficiently.

Already in Model 2, which is very simple and leaves half of the job not parallelized, the super-

linear speedup (larger than the number of processors) could be obtained.

W. Cencek 19

Looking at Table 2 one can see that the Pentium-860 pair is not the only (and in fact not the

best) combination for building heterogeneous systems. Significantly larger values of both δ v and

δ s are exhibited by some pairs containing vector Cray processors. A large va lue of δ s in such ca-

ses means that by running a mixed scalar-vector application on the Cray processor one does not

use its power efficiently because the scalar parts of the j o b are a bottleneck and could be executed

several times faster by assigning them to some other (scalar) processor. It w o u l d be, perhaps, an

interesting idea to build workstations containing at least one vector processor and at least one

scalar chip, with a fast internal communication ensuring independence from the external network

load.

A c k n o w l e d g m e n t s

The author thanks Professor J. Rychlewski for stimulating discussions. This work was supported by the KBN
grants 8 T1 IF 00712 and SPUB/COST-D9.

R e f e r e n c e s

[1] I. Foster, Designing and Building Parallel Programs (online) (1995). Available at
http ://www. mcs. anl. go v/dbpp/.

[2] C. R. Mechoso, J. D. Farrara, J. A. Spahr, Achieving superlinear speedup on a heterogeneous,
distributed system, IEEE Parallel & Distributed Technology 2, 57 (1994).

[3] X. Zhang and Y. Yan, Modeling and characterizing parallel computing performance on
heterogeneous networks of workstations, Proceedings of the Seventh IEEE Symposium on Parallel
and Distributed Processing 25 (1995).

[4] W. Cencek and J. Rychlewski, Many-electron explicitly correlated Gaussian functions. I. General
theory and test results, J. Chem. Phys. 102, 2533 (1995).

[5] W. Cencek, J. Komasa, J. Rychlewski, Benchmark calculations for two-electron systems using

explicitly correlated Gaussian functions, Chem. Phys. Lett. 246, 417 (1995).

