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Abstract: In this paper, a comparison between higher order schemes has been performed in terms of
numerical accuracy. Four finite difference schemes, the explicit fourth-order compact Pade scheme,
the implicit fourth-order Pade scheme, flowfield dependent variation (FDV) method and high order
compact flowfield dependent variation (HOC-FDV) scheme are tested. The FDV scheme is used for
time discretization and the fourth-order compact Pade scheme is used for spatial derivatives. The
solution procedures consist of a number of tri-diagonal matrix operations and produce an efficient
solver. The comparisons are performed using one dimensional nonlinear viscous Burgers equation to
demonstrate the accuracy and the convergence characteristics of the high-resolution schemes. The
numerical results show that HOC-FDV is highly accurate in comparison with analytical and with other
higher order schemes.
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INTRODUCTION

Higher-order-accurate methods (greater than second-order) are used for direct numerical simulation (DNS)
in order to minimize errors. The advantages ofusing higher-order compact (HOC) scheme over traditional finite
difference methods include the high order of accuracy, better stability, better resolution and fewer boundary
points to be applied at boundaries. The fundamental idea behind higher-order compact schemes, also known
as Padé schemes, is that the derivatives are treated as unknowns at each point of the computational grid. To
evaluate the derivatives, high order relations are provided and solved simultaneously with the governing
equations of the problem considered. The high-order relations are derived by reconstruction of the weighted
average of the mesh function including neighboring point derivatives in order to obtain a high order difference
relation with a narrow stencil (Lele 1992). DNS recent algorithms have used high-order accuracy and the
resolution power of HOC finite difference schemes such as Yee et al (1997), Adams (1998), Freund et al
(2000), Nagarajan et al (2003) among others. High-order compact schemes have also found their way into
convection diffusion problems (Spotz 1995).

Hirsh (1975) has shown that the fourth-order compact scheme has better accuracy than the non-compact
one due to the smaller coefficients of the truncation error terms, and has also discussed the stability properties
of the scheme for a linearized model problem. Two different techniques proposed by Adam (1977) to eliminate
the second-order derivatives in parabolic equations, while keeping the fourth-order accuracy and the tri-diagonal
nature of the scheme. Lele (1992) has presented and analyzed more generalized forms of the Hermitian
schemes and introduced the notion of resolution efficiency as a measure of accuracy. Asrar et al (2002) and
Jiun et al (2003) have shown that a GEB fourth-order compact discretization of the one-dimensional viscous
Burgers equation gives more accurate results than the Hermitian discretization for the same order of accuracy.
In the FDV method recently proposed by Chung (1999), the characteristic parameters of the flow field are
calculated to guide the numerical scheme to a solution. The basic idea is to extend the conservation of flow
variables into a Taylor series in terms of FDV parameters, which are related to changes in physical parameters
such as the Reynolds number and Mach number. The high order compact flowfield dependent variation (HOC-
FDV) scheme proposed by Elfaghi et al (2007) has been used to solve Burgers’ equation. The scheme has
shown more accurate results over FDV and traditional second order schemes.
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Governing Equation:
The Navier-Stokes equations (without the source term) can be written in conservation form as:
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Derivations of the FDV equations, as introduced by Chung (2002), begin with the expansion of Eq. (1)
in a special form of the Taylor series about U" and introducing the parameters s, and s, for the first and

second order derivatives of U with respect to time, respectively. The compact form of FDV equation is (Chung
2002)
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The Jacobeans, a;, b, and c; are based on the convection, diffusion, and diffusion gradient terms,
respectively, and are defined by:
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The concept of flow field-dependent variation theory provides a modified form of incremental partial
differential equations. The physical interpretation of the FDV parameters s, and s, is the foundation of the FDV
method. Large values of these parameters reflect large changes in the conservation variables. These changes
may occur between adjacent nodal points within the special nodes as well as between adjacent time steps. The
first-order FDV parameter, s,, is separated into a convection parameter, (s;), and diffusion and diffusion
gradient parameter, (s;). Similar arguments apply to the second-order FDV parameter, s, leading to s, for
convection, and s, for diffusion and diffusion gradients. These second-order FDV parameters are chosen to be
exponentially proportional to the first-order FDV parameters. This choice is based on the fact that the first-
order FDV parameters tend to assure accuracy of the solution, whereas the second-order FDV parameters
provide numerical stability (diffusion), exponentially proportional to the first-order FDV parameters. These
properties lead to the following definitions for the first-order and second-order variation parameters in terms
of the Mach number (M), and Reynolds number (Re):

First and second-order convection variation parameter s1 and s2:
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First and second -order diffusion parameter s3 and s4:
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The variation parameters introduced in the above equations are used for a variety of purposes. All the
variation parameters fall between 0 and 1 and are calculated locally at each element making them flow field
dependent. The values of s, and s; are high in regions of high gradients and small in regions of small
gradients.

Contrary to the Beam-Warming scheme (1978), the FDV approach is to obtain the implicitness parameters
from the current flowfield variables at each and every nodal point rather than by fixing the implicitness
parameters to certain predetermined numbers and using them for the entire flow domain irrespective of local
flowfield variation from one point to another.
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Applications:
The one dimensional non-linear viscous Burgers equation is solved numerically used explicit and implicit
HOC scheme, FDV scheme and HOC-FDV scheme. The equation is in the form (Hoffmann, 2000) :

du ou  Fu

—+u— = (15)
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Initial distribution is given by the following equation.
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i =— (16)
cog(x)—¢ "

at t = 0.1 and x varies from -9.0 — 9.0, the boundary conditions are: at x = - 9.0, u= 2.0 and at x = 9.0, u

= -2.0, the spatial step size: dx = 0.2 and the time step dt = 0.01

Explicit HOC Burgers Equation:

To solve equation (15) using explicit HOC, the following three equations are solved simultaneously (Hirsh,
1975):
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Implicit FDV Burgers Equation:
Fully implicit HOC solution is achieved by solving the following system of equations for (u, f) and S
simultaneously at the time level n+1.
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A block tri-diagonal matrix will be generated at each time step which can be solved using available
algorithms.

FDV Burgers Equation:

For solving the Burger's equation, Eq. (3) is rewritten for the one-dimensional momentum equation without
the pressure gradients.
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Equation (23) is solved for the values of velocity at time n+1. The first derivative, _‘I— and the
i ST

second derivative, ¢ approximated at each node by second order central differences. The

dx?

n+l
resulting finite difference equations are then solved using tri-diagonal matrix solver to calculate I at all
grid points.

HOC-FDV Burgers Equation:
To solve the Burgers equation using the higher order compact-flowfield dependent variation (HOC-FDV)

+
scheme, the first and second derivatives of A in equation (23) are approximated by using the implicit

fourth order compact differencing scheme proposed by Hirsh (1975) in the following form:
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Equations (23), (24) and (25) are solved for the three unknowns _J"-;E'.-Ln fn ind Sn it each time

step to form a fully implicit system of equations which are coupled and solved simultaneously using the block
tri-diagonal matrix inversion.

RESULTS AND DISCUSSION

The schemes are tested by calculating the absolute error between the numerical solution of each scheme
and the analytical solutions at different time steps. Figure 1 shows the results for FDV method for times t =
0.1s, 0.4s, 0.7s and 1.0s. The numerical and analytical solutions are visually identical. Therefore the absolute
errors between the numerical and the exact solutions are required to compare the accuracy of the FDV scheme.

Figure 2 shows the comparison between absolute errors of implicit higher order compact and implicit
higher order compact schemes. The implicit higher order compact scheme gives accurate results over explicit
scheme. The maximum error reduced by 69% when using implicit higher order compact scheme compared to
explicit higher order compact scheme.
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Fig. 1: FDV solution at times t = 0.1s, 0.4s, 0.7s, and 1.0
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Fig. 2: Comparison between Implicit and Explicit HOC Schemes for Non-linear Viscous Burger's Equation
at t=1.0s

The plot for the error calculated by subtracting the numerical values from the exact solution for time t =
1.0 sec is shown in Fig. 3. This figure shows a reduction by 80% in the maximum error at the discontinuity
region when using FDV method comparing with the BTCS method, Hoffmann (2000).

The plot for the absolute errors calculated by subtracting the numerical values from the exact solution of
Equation (16) available in Hoffmann and Chiang (2000) and Edward and George (1972), for time t = 1.0 sec
is shown in Fig. 4. This figure shows a reduction by 88% in the maximum error at the discontinuity region
when using FDV method when compared with the BTCS method, Hoffmann and Chiang (2000). High order
compact scheme with flowfield-dependent variation method, (HOC-FDV), gives better results than the results
obtained from using flowfield-dependent variation method with second order central approximations and the
maximum error is further reduced by 56% as compared to the FDV technique.

Conclusion:

A numerical simulation of the non-linear viscous Burger's equation using explicit higher order compact
scheme, fully implicit high order compact scheme, flow field-dependent variation (FDV) and high order
compact-flow field-dependent variation (HOC-FDV) method have been obtained. The results have been
compared with the standard BTCS scheme and with the analytical results. It can be concluded based on the
results that the HOC-FDV method is more accurate compared with the other approaches.
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Fig. 3: Comparison of error distributions for FDV and BTCS (Hoffmann) at t=1.0sec
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Fig. 4: Comparison of absolute error distribution at t=1.0 sec, BTCS (Hoffman), Implicit HOC, FDV, and
HOC-FDV schemes
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