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The increased availability of (near) real-time observations in urban sewer systems provides the 

potential for control of actuators, such as gates, in response to current system states. Predictive 

models can be applied to inform such control, however the predicted states of such models can 

diverge from the true states of the system, leading to local bias in the model predictions because 

of errors in the model, and in the input drivers (e.g. rainfall) Data Assimilation (DA) methods 

can incorporate (near) real-time observations to improve real-time model performance; however 

the success of their application is complicated by the presence of the very control structures that 

such models may be used to optimize. Although DA methods may be used to improve the states 

of the system that are further used to improve other model predictions (downstream) in general, 

such model predictions can still contain bias, even after correction. This paper investigates the 

application of a Data Assimilation technique - the Extended Kalman Filter (EKF) - to assimilate 

observations into a conceptual urban rainfall runoff model of a real-life system that contains 

control structures. The EKF state correction is extended with an additional stage whereby a bias 

correction extension is added to detect and reduce local model bias at the downstream flow 

prediction. The proposed method is tested and verified using an urban rain-runoff model for a 

town in Northern Europe. In comparison to model application without data assimilation, the 

EKF led to improved estimates of the model states using the observations from the observed 

location (retention basin), and therefore better estimation of the downstream water flow that is 

used to control gate operation. The additional local bias correction method led to further 

improvements in predictive performance, and in some cases the bias reduction provided better 

results when applied singly, without data assimilation. 

 

INTRODUCTION 

 

Near real-time observations in urban sewer systems, such as observations of water level and 

pipe flow rate, provide data that may be used to inform the control of actuators such as gates in 

response to current system states. Moreover, identifying a near optimal control strategy can be 

facilitated by the application of a numerical model of the system, when coupled with an 

optimization algorithm [2,15]. Such operation may help to militate against the impacts of 

surface flooding and Combined Sewerage Overflow (CSO) [18]. Although models have shown 



some potential in facilitating the identification of real-time control strategies, a number of 

sources of uncertainty affect the performance of urban rainfall-runoff models, including 

uncertainties in model structure, input rainfall, and uncertainties in model parameters [5, 13]. 

The combined effect of these uncertainties is to reduce the accuracy of model predictions, 

which undermines the ability of numerical models to support real-time system control in a 

robust manner. A number of techniques may be applied to reduce uncertainties in off-line 

calibration [9, 6], notably in model parameter values. However, such off-line techniques cannot 

reduce the effect of uncertainties on real-time modelling, which lead to divergence between 

what the model predicts, and the true system states. Data Assimilation (DA) refers to a range of 

techniques which combine model predictions with real-time observations to update the states of 

the model and derive an estimate of the current system states [10]. Such techniques include 

ensemble approaches, including the Ensemble Kalman Filter and Particle Filter [12, 8]. 

Deterministic Data Assimilation methods include MIKE UPDATE [11], which adjusts water 

levels in the sewer system using local observations, and a method developed by Borup et al [1], 

which applied downstream measurements to update the states of the slow changing flow 

components upstream in the model.  

A key issue when applying DA techniques is the method by which observational 

information is mapped to state space to update the states of the model. In runoff systems, as 

long as the potential time-lag in the system is accounted for between upstream states and 

downstream observations [9], the covariance may provide an adequate mapping. However, 

sewer systems contain control structures, which when activated may act to de-couple upstream 

from downstream states. The result is that the ‘information’ that propagates from upstream to 

the observation location that may be used to correct the state of the system is lost, hindering the 

potential application of DA methods to the very systems that improved models for real-time 

system control can be applied. This issue was previously investigated for a synthetic case study 

[2], which demonstrated that storage tanks, by de-coupling upstream and downstream states in 

the system, can hinder the application of DA at certain points of a simulation. This paper 

extends this work through the application of the Extended Kalman Filter (EKF) to assimilate 

observations in a real-life urban rainfall-runoff system. 

Beside random errors that the traditional data assimilation and real time calibration 

methods effectively handles, a non-zero mean prediction error, also known as bias is often 

present in prediction results. Although it is well known that bias in model predictions 

significantly contributes to model inaccuracy, the problem of properly handling it has received 

little attention so far. Nevertheless, several error reduction methods that are related to the 

problem of existing bias in the model predictions, have been developed and applied to some 

water related problems. In [11] the authors applied a simplified DA methodology for river flow 

prediction and coupled this to a simple error correction procedure, which took the form of a 

linear or trigonometric error model. The error model significantly improved the results of the 

predictions by reducing the local bias introduced by the tidal wave. In [17] a DA procedure was 

applied not on the state-space model of hydrologic process, but on its linear error prediction 

model. That way the errors were reduced instead the discrepancy of the predicted and real states 

of the system. In Vojinovic et al. [19] the authors applied radial based ANN to model the bias of 

the sewage flow model and obtained promising results, while in [4] authors compared several 

bias models (constant, input dependent and output dependent) combined with some data 

transformation methods, and gave some recommendations how to handle bias in hydrologic 

models.  



Guided by the success of the previous research in this field we introduced the extension to 

the existing data assimilation procedure in the form of local bias correction utilising a 

exponential error model.  

 

METHODOLOGY 

 

The prediction methodology is divided in two steps: first, data assimilation using EKF, and 

second error correction of the most recent data. The basic Kalman Filter provides an optimal 

system estimate in linear systems with Gaussian errors. The EKF is an extension of the KF that 

may be better applied to nonlinear systems, and may be considered as a predictor-corrector 

scheme. A single model, or estimate of the states of the system x  is propagated forwards in 

time alongside the state error covariance matrix P . Once the observations are obtained, both 

the state vector and error covariance matrix are updated using the Kalman gain, which updates 

the model states considering the relative error between the model states and the observations 

(for further details see [16]).  

In the second step, bias correction is performed by correcting the predicted value using an 

exponential term with two parameters -  y - linear transformation parameter,  - stretch 

parameter: 
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The number n  is determined to be the number of the last predicted values with bias of the same 

sign, and  i  determines the time index in the sets of last n  predicted and observed values. 

 

CASE STUDY 

 

In order to apply and test the developed methodology based on DA and bias/error correction, a 

coupled conceptual-physical model of an urban rainfall-runoff system for a city in Northern 

European was developed. The model consists of a conceptual hydrological representation of the 

processes in the upper catchments, coupled with a physical hydraulic representation of the main 

trunk sewer and control structures.  

A conceptual diagram of the system analysed is depicted in Figure 1. The catchment STB, 

which is the most upstream from the rest of the system, consists of four sub-catchments and  a 

storage tank/basin (TB on Figure 1), to which flow is diverted via a number of weirs during 

high flows. The control structures, gates and pumps are used for water control in the system, 

and while the gates are used to divert water to the retention basins during the extreme rain 

events, the pumps are used to empty them during low flows. 



The system is controlled to minimize flow to the catchment outlet, and subsequently to a 

waste-water treatment plant, and also to minimize the risk of CSO discharge, via the tanks. The 

hydraulic system of the sewage is loaded from four sub-catchments with different areas and 

different percentage of pervious and impervious covers.  

The sub-catchments in the system (S1, S2, S4 and S5) are modelled using a conceptual linear 

reservoir approach, while the flow through the sewer system including the overflow over the 

weirs and flow under the gates is modelled using physical hydraulic equations, and a 

Muskingum approach [3] applied for flow routing within the main sewer between STB and the 

next sub-catchment downstream.  

The sub-catchments are 

modelled with two linear 

reservoirs in parallel; the first 

is used for modelling overland 

flow and the latter for 

modelling flow in the sewage 

system in the sub-catchments. 

The runoff is considered only 

from impervious areas with the 

specified loss function that was 

used to model the evaporation 

and other losses of the runoff 

water. Since the main purpose 

of the model is to provide 

predictions during rain events, 

especially when the controls 

and retention structures are 

operational (e.g. larger flows), 

base flow is  modelled as 

constant flow through the 

whole simulation, equal to the 

mean diurnal flow calculated 

from historical data.  

The weirs in the system 

are divided into two groups, static weirs and weirs with gates. Static weirs are modelled to 

overflow when the water level in the pipe reaches their crest. The weirs with gates are modelled 

with the orifice equation combined with the weir equation(s) accompanied with the water 

balance equation, solved using Newton-Raphson method. 

Water levels in TB retention basin and the flows in the most downstream pipe (P8) are 

observed (crosses on Figure 1). The process of DA was performed in two ways: 1) the levels in 

the retention basin are used and 2) the flows in pipe P8 are used as observed values to update 

the states in linear reservoirs of sub-catchments. The historical observed values from those 

locations were also used for model calibration. Other data, than those used for calibration were 

used in the DA process.  
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Figure 1. Case study sewage system with observation 

locations indicated as crosses 



RESULTS AND DISCUSSION 

 

The EKF is applied to assimilate observations of retention basin water level to update the states 

of the four linear reservoirs representing the upstream sub-catchments in the system for a real 

rainfall runoff event with sufficient size to trigger activation of TB retention tank. The tank 

level start rising (Figure 2) when the water level  exceeds the static weir levels and continues to 

rise as gates G1 and G2 (Figure 1) close. G1 and G2 re-open and close again during the 

simulation, which explains the plateaus observed at 17:00. Gates G1 and G2 finally re-open 

around 21:30 when the pumps are also started to empty the tanks. It may be noticed that for the 

most of the simulation time, without DA, the model consistently either over-predicts or under-

predicts the water level in the tank thus demonstrating the local (conditional) prediction bias. 

Applying the model with EKF, which is applied to update the upstream linear reservoirs in the 

system, reduces the model water level prediction error in the tank. Additional local bias 

correction, which incorporates information on recent prediction bias, leads to further 

improvements in predictive performance.  

 

Figure 2. Water level in retention basin TB 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Flows in pipe P8 

 

Figure 3 shows the results of the model simulated flows with and without DA at the most 

downstream pipe (P8 on Figure 1). The model sometimes underestimates and sometimes 

overestimates the flows at the downstream end of the model reach. The application of the EKF 

to assimilate observations into the model reduces the effect of this over/under-prediction to a 

certain point. The principal effect of the assimilation, to reduce the error in peak runoff 

magnitude, is partly met due to the limited amount of water removed from the TB retention 



basin. The over-prediction at certain time steps seems to result from errors in the input rainfall, 

which are derived from rainfall radar. Much of the downstream runoff signal will be reflected in 

the input rainfall. However, there appear to be peaks in the rainfall that result in simulated 

discharge peaks that do not occur in the observations at the downstream end of the reach. This 

could also result from the smoothing and attenuating effect of the storage tanks. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Errors of predicted levels in the TB retention basin 

 

Figure 5. Errors of predicted flows in pipe P8 

 

When the bias correction method is applied, the predictions improved significantly. 

Comparing the predictions with bias correction only and both data assimilation and bias 

correction without data assimilation it can be seen that in both cases the predictions were 

improved. Additionally  for some data values, the prediction got worst that in the case when the 

bias correction was applied singly. These points were mostly when the data assimilation 

increased the discrepancy between the predicted and the observed data. 

Figure 4 shows the errors of the level prediction in the TB retention basin. It may be 

noticed that the high error rates during filling of the basin were reduced only using the EKF 

data assimilation procedure that may lead to poor estimation of potential CSOs.  Nevertheless, 

overestimating the CSOs may lead to more precautious operation by the system, but more 

accurate estimations are desired since most of the system performance may be used when the 

downstream volumes are exploited to the full capacity. 

Figure 5 presents errors in the prediction of pipe P8 flows. As it can be seen from Figure 5, 

the bias/error correction procedure reduces these errors to a large extent. 

 

 

 

 



Table 1. Nash–Sutcliffe and RMS statistics  

Table 1 presents the model prediction statistics in the form of Nash Sutcliffe [14] 

coefficient and Root Mean Square error coefficient. In case of the flow in pipe P8, application 

of the EKF and bias correction method are compared when the flow in P8 is used in the DA 

procedure, and in the case of water level in TB, the corresponding levels in TB are used in the 

EKF procedure. 

It may be seen that the NS value approaches one  when both DA and error correction are 

used and that the RMS values are also reduced significantly. It may be noticed that in the case 

of the level in TB basin, the EKF applied before error correction didn’t significantly changed 

the improvement of the prediction but although it introduced significant improvement applied 

by singly.  

 

CONCLUSION 

 

This paper has demonstrated that the application of DA techniques, specifically the EKF, 

can lead to improved runoff predictions when applied to assimilate observations into a 

conceptual rainfall-runoff model of a real urban rainfall-runoff system. More specifically, it was 

shown that, assimilating one observation variable for sub-catchment state updates the affects of 

other model states, leading to more robust model predictions. Even further improvement of 

model predictions are accomplished with bias reduction method applied with or without DA. 

When the input data are available in advance, only one simulation model run is required to get 

reasonably acceptable results as shown by the examples in this paper. The main drawback of 

presented bias/error reduction method is the fact the model modification is purely geometrical 

and that it doesn’t transfer any information about the modelling process to the result. This 

method showed promising results even with the abruptly changeable flows what is the case in 

the controlled sewer system. Also, one of the main advantages of the algorithm is its ability to 

be applied in real-time due its fast performance.  
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