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Abstract: In this  paper, a comparison between  h ig h e r order schemes  has  been performed in terms of
numerical accuracy. Four finite difference schemes, the e xp lic it  fourth-order compact Pade scheme,

the implicit fourth-order Pade scheme, flowfield dependent variation (FDV) meth o d  a n d  h igh order

compact flowfie ld  dependent variation (HOC-FDV) scheme are tes ted. The FDV scheme is  used for
time disc retization and the fourth-order compact Pade scheme is  used for spatial derivatives . The

solution procedures  c o n s is t of a number of tri-diagonal matrix operations  and produce an efficient
solver. The comparisons  are performed u s in g one dimens ional nonlinear viscous  Burgers  equation to

demons trate the accuracy and the convergence characteris tics  o f the high-resolution schemes . The

numerical results  show that HOC-FDV is  highly accurate in co mparison with analytical and with other
higher order schemes .

Key words: Flowfield-dependent v a riation (FDV), Higher-order compact (HOC), Burgers ’ equation,
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INTRODUCTION

Higher-order-accurate methods  (g reater than second-order) are used for direct numerical s imulation (DNS)
in order to minimize errors . The advantages  of us ing higher-order compact (HOC) scheme over traditional finite

difference methods  include the h ig h  o rd e r o f accuracy, better s tability, better resolution and fewer boundary
points  to be applied at boundaries . The fundamental idea behind higher-order c o mp a c t  s chemes , also known

as  Padé schemes , is  that the derivatives  are treated as  unknowns  at  e a c h  p o int of the computational grid. To

eva lu a t e the derivatives , high order relations  are provided and solved s imultaneous ly with the governing
e q u a t io n s  of the problem cons idered. The high-order relations  are derived by recons truction of the weigh t e d

average of the mesh function including neighboring point derivatives  in order to obtain a high order difference
relation with a narrow s tencil (Lele 1992). DNS recent a lg o rithms  have used high-order accuracy and the

resolution power of HOC finite difference schemes  such as  Yee et al (1997), Ad a ms  (1998), Freund et al

(2000), Nagarajan et al (2003) among others . High-order compact schemes  have also found their way into
convection diffus ion problems (Spotz 1995).

Hirsh (1975) has  shown that the fourt h -o rd e r compact scheme has  better accuracy than the non-compact

one due to the smaller coefficients  of the truncation error terms , and has  also discussed the s tability properties
of the scheme  fo r a linearized model problem. Two different techniques  proposed by Adam (1977) to eliminate

the second-order derivatives  in parabolic equations , while keeping the fourth-order accuracy and the tri-diagonal

n a ture of the scheme. Lele (1992) has  presented and analyzed more generalized forms of the Hermitia n
schemes  and introduced the notion of resolution efficiency  a s  a  me a s u re  of accuracy. Asrar et al (2002) and

Jiun et al (2003) have shown that a GEB fourth-order compact discretization of th e  one-dimens ional viscous
Burgers  equation gives  more accurate results  than the Hermitian d is cretization for the same order of accuracy.

In the FDV method recent ly  p ro p o s e d  b y Chung (1999), the characteris tic parameters  of the flow field are

calc u la t e d  t o  g u ide the numerical scheme to a solution. The bas ic idea is  to extend the conservation of flow
v a riables  into a Taylor series  in terms  of FDV parameters , which are related to changes  in phys ical parameters

such as  the Reynolds  number and Mach number. The high order compact flowfield dependent variation (HOC-

FDV) scheme  p ro p o s ed by Elfaghi et al (2007) has  been used to solve Burgers ’ equation. The scheme has
shown more accurate results  over FDV and traditional second order schemes .
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Governing Equation:
The Navier-Stokes  equations  (without the source term) can be written in conservation form as :

  (1)

W here:

Derivations  of the FDV equations , as  introduced by Chung (2002), begin with the exp a n s ion of Eq. (1)

a bin a special form of the Taylor series  about U  and introducing the parame t e rs  s  a n d  s  for the firs t andn

second order derivatives  of U with respect to time, respectively. The compact form of FDV equation is  (Chung
2002) 

  (2)

Lagging Di and Dij one time s tep behind,

  (3)

W here:

  (4)

  (5)

  (6)

i i ijThe Jacobeans , a , b , and c  are based o n the convection, diffus ion, and diffus ion gradient terms,
respectively, and are defined by:

  (7)

and

  (8)
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The concept of flow field-dependent  v a ria tion theory provides  a modified form of incremental partial

a bdifferential equations . The phys ical interpretation of the FDV parameters  s  and s  is  the foundation of the FDV

method. Large values  of these parameters  reflect la rg e  c h a n ges  in the conservation variables . These changes

may occur between adjacent nodal points  within the special nodes  as  well as  between adjacent time s teps . The

a 1firs t-order FDV parameter, s , is  separated into a convection parameter, (s ), and d iffu s io n  a n d  diffus ion

3 b 2g ra dient parameter, (s ). Similar arguments  apply to the second-order FDV parameter, s  leading to s  fo r

4convection, and s  for diffus ion and diffus ion gradients . These second-order FDV parameters  are chosen to be

exponentially  p roportional to the firs t-order FDV parameters . This  choice is  based on the fact that the firs t-

order FDV parameters  tend to assure accuracy of the solution, whereas  the second-order FDV parameters
provide numerical s tability (diffus ion), exponen t ia lly proportional to the firs t-order FDV parameters . These

properties  lead to the following definitions  for the firs t-order and second-order variation parameters  in terms

of the Mach number (M), and Reynolds  number (Re): 
Firs t and second-order convection variation parameter s1 and s2: 

  (9)

  (10)

with

  (11)

Firs t and second -order diffus ion parameter s3 and s4:

  (12)

  (13)

with

  (14)

The variation parame t e rs  introduced in the above equations  are used for a variety of purposes . All the

variation parameters  fall between 0 and 1 and are calculated locally at each element making them flo w field

1 3dependent. The values  of s  and s  are high in reg io n s  o f h igh gradients  and small in regions  of small

gradients .

Contrary to the Beam-W arming scheme (1978), the FDV approach is  to obtain the implicitness  p a ra meters
from the current flowfield variables  at each and every nodal point ra t h e r t h a n  by fixing the implicitness

parameters  to certain predetermined numbers  and us ing them for the  entire flow domain irrespective of local

flowfield variation from one point to another.
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Applications:
The one dimens ional non-linear viscous  Burg e rs  e q uation is  solved numerically used explicit and implicit

HOC scheme, FDV scheme and HOC-FDV scheme. The equation is  in the form (Hoffmann, 2000) :

  (15)

Initial dis tribution is  given by the following equation.

  (16)

at t = 0.1 and x v a rie s  fro m -9.0 –  9.0, the boundary conditions  are: at x = - 9.0, u= 2.0 and at x = 9.0, u
= -2.0, the spatial s tep s ize: dx = 0.2 and the time s tep dt = 0.01

Explicit HOC Burgers Equation:

To solve equation (15) us ing explicit HOC, the following three equations  are solved s imultaneous ly (Hirsh,

1975):

  (17)

  (18)

  (19)

Implicit FDV Burgers Equation:
Fully implicit HOC solution is  achieved by solv in g  t h e  fo llo wing sys tem of equations  for (u, f) and S

s imultaneous ly at the time level n+1.

  (20)

  (21)

  (22)

A  block tri-diagonal matrix will be generated at each time s tep which can be solved us ing av a ila b le

algorithms .

FDV Burgers Equation:

For solving the Burger's  equation, Eq. (3) is  rewritten for the one-dimensional momentum equation without
the pressure gradients .
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  (23)

W here 

Equation (23) is  s o lv e d  for the values  of velocity at time n+1. The firs t  derivative,               , and  the

second derivative,                , are approximated at each node by s e c o n d   o rd e r  c e n t ra l d iffe rences .  The

resulting finite difference equations  are then solved us ing tri-diagonal matrix solver to calculate         at all

grid points .

HOC-FDV Burgers Equation:

T o  s o lv e  the Burgers  equation us ing the higher order compact-flowfield dependent variation (HOC-FDV)

scheme, the firs t and second derivatives  of           in equation (23) are approximated by us ing the implicit

fourth order compact differencing scheme proposed by Hirsh (1975) in the following form:

 (24)

 (25)

W here:                                and

Eq u a t io n s  (23), (24) and (25) are solved for the three unknowns           ,          and         a t  e a c h  t ime

s tep to form a fully implicit s ys tem of equations  which are coupled and solved s imultaneous ly us ing the block
tri-diagonal matrix invers ion.

RESULTS AND DISCUSSION

The schemes  are tes ted by calculating the absolute error betwe e n  t h e  numerical solution of each scheme

and the analyt ic a l s o lu t io n s  a t different time s teps . Figure 1 shows the results  for FDV method for times  t =
0.1s , 0.4s , 0.7s  and 1.0s . The numerical and analytical solutions  are visually identical. Therefore the absolute

errors  between the numerical and the exact solutions  are required to compare the accuracy of the FDV scheme.

Figure 2 shows the comparison between absolute erro rs  of implicit higher order compact and implicit
higher order compact schemes . The implicit higher order compact scheme gives  accurate results  o v e r e xp licit

scheme. The maximum error reduced by 69% when us ing implicit higher ord e r compact scheme compared to

explicit higher order compact scheme.
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Fig. 1: FDV solution at times  t = 0.1s , 0.4s , 0.7s , and 1.0

Fig. 2: Comparison between Implic it  a nd Explicit HOC Schemes  for Non-linear Viscous  Burger's  Equation

at t=1.0s  

The plot for the error calculated by subtracting the numerical values  fro m t h e  e xa c t  s olution for time t =

1.0 sec  is  shown in Fig. 3. This  figure shows a reduction by 80% in the maximum e rro r a t  t h e  d is c o ntinuity
region when us ing FDV method comparing with the BTCS method, Hoffmann (2000).

The plot for the absolute erro rs  c alculated by subtracting the numerical values  from the exact solution of

Equation (16) available in Hoffmann and Chiang (2000) and Ed wa rd  a n d  George (1972), for time t = 1.0 sec

is  shown in Fig. 4. This  figure shows a reduction by 88% in the maximu m error at the discontinuity region
when us ing FDV method when compared with the BTCS method, Ho ffma n n and Chiang (2000). High order

compact scheme with flowfield-dependent variation method, (HOC-FDV), gives  better results  t h a n  t h e  results

obtained  from us ing flowfield-dependent variation method with second order central approximations  and the
maximum error is  further reduced by 56% as  compared to the FDV technique.

Conclusion:
A  numerical s imulation of the non-linear viscous  Burger's  equation us ing explicit higher order c o mp a c t

scheme, fully implicit high order compact scheme,  flow field-dependent variation (FDV) and high order

compact-flow field-dependent variation (HOC-FDV) method have been obtained. T h e  re sults  have been
compared with the s t a n d a rd  BT CS s cheme and with the analytical results . It can be concluded based on the

results  that the HOC-FDV method is  more accurate compared with the other approaches .    
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Fig. 3: Comparison of error dis tributions  for FDV and BTCS (Hoffmann) at t=1.0sec

Fig. 4: Comparison of a b s o lu t e  e rror dis tribution at t=1.0 sec, BTCS (Hoffman), Implicit HOC, FDV, and
HOC-FDV schemes
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