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Abstract 
 
A generator of artificial Cauchy-distributed time series is presented. This 
generator transforms any random time series, e.g., standardized fractional 
Gaussian noise (FGN), into a Cauchy-distributed series with specific location 
and scale parameters and correlation structure, determined by the Hurst index. 
The proposed algorithm consists of an inverse cumulative distribution function 
(ICDF) transformation, a wavelet-analysis synthesis and, finally, a linear 
transformation. The resulting Cauchy-distributed series has approximately the 
desired location and scale parameters and exactly the desired Hurst index. The 
performance of the proposed generator is evaluated by estimating the location, 
scale and Hurst parameters from artificial time series and by calculating the 
mean squared error (MSE) of their cumulative distribution function (CDF). The 
input location, scale and Hurst index used in the simulations are taken from 
jitter samples of monitored Voice over Internet Protocol (VoIP) calls, which 
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have been proved to be adequately modeled with these processes under some 
circumstances. 
1.  Introduction 
 
The analysis and statistical study of time series, that represent network 
characteristics, are often used for the design of communications systems. These 
studies are used for the design and testing of communication improvements. 
Also, the Quality of Service (QoS) of network communication can be estimated 
or predicted from these measurements [1]. 
 There are two main issues that must be conducted in order to obtain 
data samples: 1) configuration of the measurement setting, e.g., phones, 
gatekeepers, traffic monitors and network interfaces, and 2) the design and 
realization of the measurement protocols. In addtion to these works, there is also 
certain amount of time necessary to capture a data sample of certain size, e.g., 
the duration of an Internet call. Artificial data generators are then used in order 
to gather a large volume of data without conducting the mentioned issues and 
saving a lot of effort and time. The artificial time series must produce time 
series that are representative, in the statistical sense, of the characteristics of the 
communication systems, e.g., their distribution or correlation structure. 
 In this work, we propose a method to simulate Cauchy-type processes 
that represent the delay jitter (or jitter) series of a Voice over Internet Protocol 
(VoIP) call. This generator produces a random sequence of Cauchy-distributed 
observations whose correlation is determined by the self-similarity parameter, 
namely the Hurst index ( ). This proposed method demonstrates that it is 
possible to synthesize artificial time series with both a specific distribution and 
Hurst index, even in the infinite variance case (a study of the finite-variance 
case is presented in [2]). 
 The rest of this paper is structured as follows: The mathematical 
background is presented in Section 2. A proposed wavelet-based synthesis of 
self-similar time series is described in Section 3. An H.323 zone and how jitter 
measurements are obtained are described in Section 4. The proposed generator 
is described in Section 5 and the evaluation of its performance is summarized in 
section 6. The main findings and conclusions are presented in Section 7. 
 
2. Mathematical Backgrounds and Preliminaries 
 
A. The Inverse Cumulative Distribution Function Transformation  
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The inverse cumulative distribution function (ICDF) transformation produces a 
time series  with cumulative distribution function (CDF)  from a 
random time series  with CDF  by applying the following sample-to-
sample formula: 

 
. (1) 

  
 If  is uniformly distributed between  and , as , then (1) 
simplifies to: 

 
. (2) 

 
B. The Gaussian and Cauchy Distributions 
 
The CDF function of a Gaussian RV is defined by the mean ( ) and variance 
( ) of the distribution: 

 

. (3) 

 
 In the absence of a closed form for (3), numerical approximations are 
used to estimate it. 
 
 A Cauchy RV has the probability density function (PDF): 

 
 

, (4) 

 
where , the location parameter, defines the location of the peak of the 
distribution and , the scale parameter, specifies the half-width at half-
maximum. A standardized Cauchy RV has  and . An approximated 
standardization for a Cauchy RV is: 

 
. (5) 

 
 The inverse of (5) produces a Cauchy distributed sample of certain 
location and scale parameters from a standardized Cauchy sample, i.e., 

 
. (6)  

 
 Unlike a Gaussian RV, there exist closed forms for the CDF and ICDF 
of a Cauchy RV, which are: 

 
, (7)  

 
and 

 
. (8)  

 
C. Discrete Self-similarity 
 
When considering discrete stochastic time series the definition of self-similarity 
is given in terms of the aggregated processes. From a discrete time series 

, others series can be obtained by aggregation. The aggregated 
time series is a sequence defined by (9): 
 

 
, (9) 

 
where each term  is obtained as: 

 
, (10) 

 
and where  represents the aggregation level. That is, each new time series is 
obtained by partitioning the original time series into non-overlapping blocks of 
size  and then averaging each block to obtain its respective values. 
 Let  be a covariance stationary discrete time series with mean 

, variance  and auto-covariance function (ACvF) , and  its 
aggregated series. Then it is said that  is exactly self-similar ( -SS) if (11) 
holds [3]: 

 
, (11) 

 
where  means equality in distribution. 



 A stochastic process is second-order self-similar ( -SOSS) if the 
variance and covariance of the aggregated time series are defined, respectively, 
by (12) and (13): 

 
, (12)  

 

. (13)  
 

 Obviously, an -ss process is also -soss. Note that the correlation 
structure of an -soss process is defined by the Hurst index. 
 
D. Logscale Diagram of Self-similar Processes 
 
The wavelet decomposition consists of a transformation of a signal  into a set 
of orthogonal components, i.e., 

 
, (14)  

 
where each function  is derived from a basis function , namely 
the mother wavelet, by scaling and displacement as follows: 

 

, (15)  
 

and  is the  coefficient at scale . 
 The statistic  defined as: 

 
, (16)  

 
calculated from a -ss or, at least, -soss process is related to  as follows [4]: 

 
, (17)  

 
where the quantity  , related to the power of the process, is considered a 
constant. 
 The plot  vs.  forms the widely known Logscale Diagram 
described by D. Veitch and P. Abry [4], and it is a straight line for -soss, but 
for real-world or artificial time series, the estimation of the Logscale Diagram 

may differ from the ideal, linear model. 
 
 
3. Wavelet-Based Synthesis of Self-Similar Time Series 
 
We propose a method to synthesize -SOSS from almost any time series 
regardless of whether it is or not self-similar or its marginal distribution. This 
method consists of adjust the sum expressed by (14) with a set of weights, i.e.,  

 
. (18) 

 
The weights  of (18) are defined as: 
 

, (19) 

 
where  and  are the respective estimations of  and  (the 
associated power parameter [4]) from  and  is the desired Hurst index of 
the new synthetic series. Even though this synthesis is independent of the 
original Hurst index and its only theoretical restriction is: 

, the best results are obtained when the input signal ( ) is already self-
similar (e.g., FGN) and the desired Hurst index of the output signal is close to 
that of . Pathological behavior can be produced in the output series for some 
critical conditions, e.g., noticeable steps, which may invalidate the hypothesis of 
stationarity, result of the transforming a SRD or uncorrelated input signal to a 
LRD output with  close to . Impulses of very large magnitude (outliers) can 
be also be produced when  is close to zero. 
This wavelet synthesis coincides exactly with the wavelet estimator proposed by 
D. Veitch and P. Abry [4], i.e., the estimated  of the synthesized series is 
unbiased ( ) and has zero variance ( ). 
 
4. Delay Jitter Measurements 
 
The one way delay (OWD) of the  datagram is defined as the difference 
(variation) of its reception ( ) and sending ( ) times, i.e., 

 
; . (20)  

 
 The jitter is defined as the difference of the OWD of consecutive 



datagrams, i.e., 
  

; . (21)  
 
 In order to obtain the jitter sequences, from which the statistical 
parameters are estimated, a number of VoIP calls was established within an 

 zone, that consists of the endpoints , ,  and  located in the 
local area network (LAN) , the gatekeeper and the endpoints , ,  and 

, both located in the LAN . Each endpoint has an Alliance FXS PCI Voice 
Card developed at CTS CINVESTAV and a conventional cord phone. The 
measurements were monitored at LAN  using the network protocol analyzer 
Wireshark [5]. The measurement setting is shown in Figure 1. 
 From the measurement protocol which is more detailed in [6], [7],  
VoIP test calls, each one with duration of -hour, were monitored. The captured 
RTP streams from these calls were processed with Wireshark and filtered with a 
script in order to obtain the jitter time series. 

 

 
 

Figure 1: Measurement setting 
 
5. Generator of Cauchy-type Time Series With Specific Hurst Index 
 
The proposed algorithm for generating artificial Cauchy time series with 
defined size, location, scale and Hurst index consists of the following four 
stages: 

 
1) Generate of a random sample of certain size, e.g., an uniformly distributed 

series or standardized FGN. 
 

2) Convert the random sample into a Cauchy-distributed series, with a specific 
 and , by means of the inverse CDF transformation, i.e., applying 

equations (3) and (8). 
 
3) Adjust the Hurst index of the series by means of the weighted synthesis 

described in Section 3. 
 
4) Adjust the location and scale parameters by means of the linear 

transformations (5) and (6), which do not alter the estimation of the Hurst 
index. 

 
 In Figure 2 shows the algorithm, where  is a measured jitter sample 
from which the location and scale parameters are estimated and  is the output. 

 is the resulting series of the ICDF transformation alone. 
 Note that the wavelet-based synthesis is not strictly a linear 
transformation (it is only for multiplication by a constant), consequently, the 
output of the generator ( ) may be not 
 

 
Figure 2: Proposed algorithm 
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exactly Cauchy-distributed, but it is actually very close if the Hurst index 
adjustment is not abrupt. Further work can be developed to describe 
mathematically how the distribution is affected by this non-linear 
transformation. 
 
6. Simulation and Results 
 
A. Simulation Protocol 
 
The proposed algorithm is evaluated by generating a set of 96 artificial jitter 
samples. For each jitter sample described in Section 4, a new artificial series 
was generated with the same length, location, scale and Hurst parameters than 
the original. The efficiency of the generation was evaluated by estimating the , 
 and  parameters and by calculating the square root of the MSE (SMSE) of 

the CDF from the new series. 
 

 
 

Figure 3: Estimations of the location parameter 
 
 The random samples consisted of FGN series generated with an 
implementation of the algorithm proposed by R. B. Davies and D. S. Harte [8], 
with Hurst index equal to that of the original jitter series. The location and scale 
parameters were estimated by applying a MLE estimator [9]. The Hurst index 
was estimated with an implementation of the Haar-wavelet based estimator, as 
described in [4]. 
 

B. Results 
 
The respective estimation of the  and  parameters for the series ,  and , 
described in Section 5, are shown in Figure 3 and Figure 4. The estimated 
values for  and  are very close to that of . The location parameter is in 
practice very close to zero, e.g.,  for most traces. And the 
estimated scale parameter is in the range between  and  for all studied 
samples. Also note that the ICDF transformation does not depend on whether or 
not the original series ( ) is adequately modeled with a Cauchy distribution, 
but only in the estimation of  and . 
 

 
 

Figure 4: Estimation of the scale parameter 
 
 Figure 5 shows the estimated  for the three series ,  and . It can 
be observed that the correlation structure is somehow altered because of the 
ICDF transformation, i.e., the estimated  for  is different of that of  and 
closer to . But the weighted wavelet-based synthesis, described in Section 3, 
makes the Hurst index of  match that of  (the estimated difference 

 is lower than ). 
 Figure 6 shows the respective SMSE of the CDF for  and  with 
respect to a Cauchy CDF with location and scale parameters  and  
(estimated from ). It is observed that, although the wavelet-synthesis 
increases the SMSE of , it is very close to that of , i.e.,  is very close to 
Cauchy-distributed if  so is. This is an indication that the efficiency of the 
proposed generator is very close the ICDF method, but with the advantage that 
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the correlation structure is also adjusted. 
 

 
 

Figure 5: Estimation of the Hurst index 
 

 

 
 

Figure 6: SMSE of the CDF 
 
7. Conclusion 
 
We have proposed a method to generate artificial Cauchy-distributed time series 
with specific correlation structure, measured by the Hurst index. The generation 

consists of a sequential implementation of four stages: random sample 
generation, ICDF transformation, wavelet-based synthesis and a linear 
transformation. The resulting Cauchy-distributed series has approximately the 
desired location and scale parameters and exactly the desired Hurst index. 
 The random sample generation can be implemented by practically any 
method, but the FGN generation was used in this study so that the Hurst index 
of the random series is close to the original jitter measurements and to guarantee 
that pathologic situations, e.g., the statistic  for some , are avoided. 
 The wavelet-based synthesis proposed in Section 3 produces exact -
soss samples, according to the wavelet-based estimator. The estimated Logscale 
Diagram of the synthesized samples is a perfect straight line, which implies that 
the wavelet-based estimator applied to these samples is not only unbiased, but 
also has zero variance. Then, these samples can be applied to evaluate the 
performance of other estimators. 
 The applied linear transformations, corresponding to the fourth stage of 
the proposed generator, adjust approximately the location and scale parameters 
but leave the Hurst index unchanged. Non-linear transformations may be 
applied to adjust exactly the location and scale parameters, but in that case the 
Hurst index may not be exactly the same as desired. 
 The evaluation of the performance of the generator threw the following 
results: the artificial samples are Cauchy-distributed and have approximately the 
desired location and scale parameters and exactly the desired Hurst index. The 
SMSE of the CDF of the produced series is slightly higher than that obtained 
with the ICDF method, but it has a specific correlation structure, which cannot 
be achieved with the ICDF method alone. 
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