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Abstract: A model two-processor heterogeneous computer consisting of one scalar and one vector processor 
is analyzed in terms of its performance. It is demonstrated that on mixed-type (scalar-vector) applications 
it is much more effective than a homogeneous environment. Various models of the job distribution are 
introduced. A working implementation in the field of quantum chemistry is presented. 

1. INTRODUCTION 

Parallel and distributed computing is currently one of the hottest topics in both computer 
sciences and industry. This clearly reflects the fact that the growth of our needs and expectations 
is even faster than the amazing progress in microprocessor technology witnessed by us during 
these years. The main obstacle in an effective design and use of multiprocessor machines is 
the complicated logic of such computing environment, which has to cope with interprocessor 
communication, synchronization, memory access conflicts and other problems. The ultimate goal, 
the Holy Graal of parallel computing, is the "Metacomputer" - a gigantic machine (perhaps even 
the whole Internet) which fully automatically takes the users' requests and allocates the jobs 
optimally using its distributed heterogeneous resources. Such machine would be able to 
parallelize the codes without any intervention of the users to whom it would seem to be a single, 
infinitely powerful processor. Unfortunately, we are still somewhere around the beginning of 
the long road to this comfortable situation. The parallelization of all but trivial tasks requires 
a considerable effort of the programmer and the efficiency (in terms of computing time reduction 
relative to the number of busy processors) is often quite low which signifies a waste of resources 
and makes the whole business questionable. 

One way to use the resources more efficiently is the distribution of the computation among 
processors of different types, i. e. the heterogeneous rather than homogeneous environment. 
Intuitively it is obvious that two processors with comparable average power but different 
architectures perform differently depending on specific features of performed operations. Hence, 
some calculations run faster on the first processor while other are better suited for the second one. 
Assigning different parts of the job to different processors should then help to reduce 
the computation time. The aim of this paper is to yield a strict quantitative analysis of such 
situation. It will be assumed that each processor has its own private memory. This distributed 

memory model is more general than the shared memory because it leaves complete freedom in 
combining together individual processing units which can in fact be separate machines connected 
by a network. The only way of exchanging information between nodes is the explicit message 
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passing. For such structure the name "multicomputer" used for example by Foster [1] seems to 

be more appropriate than "multiprocessor". It will be also assumed throughout the paper that the 

time needed to send and receive messages is small compared with the calculations i. e. that 

the communication cost can be neglected. All our performance predictions should be therefore 

understood as upper bounds to what can be gained in real systems. 

2. SCALAR AND VECTOR PROCESSING 

When looking for criteria according to which a job should be distributed among different 

processors, the most obvious factor is how efficient the particular nodes are on scalar and on 

vector problems. Vector computations involve indexed variables and run efficiently on machines 

featuring specialized vector registers (like Cray X-MP, Y-MP, or C-90 series) or fast caching and 

pipeline mechanisms (like Intel i860). In scalar computations other factors - like faster CPU 

clocks - are more important. Although with the advent of modern superscalar RISC chips 

the traditional distinction between scalar and vector machines has been weakened, the speed of 

particular machines still depends strongly on the type of performed operations. Table I presents 

execution times of a scalar and a vector benchmark on the computers listed below. The bench-

marks are taken from the real-life quantum chemistry code described in Sect. 5. 

SGI RI0000 Silicon Graphics Origin 200, processor MIPS R10000 180 MHz 

Operating system: IRIX64 6.4 

Compiler: Mongoose Fortran 7.11 

Compiling command: f77 -64 -mips4 -03 

Libraries: BLAS (libblas.a) 

SGI R8000 Silicon Graphics Indigo 2, processor MIPS R8000 75 MHz 

Operating system: IRIX64 6.2 

Compiler: Mongoose Fortran 7.10 

Compiling command: f77 -64 -mips4 -03 

Libraries: BLAS (libblas.a) 

NS-860 Microway Number Smasher, processor Intel 860-XR40 MHz 

Operating system: MSDOS 5.0 

Compiler: Microway NDP Fortran-860 4.Id 

Compiling command: mf860n -on 

Libraries: Kuck & Associates Library (libkden.a, libkmath.a) 

Pentium IBM PC compatible, processor Intel Pentium 100 MHz 

Operating system: MSDOS 5.0 

Compiler: Microway NDP Fortran-486 3.20 

Compiling command: mf486 -n2 -n3 -on -OL 

Libraries: none 

Cray EL Cray Y-MP EL 33 MHz 

Operating system: Unicos 8.0.4.2 
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Compiler: Cray Fortran CFT77 6.0.2.0 

Compiling command: cf77 -dp -Ovector3 -Oscalar3 

Libraries: Cray Research Scientific Library (libsci.a) 

Cray J916 Cray J916 100 MHz 

Operating system: Unicos 9.0.2.4 

Compiler: Cray Fortran CFT77 6.0.4.24 

Compiling command: cf77 -dp -Ovector3 -Oscalar3 

Libraries: Cray Research Scientific Library (libsci.a) 

Cray T3E Cray T3E-900, processors DEC Alpha 450 MHz 

Operating system: Unicos/mk 1.5.2 

Compiler: Cray Fortran CF90 3.0.1.0 

Compiling command: f90 -dp -Oaggress,pipeline3,scalar3,vector3 

Libraries: Cray Research Scientific Library (libsci.a) 

HP 715 Hewlett-Packard 715, processor PA-RISC 50 MHz 

Operating system: HP-UX 10.20 

Compiler: HP Fortran/S700 10.20.02 

Compiling command: f77 +03 

Libraries: BLAS, Lapack (libblas.a, liblapack_hppa.a) 

IBM SP2 IBM 9076 Scalable POWERparallel System, processors POWER2 66 MHz 

Operating system: AIX 4.1.4 

Compiler: AIX XL Fortran 03.02 

Compiling command: f77 -03 

Libraries: BLAS (libblas.a) 

Table I. Times (in seconds) from the scalar (ts) and vector (tv) benchmark 

What counts is the fact that the orders of computers (according to the growing speed) in both 

cases differ significantly. For example, Cray EL happens to be the slowest of all the computers (!) 
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in the scalar test, but among the fastest in the vector test. To assess quantitatively the relative 

performance of the machines we proceed as follows. In each of the possible pairs we assign 

the label "S" (scalar) to one of the machines and the label "V"(vector) to the other, which can be 

Table II. The values of δv (upper) and δs (lower) for different pairs of computers 

done in two ways, so that we have in total ordered pairs for the N computers. For each 

ordered pair we calculate - using the numbers listed in Table I - two following quantities: 

(1) 

where the label in parenthesis denotes the machine a given test was run on. δs. is the ratio of 

the scalar speed of S to the scalar speed of V. Similarly, δv denotes the ratio of the vector speed 

of V to the vector speed of S. All the calculated values of δs and δv are listed in Table II. Note that 

the product of each two numbers lying symmetrically with respect to the main diagonal is equal 

to 1 because this symmetry corresponds to the exchange of the computer labels in Eq. 1. The most 

interesting situation occurs if both δs and δv for a given ordered (V, S)-pair are greater than 1 

(e. g., all the pairs where V is Cray J916 or Cray EL and S is a workstation). In such cases, the 

machine chosen as V is faster than S on the vector test and simultaneously S is faster than V on 

the scalar test. If we now imagine that the scalar and vector computations are not separate tasks 

but rather parts of one job, it is obvious that the job should be distributed in such way that a larger 

fraction of the vector part should be assigned to V and vice versa. Various models of such 

distributions are presented in Section 3, while Section 4 deals with performance predictions for 

these models. 
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Obviously, the values of δs and δv in Table II have no universal meaning and would be 

different if other scalar and vector tests had been applied. While the speed of scalar calculations 

only slightly depends on the task, the vector performance is more sensitive to the vector length 

and other factors. Nevertheless, both the parameters are a useful measure of the relative per-

formance of different computers, especially if one is able to recalculate them for a narrow class 

of applications one is interested in. 

The discussion in this and the next section is restricted to heterogeneous systems consisting 

of two arbitrary machines S and V. Firstly, since we consider only two distinct types of parts with 

significantly different characters, all the main ideas and effects resulting from the heterogeneity 

can be described in terms of such a model. Secondly, it can always be generalized by treating S 

and V as subsystems consisting of numbers of processors. We will call S scalar and V vector 

processor, but their actual performance does not affect our discussion and one should treat S and 

V just as labels. 

Let us imagine a computer job which is a sequence of scalar (s1, s2,...) and vector (v1, v2,...) 

parts. These parts can be represented graphically as rectangles whose areas are proportional to 

the number of operations in the given parts. The rectangles are placed one after another along the 

horizontal axis denoting the elapsing time. The height of each rectangle therefore corresponds 

directly to the speed of the computation in the particular part. To illustrate these rules, Fig. 1 

presents the job executed without any distribution, i. e. either on S or on V. To facilitate further 

discussion, this particular example is constructed in such a way that the total execution times on 

both machines, t(S) and t(V), are equal and amount to 10 seconds. This restriction will be 

removed in the next section, where a general definition of the speedup on a heterogeneous system 

will be introduced. Note that the label in the rectangle indicates that the given part of the job is 

executed on the pertinent machine. Let ts (t v) denote the overall time spent by a given machine 

in all scalar (vector) parts when the job is not distributed. Then 

The simplest possibility, which can be used even when none of the parts si and vi is 

parallelizable, consists in assigning each part entirely to the processor that executes it faster, for 

example the scalar parts to S and the vector parts to V, as seen on the left plot of Fig. 2. We will 

call this Model 1. Its two main features are full specialization (each processor does only what it 

can do best) and zero concurrence (at no moment both processors run in parallel). The shortest 

time needed to finish the whole job on the system is clearly 

3. HETEROGENEOUS DISTRIBUTION MODELS 

(2) 

(3) 
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Fig. 1. A job running sequentially on a scalar (upper) machine S or a vector (lower) machine V 

If, for example, ts(S) = 3 seconds, tv(S) = 7 seconds, t s(V) = 9 seconds and tv(V) = 1 second, (note 

that the times correspond precisely to our figures) then each of the two machines alone requires 

10 seconds and the best time achievable by the whole system is only 4 seconds. This simple 

example illustrates two important facts: that the superlinear speedup (larger than the number of 

processors used - here 2.5 times faster on 2 processors) is not unusual on heterogeneous systems 

and that concurrence is not the only way to speed up the program execution. The reason is that 

the distribution of the job avoids the bottlenecks present in a single machine (the vector parts on 

S and the scalar parts on V). 

One step further would be to parallelize the scalar parts leaving the vector ones to be executed 

sequentially on V (as seen on the right plot of Fig. 2) or vice versa. In this scheme, which we will 

call Model 2, processor V helps to execute the scalar parts which can be therefore finished faster 

than in Model 1. If the work is well load-balanced, i. e. each processor is assigned the fraction 

of each si which is proportional to its speed, then both finish the si's at the same time. The speed 

(reciprocal of time) of the heterogeneous system at the scalar parts is then the sum of the com-

ponent speeds: 

(4) 

(5) 

and the total execution time is 

Using the same values of ts(S), ts( V) t v ( S ) and tv(V) as in the previous example we get in this 

case t = 3.25 seconds. The improvement is achieved thanks to a significant degree of concurrence, 

though the specialization is not complete. The analogous reasoning can be made in the case where 

only the vector parts instead of the scalar parts are parallelized. 
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Fig. 2. Model 1 (left) and Model 2 
(right) of the distribution 

Fig. 3. Model 3 (left) and Model 4 (right) 
of the distribution 

Note that the diagrams in Fig. 2 and in subsequent figures in this section can easily be 

constructed with the correct width (i. e., the correct total execution time) by complying with two 

simple rules. Firstly, the area of each si and vi rectangle (number of operations) remains the same 

as in the sequential executions (Fig. 1). Secondly, the height of each sub-rectangle (the pro-

cessor's speed), e. g. "V" in s1"-subrectangle, is the same as the height of the corresponding 

rectangle in Fig. 1. 

Still better performance is possible if all the parts of our job are parallelized, as presented on 

the left plot of Fig. 3. Ensuring good load balance also in the vector parts one gets 

and 

which amounts in our example to 3.125 seconds. This scheme (Model 3) exhibits full concurren-

ce (neither of the two processors is ever idle) but only partial specialization. 

The degree of specialization can be augmented without destroying concurrence only at 

a coarser granularity of parallelism, i. e. if the scalar parts could be done in parallel with the 

vector ones (Model 4), as illustrated on the right plot of Fig. 3. If ts(S) happens to be equal to 

tv(V), the scalar and vector parts are finished simultaneously, each done exclusively by "its" 

processor (full concurrence + full specialization). The execution time then is t = ts(S) = tv(V). If 

(6) 
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one of the processors finishes its work first (like V in Fig. 3), it takes over the appropriate fraction 

of the work left to the second processor. In this case t can be expressed as 

(8) 

and amounts to only 2.5 seconds in our example. However, Model 4 is seldom applicable, 

because it requires the order of computations to be changed, which is possible only if vector and 

scalar parts are mutually independent. In real jobs calculations of the scalar parts will most likely 

depend on the results of the vector parts and vice versa, which in our example means that, for 

example, v1 cannot start before s1 has been finished. 

4. SPEEDUP ON A HETEROGENEOUS SYSTEM 

In order to compare quantitatively the behaviour of all the models with one another and with 

homogeneous systems it is necessary to introduce an appropriate performance measure, such as 

speedup. For the case of a homogeneous multiprocessor system, an obvious and well-known 

speedup definition is 

where t is the execution time on the system and t1 on the single processor. A difficulty arises 

immediately in the heterogeneous case, since t1 is, in general, not uniquely defined and depends 

on the processor on which it is measured. In fact, the very notion of the "speedup" is far from 

being strict in this situation. From the economical point of view, it is reasonable to understand 

the speedup - rather restrictively - as the performance improvement relative to the best single-

processor situation, i. e. to choose 

as suggested, for example, in Refs. [2] and [3], In our two-processor models we have 

(10) 

(9) 

(11) 

By putting into (11) the expressions for t(S) and t(V) from (2) and for t from (3), (5), (7), or 

(8), one can obtain the speedup S in each model as functions of 4 variables: ts(S), tv(S), ts( V) and 

tv(V). These functions are homogeneous of the order zero, i. e. invariant with respect to 

the simultaneous multiplication of all the variables by the same constant (which is rather obvious, 

because the speedup does not depend on the units in which all the times are expressed). This 
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means that 3 variables are also sufficient, the simplest choice being to set e. g. ts(S) to 1 and to 

express the others in units of ts(S). However, each of these variables depends on the properties 

of both the job and the processor and such functions would not be easy to interpret. A more 

useful set is to take δs and δv from Eqs. 1, which depend only on the employed computer pair, and 

the third parameter 

(12) 

scalar jobs). Its concrete value depends also on the machine that plays the role of S, but for each 

choice of the (S, V)-pair it orders uniquely all the possible jobs according to the relative contri-

bution of the vector and scalar operations. The speedup can now be expressed in terms of δs; δv, 

and xs for each of the distribution models. In the following equations, D = δvδs xs - δv xs - δv + 1. 

(14) 

(15) 

(16) 

An interesting question is: What is the highest possible speedup Smax (i. e. that achievable if 

the proportion of scalar to vector operations in the job is optimal) for a given pair of computers? 

(13) 

but must be done with some care due to the interval definitions of S. 

= 0 for xs, which is straightforward To obtain the answer one has to solve the equations 

which characterizes the job and takes values from xs = 0 (purely vector jobs) up to xv = (purely 
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Fig. 4. Maximal speedup Smax achievable in Model 1 (upper left), Model 2 (upper right), Model 3 (lower 
left), and Model 4 (lower right) as a function of δs (horizontal axes) and δv (vertical axes) 

S m a x computed as a function of δs and δv is plotted in Fig. 4. In general, high speedup values 

are possible if both δv and δs are large (the upper right corners of the plots). This is easy to 

understand, because large δv and δs. mean that each processor is significantly faster than its 

partner at this part of the job this processor is mainly assigned to. In Model 3 the lower left comer 

(relative areas of the S- and V-sub-rectangles in the left plot of Fig. 3), whereas in the other three 

models the label V is always ascribed to the processor which alone computes the vector parts vi. 

The graduate performance improvement when going from Model 1 up to Model 4 is also 

nicely seen as the movement of contours with given values of ,Sm a x from the plots' upper right 

corners towards the centers. In Model 1 (without concurrence!) quite large values are necessary 

to obtain the superlinear (greater than 2) speedup. However, as seen on the first plot in Fig. 4, any 

pair of computers with δv > 1 and δs > 1 can execute the job faster than on the single processor, 

is equally good, because this model is invariant with respect to the exchange (V S), or 

equivalently , which can be compensated by changing distribution ratios 



W. Cencek 17 

which is especially valuable if the parallelization of the individual vector and (or) scalar parts of 

the job is not possible or prohibitively complicated. In the last two models, any such pair is alrea-

dy sufficient to obtain (at some class of jobs - remember the role of xs) the superlinear speedup. 

The main message from our analysis is that heterogeneous computing on an appropriate 

combination of scalar and vector computers can be much more effective than homogeneous 

computing. Remember that Fig. 4 illustrates just the two-processor configuration, where 

the speedup on homogeneous machines cannot exceed 2! 

5. EXAMPLE IMPLEMENTATION 

The ideas outlined in the previous sections can be applied to any computational problem 

fulfilling the following two criteria. Firstly, it should consist of distinctive scalar and vector parts. 

Secondly, the amount of scalar and vector operations to be done should be of similar orders of 

magnitude if one expects to gain really something from heterogeneity. In fact, such mixed-type 

applications are very common in practice. We will focus now on one example taken from the 

work of our Quantum Chemistry Group at the Adam Mickiewicz University [4, 5]. 

The central problem of quantum chemistry consists in solving the molecular (or atomic) 

Schrödinger equation 

(17) 

(18) 

(19) 

where is a linear operator defined for each quantum system. The total energy of the molecule, 

E, and its so-called wave function, Ψ, are to be found. The knowledge of Ψ allows one to cal-

culate in a straight-forward way all static properties of the molecule. However, analytical 

solutions of Eq. (17) are not known and one has to look for approximations. In the most general 

linear variational method, the unknown wave function Ψ is expanded as a combination of some 

basis functions Φi 

which leads to the linear matrix equation for the vector c of the best parameters ci 

In the above equation, H and S are matrices built up of integrals computed with the basis 

functions 

(20) 

(21) 

and dV stands for the integration over the full domain. It can be shown that the approximate value 

of E resulting from (19) is always higher than the true solution of (17). This yields a criterion of 
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the good choice of the basis functions Φi in Eq. (18): The computed value of E should be as low 

as possible. If the Φi's depend on some parameters, it is possible to optimize them looking for 

the minimum of the energy. These variations are, however, nonlinear and the minimum is found 

in laborious iterations rather than from a closed equation. The computational scheme of the search 

can be written as follows: 

1) Choose starting values of the nonlinear parameters in {Φ i}. 

2) Solve the matrix equation (19). 

3) Modify the nonlinear parameters. 

4) Compute the new values of the matrix elements (20) and (21). 

5) Goto 2. 

In practice, steps 2-5 have to be repeated thousands or millions of times to make the nonlinear 

parameters converge. The modifications in step 3 (with negligible execution time) take place in 

only one basis function at a time, therefore only one row of each matrix needs to be updated in 

step 4. Step 4 involves long sequences of floating point additions, multiplications, divisions, and 

calls to the square root and exponential functions and is a typical scalar problem. Time needed 

to compute 512 pairs hij and sij for a typical three-electron molecule is what we used as the scalar 

benchmark ts in Table I. Step 2 is purely vector and can be coded as calls to standard Lapack and 

BLAS routines. tv in Table I corresponds to the solution of Eq. 19 of the order 512. One can see 

in Table I that both the times are of the same orders of magnitude which means that distribution 

on a heterogeneous system should be particularly efficient. So far, we have developed only 

Model 1 and Model 2 distributions of the code and implemented them on the system composed 

of Pentium 100 Mhz and Number Smasher machines (see descriptions in Sect. 2). Obviously, 

both components are rather outdated compared with what is currently available. However, this 

is an ideal pair for test purposes because of its low cost and the fact that both parameters δs = 2.9 

and δv = 3.1 are relatively large (see Table II). By putting these values in Eqs. (13) and (14) and 

maximizing S with respect to δs one obtains Smax = 1.98 in Model 1 and Smax = 2.30 in Model 2, 

which can also be approximately found from Fig. 4. In real calculations, the highest speedup in 

Model 1, S = 1.50 was obtained in the optimization of a 150-term wave function of the H2 

molecule (K= 150 in Eq. 18), and in Model 2, S = 2.13, for a 600-term wave function of the He2

+ 

molecule. These speedups are lower than predicted for two reasons. Firstly, the predicted Smax 

correspond actually to particular jobs where the fraction of scalar and vector operations is optimal 

(see the discussion in Sect. 4). Secondly, the predictions neglect the communication cost. 

However, it is nice to see the confirmation of the superlinear speedup in Model 2, a phenomenon 

which could not be possible without the appropriate use of the heterogeneous environment. 

6. CONCLUSIONS 

The calculations reported in the previous section are rather preliminary but clearly confirm 

that the heterogeneous environment allows one to use computational resources very efficiently. 

Already in Model 2, which is very simple and leaves half of the job not parallelized, the super-

linear speedup (larger than the number of processors) could be obtained. 
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Looking at Table 2 one can see that the Pentium-860 pair is not the only (and in fact not the 

best) combination for building heterogeneous systems. Significantly larger values of both δ v and 

δ s are exhibited by some pairs containing vector Cray processors. A large va lue of δ s in such ca-

ses means that by running a mixed scalar-vector application on the Cray processor one does not 

use its power efficiently because the scalar parts of the j o b are a bottleneck and could be executed 

several times faster by assigning them to some other (scalar) processor. It w o u l d be, perhaps, an 

interesting idea to build workstations containing at least one vector processor and at least one 

scalar chip, with a fast internal communication ensuring independence from the external network 

load. 
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