
IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

294

Manuscript received May 5, 2009

Manuscript revised May 20, 2009

Novel Approach for Secure Cover File of Hidden Data in the

Unused Area within EXE File Using Computation between

Cryptography and Steganography

A.W. Naji*, A.A.Zaidan, B.B.Zaidan, Shihab A. Hameed and Othman O. Khalifa

Electrical and Computer Engineering Department, Faculty of Engineering,

 International Islamic University Malaysia,

53100 Gombak, Kuala Lumpur,

Malaysia.

ABSTRACT

The strength of the information hiding science is due to the non-

existence of standard algorithms to be used in hiding secret

messages. Also there is randomness in hiding methods such as

combining several media (covers) with different methods to pass

a secret message. In addition, there are no formal methods to be

followed to discover the hidden data. For this reason, the task of

this paper becomes difficult. In this paper a new method is

implementing to hide a file of unused area 2 within .EXE file and

to detect the hidden file. The aim of this paper is implementation

of system computation between Cryptography and

Steganography which embeds information in unused area 2

within EXE files to find a secure solution to cover file without

change the size of cover file. The system includes two main

functions; first is the hiding of the information in unused area 2

of PE-file (.EXE file), through the execution of four process

(specify the cover file, specify the information file, encryption of

the information, and hiding the information) and the second

function is the extraction of the hiding information through three

process (specify the steno file, extract the information, and

decryption of the information) and The proposed system is

implemented by using java.

Keyword

Cryptography, Steganography, portable Executable File,

Advance Encryption Standard

I. STEGANOGRAPHY

Steganography is the art of concealing the presence of

information within an innocuous container.

Steganography has been used throughout history to protect

important information from being discovered by enemies.

A very early example of Steganography comes from the

story of Demartus of Greece. He wished to inform Sparta

that Xerces the King of Persia was planning to invade. In

ancient Greece wax covered wooden tablets were used to

record written text [1].In order to avoid detection by the

Persians, Demartus scraped the wax from a tablet, etched

the message into the underlying wood, then recovered the

tabled with wax. This concealed the underlying message

from the sentries who inspected the tablets as they left

Persia by courier for Greece[1].Other historical examples

of Steganography are the use of invisible inks. A common

experiment conducted by young kids everywhere is to use

a toothpick dipped in vinegar to write a message on a piece

of paper. Once the vinegar dries, the presence of the

message is not obvious to a casual inspector (aside from

the smell). Upon slight heating of the paper, a chemical

reaction occurs which darkens the vinegar and makes the

message readable. Other, less smelly, invisible inks have

been used throughout history similarly even up until

World War II.A more recently developed Steganography

technique was invented by the Germans in World War II,

the use of microdots.Microdots were very small

photographs, the size of a printed period, which contain

very clear text when magnified. These microdots

contained important information about German war plans

and were placed in completely unrelated letters as periods.

Although Steganography is related to Cryptography, the

two are fundamentally different [1], [2].

A. Cryptography vs. Steganography

Cryptography is the practice of „scrambling‟ messages so

that even if detected, they are very difficult to decipher.

The purpose of Steganography is to conceal the message

such that the very existence of the hidden is „camouflaged‟.

However, the two techniques are not mutually exclusive

[2]. Steganography and Cryptography are in fact

complementary techniques. No matter how strong

algorithm, if an encrypted message is discovered, it will be

subject to cryptanalysis. Likewise, no matter how well

concealed a message is, it is always possible that it will be

discovered [2]. By combining Steganography with

Cryptography we can conceal the existence of an

encrypted message. In doing this, we make it far less

likely that an encrypted message will be found. Also, if a

message concealed through Steganography is discovered,

the discoverer is still faced with the formidable task of

deciphering it [2].

II. PORTABLE EXECUTABLE FILE (PE-FILE)

The proposed system uses a portable executable file as a

cover to embed an executable program as an example for

the proposed system. This section is divided into four

parts[3],[4],[5]:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The International Islamic University Malaysia Repository

https://core.ac.uk/display/300358604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

295

 Executable file types.

 Concept related with PE-file.

 Techniques related with PE-file.

 PE-file Layout.
A. Executable File Types

The number of different executable file types is as many

and varied as the number of different image and sound file

formats. Every operating system seems to have several

executable file types unique to it. These types are [5]:

 EXE (DOS"MZ")

 EXE (win 3.xx "NE")

 EXE (OS/2 "LE")

 EXE (win 9x/NT "PE")

 ELF

B. Concepts Related With PE

The addition of the Microsoft® windows NT™ operating

system to the family of windows™ operating systems

brought many changes to the development environment

and more than a few changes to applications themselves.

One of the more significant changes is the introduction of

the Portable Executable (PE) file format. The name

"Portable Executable" refers to the fact that the format is

not architecture specific [6].In other words, the term

"Portable Executable" was chosen because the intent was

to have a common file format for all versions of Windows,

on all supported CPUs [5].The PE files formats drawn

primarily from the Common Object File Format (COFF)

specification that is common to UNIX® operating systems.

Yet, to remain compatible with previous versions of the

MS-DOS® and windows operating systems, the PE file

format also retains the old familiar MZ header from MS-

DOS [6].The PE file format for Windows NT introduced a

completely new structure to developers familiar with the

windows and MS-DOS environments. Yet developers

familiar with the UNIX environment will find that the PE

file format is similar to, if not based on, the COFF

specification [6].The entire format consists of an MS-DOS

MZ header, followed by a real-mode stub program, the PE

file signature, the PE file header, the PE optional header,

all of the section headers, and finally, all of the section

bodies [4].

C. Techniques Related with PE

Before looking inside the PE file, we should know special

techniques some of which are [6]:

 General view of PE files sections

A PE file section represents code or data of some sort.

While code is just code, there are multiple types of data.

Besides read/write program data (such as global variables),

other types of data in sections include application program

interface (API) import and export tables, resources, and

relocations.

Each section has its own set of in-memory attributes,

including whether the section contains code, whether it's

read-only or read/write, and whether the data in the section

is shared between all processes using the executable file.

Sections have two alignment values, one within the desk

file and the other in memory.

The PE file header specifies both of these values, which

can differ. Each section starts at an offset that's some

multiple of the alignment value. For instance, in the PE

file, a typical alignment would be 0x200. Thus, every

section begins at a file offset that's a multiple of

0x200.Once mapped into memory, sections always start on

at least a page boundary. That is, when a PE section is

mapped into memory, the first byte of each section

corresponds to a memory page. On x86 CPUs, pages are

4KB aligned, while on the Intel Architecture IA-64, they're

8KB aligned.

 Relative Virtual Addresses (RVA)

In an executable file, there are many places where an in-

memory address needs to be specified. For instance, the

address of a global variable is needed when referencing it.

PE files can load just about anywhere in the process

address space. While they do have a preferred load address,

you can't rely on the executable file actually loading there.

For this reason, it's important to have some way of

specifying addresses that are independent of where the

executable file loads. To avoid having hard coded memory

addresses in PE files, RVAs are used. An RVA is simply

an offset in memory, relative to where the PE file was

loaded. For instance, consider an .EXE file loaded at

address 0x400000, with its code section at address

0x401000. The RVA of the code section would be:

(Target address) 0x401000 – (load address) 0x400000 = (RAV) (1)

To convert an RVA to an actual address, simply reverse

the process: add the RVA to the actual load address to find

the actual memory address. Incidentally, the actual

memory address is called a Virtual Address (VA) in PE

parlance. Another way to think of a VA is that it's an RVA

with the preferred load address added in.

 Importing Functions

When we use code or data from another DLL, we're

importing it. When any PE files loads, one of the jobs of

the windows loader is to locate all the imported functions

and data and make those addressees available to the file

being loaded.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

296

D. PE File Layout

The PE file layout is shown in Figure 1. There are two

unused spaces in PE file layout [7], and these unused

spaces are suggested to hide a watermark.The size of the

second unused space is different from one file to another

[7].The most important reason behind the idea of this

system is that the programmers always need to create a

back door for all of their developed applications, as a

solution to many problems such that forgetting the

password. This idea leads the customers to feel that all

programmers have the ability to hack their system any

time. At the end of this discussion all customers always are

used to employ trusted programmers to build their own

application. Programmers want their application to be safe

any where without the need to build ethic relations with

their customers. In this system a solution is suggested for

this problem [6],[8].

The solution is to hide the password in the executable file

of the same system and then other application to be

retracted by the customer himself. Steganography needs to

know all files format to find a way for hiding information

in those files. This technique is difficult because there are

always large numbers of the file format and some of them

have no way to hide information in them [8].

 Figure 1.Typical 32-bit Portable .EXE File Layout.

III. ADVANCE ENCRYPTION STANDARD

In 1997, the NIST called for submissions for a new

standard to replace the aging DES. The contest terminated

in November 2001with the selection of the Rijndael

cryptosystem as the Advanced Encryption Standard (AES)

[1],[2]. The Rijndael cryptosystem operates on 128-bit

blocks, arranged as 4 × 4 matrices with 8-bit entries. The

algorithm can use a variable block length and key length.

The latest specification allowed any combination of keys

lengths of 128, 192, or 256 bits and blocks of length 128,

192, or 256 bits.

AES may, as all algorithms, be used in different ways to

perform encryption. Different methods are suitable for

different situations. It is vital that the correct method is

applied in the correct manner to each and every situation,

or the result may well be insecure even if AES as such is

secure. It is very easy to implement a system using AES as

its encryption algorithm, but much more skill and

experience are required to do it in the right way for a given

situation. To describe exactly how to apply AES for

varying purposes is very much out of scope for this short

introduction.

A. Strong keys

Encryption with AES is based on a secret key with 128,

192 or 256 bits. But if the key is easy to guess it doesn‟t

matter if AES is secure, so it is as critically vital to use

good and strong keys as it is to apply AES properly.

Creating good and strong keys is a surprisingly difficult

problem and requires careful design when done with a

computer. The challenge is that computers are notoriously

deterministic, but what is required of a good and strong

key is the opposite unpredictability and randomness. Keys

derived into a fixed length suitable for the encryption

algorithm from passwords or pass phrases typed by a

human will seldom correspond to 128 bits much less 256.

To even approach 128- bit equivalence in a pass phrase, at

least 10 typical passwords of the kind frequently used in

day-to-day work are needed. Weak keys can be somewhat

strengthened by special techniques by adding

computationally intensive steps which increase the amount

of computation necessary to break it. The risks of incorrect

usage, implementation and weak keys are in no way

unique for AES; these are shared by all encryption

algorithms. Provided that the implementation is correct,

the security provided reduces to a relatively simple

question about how many bits the chosen key, password or

pass phrase really corresponds to. Unfortunately this

estimate is somewhat difficult to calculate, when the key is

not generated by a true random generator [3].

B. The Round Transformations

There are four transformations:

 Add Round Key

Add Round Key is an XOR between the state and the

round key. This transformation is its own inverse [4].

 Sub Bytes

Sub Bytes is a substitution of each byte in the block

independent of the position in the state. This is an S-box. It

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

297

is bisection on all possible byte values and therefore

invertible (the inverse S-box can easily be constructed

from the S-box). This is the non-linear transformation. The

S-box used is proved to be optimal with regards to non-

linearity. The S-box is based on arithmetic in GF (2^8).

 Shift Rows

Shift Rows is a cyclic shift of the bytes in the rows in the

state and is clearly invertible (by a shift in the opposite

direction by the same amount) [5].

 Mix Columns

Each column in the state is considered a polynomial with

the byte values as coefficients. The columns are

transformed independently by multiplication with a special

polynomial c(x). c(x) has an inverse d(x) that is used to

reverse the multiplication by c (x) [1].

C. The Rounds

A round transformation is composed of four different

transformations as shown in fig.2. The Round keys are

made by expanding the encryption key into an array

holding the Round Keys one after another. The expansion

works on words of four bytes. Nk is a constant defined as

the number of four bytes words in the key. The encryption

key is filled into the first Nk words and the rest of the key

material is defined recursively from preceding words. The

word in position i, W[i], except the first word of a Round

Key, is defined as the XOR between the preceding word,

W[i-1], and W[i-Nk]. The first word of each Round Key,

W[i] (where i mod Nk == 0), is defined as the XOR of a

transformation on the preceding word, T (W [i - 1]) and W

[i - Nk]. The transformation T on a word, w, is w rotated to

the left by one byte, XOR‟ed by a round constant and with

each byte substituted by the S-box [5].

Figure 2. Four Different Transformations.

The final round is like a regular round, but without the mix

columns transformation as shown in fig. 4:

Figure 3. Final Round.

IV. STEGANOGRAPHY TYPES

As it is known there is much communication between

people and organizations through the use of the phone, the

fax, computer communications, radio, and of course all of

these communication should be secure. There are basically

three Steganography types [8]:-

 Pure Steganography.

 Public key Steganography.

 Secret key Steganography.

a) Pure Steganography

Pure Steganography is the Steganography system that

doesn't require prior exchange of some secret information

before sending message; therefore, no information is

required to start the communication process: the security

of the system thus depends entirely on its secrecy. The

pure Steganography can be defined as the quadruple(C, M,

D, and E) where:

C: the set of possible covers.

M: the set of secret massage with |C| ≥ |M|.

E: C×M→C the embedding function.

D: C→M of the extraction function with the property that

D: (E(c, m)) =m for all m Є M and c Є C.

Figure 4. Pure Steganography

In most applications, pure Steganography is preferred,

since no stego-key must be shared between the

communication partners, although a pure Steganography

protocols don't provide any security if an attacker knows

the embedding method.

b) Public key Steganography

Public key Steganography does not depend on the

exchange of a secret key. It requires two keys, one of them

private (secret) and the other public: the public key is

stored in a public database, whereas the public key is used

in the embedding process. The secret key is used to

reconstruct the secret message. One way to build a public

key Steganography system is to use a public key crypto

system. The sender and the receiver can exchange public

keys of some public key cryptography algorithm before

imprisonment. Public key Steganography utilizes the fact

that the decoding function in a Steganography system can

be applied to any cover, whether or not it already contains

a secret message. The public key Steganography relies on

the fact that encrypted information is random enough to

hide in plain sight. The sender encrypts the information

with the receiver's public key to obtain a random-looking

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

298

massage and embeds it in a channel known to the receiver,

thereby replacing some of the natural randomness with

which every communication process is accompanied.

Assume that both the cryptographic algorithms and the

embedding functions are publicly known. The receiver

who cannot decide a priori if secret information is

transmitted in a specific cover will suspect the arrival of

message and will simply try to extract and decrypt it using

his private key. If the cover actually contained information,

the decryption information is the sender's message.

c) Secret key Steganography

A secret key Steganography system is similar to a

symmetric cipher, where the sender chooses a cover and

embeds the secret message into the cover using a secret

key. If the secret key used in the embedding process is

known to the receiver, he can reverse the process and

extract the secret message. Anyone who doesn't know the

secret key should not be able to obtain evidence of the

encoded information.

The secret key Steganography can be defined as the

quintuple (C, M, K, DK, and EK) where:

C: the set of possible covers.

M: the set of secret message.

K: the set of secret keys.

Ek: C×M×K→C

With the property that DK (EK(c,m,k),k)=m for all m

Є M, c Є C and k Є K

 Figure 5. Secret Key Steganography

The final scenario for the algorithm as fallowed below in

the figure 6, where Kenny hide and encrypt a secret data

and send this data to cartman, cartman will decrypt the

data and extract the data again

Figure 6. send and receive massages through the two ends,

its shows how Kenny encrypt the massage and send it to

Cartman , the figure above shows also the man in the

middle waiting to have any information may help to

decrypts the massages.

V. METHODOLOGY

A. System Concept

Concept of this system can be summarized as hiding the

password or any information beyond the end of an

executable file so there is no function or routine (open-file,

read, write, and close-file) in the operating system to

extract it. This operation can be performed in two

alternative methods: Building the file handling procedure

independently of the operating system file handling

routines. In this case we need canceling the existing file

handling routines and developing a new function which

can perform our need, with the same names. The

advantage of these methods is it doesn't need any

additional functions, which can be identified by the

analysts. And it can be executed remotely and suitable for

networks and the internet applications .The disadvantage

of these methods is it needs to be installed (can not be

operated remotely). So we choose this concept to

implementation in this paper.

B. System Features

This system has the following features:

 The hiding operation of (unused area 2 within EXE
File) increases the degree of security of hiding
technique which is used in the proposed system
because the size of cover file doesn't change and the
unused area 2 they have different size from one fie to
another, So the attacker can not be attack the
information hidden.

 The cover file can be executed normally after hiding
operation. Because the hidden information already hide in
the unused area 2 within exe.file and thus cannot be
manipulated as the exe.file, therefore, the cover file still
natural, working normally and not effected, such as if the
cover is exe.Files (WINDOWES XP SETUP) after hiding
operation it'll continued working, In other words, the
exe.file can be installed of windows.

 It's very difficult to extract the hidden information it's
difficult to find out the information hiding , that is because
of three reasons:

o The information hiding was encrypted before hiding of
the information by AES method; this method very
strong, 128-bit key would be in theory being in range
of a military budget within 30-40 years. An illustration
of the current status for AES is given by the following
example, where we assume an attacker with the
capability to build or purchase a system that tries keys

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

299

at the rate of one billion keys per second. This is at
least 1 000 times faster than the fastest personal
computer in 2004. Under this assumption, the attacker
will need about 10 000 000 000 000 000 000 000 years
to try all possible keys for the weakest version.

o The attacker impossible guessing the information
hiding inside the EXE file because of couldn't guessing
the real size of (EXE file and information hiding).

o The information hiding should be decrypted after
retract of the information.

C. The Proposed System Structure.

To protect the hidden information from retraction the system
encrypts the information by the built-in encryption algorithm
provided by the Java. The following algorithm for hiding
operation procedure as shown in Figure 7. The following
algorithm for Retract operation procedure as shown in
Figure 8.

1. The following algorithm is the hiding operation

procedure:

Figure 7. Shows Algorithm for Hiding Operation.

2. The following algorithm is retraction operation

procedure:

Figure 8. Shows Algorithm for Retract Operation.

VI. CONCLUSION

One of the important conclusions in implementation of

the proposed system is the solving of the problems that

are related to the change size of cover file, so the hiding

method makes the relation between the cover and the

message dependent without change of cover file and The

encryption of the message increases the degree of

security of hiding technique which is used in the

proposed system and PE files structure is very complex

because they depend on multi headers and addressing,

and then insertion of data to PE files without full

understanding of their structure may damage them, so

the choice is to hide the information beyond the structure

of these files , finally The system has achieved the main

goal, makes the relation of the size of the cover file and

the size of information dependent without change the

size of cover file , so There is no change on the cover file

size where you can hide file of Unused area 2 within

portable executable file by Structure on the property of

the EXE file and The proposed system is implemented

by using Java.

ACKNOWLEDGEMENT

Our sincere thanks to all researchers who have contribute

to this project. Also we would like to acknowledge and

thanks the researchers in UM for their support.

REFERENCES
[1] A.A.Zaidan, B.B.Zaidan, M.M.Abdulrazzaq, R.Z.Raji and

S.M.Mohammed, “Implementation Stage for High Securing Cover-
File of Hidden Data Using Computation between Cryptography
and Steganography”. International Association of Computer
Science and Information Technology (IACSIT), indexing by
Nielsen, Thomson ISI (ISTP), IACSIT Database, British Library
and EI Compendex, Volume 20, 2009, Manila, Philippines.

[2] B.B Zaidan, A.A Zaidan, Fazidah Othman, R.Z.Raji,
S.M.Mohammed, M.M.Abdulrazzaq, “Quality of Image vs.
Quantity of Data Hidden in the Image”, International Conference
on Image Processing, Computer Vision, and Pattern Recognition
(IPCV'09), 2009, Las Vigas, USA.

[3] B.B.Zaidan, A.A.Zaidan, Fazidah Othman “Enhancement of the
Amount of Hidden Data and the Quality of Image", Malaysia
Education Security (MyEduSec08), Grand Continental Hotel, 2008,
Kuala Trengano, Malaysia

[4] Avedissian, L.Z," Image in Image Steganography System”,
Ph.D.Thesis, Informatics Institute for Postgraduate Studies (IIIPS),
University of Technology, Baghdad, Iraq, 2008.

[5] C. J. S. B,” Modulation and Information Hiding in Images”, of
Lecture Notes in Computer Science, University of Technology,
Malaya, Vol. 1174, pp.207-226, 2007.

[6] Clelland, C.T.R, V.P & Bancroft, “ Hiding Messages in
DNAMicroDots ” , International Symposium on Industrial
Electronics (ISIE) , University of Indonesia , Indonesia, Vol. 1,
pp.315-327, 2007.

[7] Davern, P.S, M.G, “Steganography It History and Its Application to
Computer Based Data Files”, School of Computer Application
(SCA), Dublin City University. Working Paper. Studies (WPS),
Baghdad, Iraq, 2007.

IJCSNS International Journal of Computer Science and Network Security, VOL.9 No.5, May 2009

300

[8] Dorothy, E.R, D.K, “Cryptography and Data Security”, IEEE
International Symposium on Canada Electronics (ISKE),
University of Canada, Canada, Vol.6, pp.119-122, 2006,

AUTHORS INFORMATION

Dr. Ahmed Wathik Naji - He obtained

his 1st Class Master degree in

Computer Engineering from University

Putra Malaysia followed by PhD in
Communication Engineering also from

University Putra Malaysia. He

supervised many postgraduate students
and led many funded research projects

with more than 50 international papers. He

has more than 10 years of industrial and
educational experience. He is currently Senior Assistant Professor,

Department of Electrical and Computer Engineering, International

Islamic University Malaya, Kuala Lumpur, Malaysia.

Aos Alaa Zaidan - has received his master

from Department of Computer System &
Technology Department Faculty of

Computer Science and Information

Technology/University of Malaya /Kuala
Lumpur/Malaysia, his research interest on

Steganography & Quantum Cryptography

with his group he has published many
papers on data hidden through different

multimedia carriers such as image, video,

audio, text, and non multimedia careers such

as unused area within EXE file, he has done projects on Stego-Analysis

systems, currently he is working on Quantum Key Distribution QKD, his

PhD on the Tracking System.

Bilal Bahaa Zaidan - has received his

master from Department of Computer
System & Technology Department Faculty

of Computer Science and Information
Technology/University of Malaya /Kuala

Lumpur/Malaysia, his research interest on

Steganography & Cryptography with his
group he has published many papers on data

hidden through different multimedia carriers

such as image, video, audio, text, and non multimedia careers such as
unused area within EXE file, he has done projects on Stego-Analysis

systems, currently he is working on Quantum Key Distribution QKD, his

PhD work on develop a new cryptography standard.

Dr. Shihab A Hameed - He obtained his
PhD in software Engineering from UKM.

He has three decades of industrial and
educational experience. His research interest

is mainly in the software engineering,
software quality, surveillance and

monitoring systems, health care and

medication. He supervised numerous funded
projects and has published more than 60

papers at various international and national

conferences and journals. He is currently
Senior Assistant Professor, Department of

Electrical and Computer Engineering,

International Islamic University Malaysia. Malaya, Kuala Lumpur.

Othman O. Khalifa received his Bachelor‟s

degree in Electronic Engineering from the
Garyounis University, Libya in 1986. He

obtained his Master degree in Electronics

Science Engineering and PhD in Digital
Image Processing from Newcastle

University, UK in 1996 and 2000

respectively. He worked in industrial for
eight years and he is currently an Associate

Professor and Head of the department of

Electrical and Computer Engineering,
International Islamic University Malaysia.

His area of research interest is Communication Systems, Information

theory and Coding, Digital image / video processing, coding and
Compression, Wavelets, Fractal and Pattern Recognition. He published

more than 130 papers in international journals and Conferences. He is

SIEEE member, IEEE computer, Image processing and Communication

Society member.

