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Macroalgae (mainly marine macroalgae, i.e. seaweeds) are considered 
as a very promising source for bioethanol production, because they have 
high carbohydrate contents, superior productivity, and wide adaptability. 
Macroalgae are generally grouped into three major categories: red, 
green, and brown algae. Each category has thousands of species, and 
each species possesses its unique cellular structure, biochemistry, and 
constitutes. Converting macroalgae to bioethanol involves pretreatment, 
saccharification, fermentation, and distillation; and the establishment of 
economic pretreatment methods is always the first key step for 
bioethanol production. In present, dilute-acid or alkali hydrolysis is 
typically used to treat macroalgal biomass. Macroalgae can be 
depolymerized under mild conditions as they have low lignin content. 
The resulting polysaccharides can be converted to ethanol through 
enzymatic hydrolysis, followed by adding bacteria, such as 
Saccharomyces cerevisiae and recombinant Escherichia coli KO11. 
Compared with the separate hydrolysis and fermentation process, the 
simultaneous saccharification and fermentation process often provided 
higher ethanol titer and conversion efficiency. However, the research on 
bioethanol production from macroalgae is still in its early stage due to 
both technical and economic barriers, significant amount of research and 
development work is needed prior to the commercialization of bioethanol 
manufacture from macroalgae. 
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1. Introduction  
  

Bioethanol is a clean, safe, and bio-based energy, which is commonly regarded as one 

of the primary candidates to replace a fraction of liquid fossil fuels [1]. The importance of 

using bioethanol as a vehicle fuel is increasing domestic energy production, decreasing 

greenhouse gas emissions, and preventing environmental pollutions [2]. The global 

bioethanol production rose rapidly in recent years. Table 1 shows the production of 

bioethanol in different countries from year 2004 to 2014. The first generation bioethanol 

is mainly produced from sugars and starch-rich materials. The United States and Brazil 

are leaders in bioethanol production, making bioethanol from corn and sugarcane, 

respectively. In Europe and China, mainly cereals and sugars are used as the feedstock. 

As the development of fuels from biomass continues apace, the consumption of edible 

crops and sugars has raised food security, morality, and ethics issues [3].  
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Table 1 Bioethanol production in different countries from 2004 to 2014 (million 
liters) (modified from [3]) 
Country Major 

feedstock 

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 

Argentina sugarcane 174 157 205 225 315 416 442 455 469 483 498 

Australia sugarcane - 27 63 100 156 238 384 387 389 392 395 

Brazil sugarcane 15,208 15,807 17,932 22,446 27,674 25,804 28,960 31,392 34,299 37,396 40,625 

Canada cereal 396 406 545 839 1083 1131 1573 1703 1714 1730 1721 

China cereal/sugarcane/ 

cassava 

3673 3438 3509 3679 3964 4109 4368 4649 4824 4962 5121 

EU-27 cereal/sugar beet 2576 2940 3701 3887 5021 5762 6465 7539 9155 10,79 11,774 

India sugarcane/wheat 1178 1120 1664 2082 2085 1680 1704 2430 2482 2532 2575 

Indonesia cassava 163 177 176 196 208 240 425 441 462 485 510 

Japan cereal - 113 113 110 110 100 130 130 130 130 130 

United 

State 

corn 12,596 15,332 20,171 28,929 35,191 40,544 46,024 49,114 51,322 54,058 57,200 

 

In order to overcome these issues, the second generation bioethanol, refined from 

lignocellulosic biomass, is developed to meet economic growth and morality 

requirements [4, 5]. However, the cultivation of terrestrial plants requires the resources 

that could be used for food production. In addition, due to the structural complexity of 

lignocellulosic biomass, the current conversion technologies including pretreatment, 

saccharification, fermentation, and separation of final products are relatively costly and 

low-yield [6]. Among all technical barriers, the delignification is often considered as the 

major obstacle, which must be combated before the commercialization of lignocellulosic 

bioethanol can become reality [7].  

Recently, algae are viewed as the source of third-generation biofuels [8]. Generally, 

algae are grouped into microalgae and macroalgae, based on their morphology and size. 

This paper reviews the development of bioethanol production from marine macroalgae, 

since the production of freshwater macroalgae is not significant [9]. The words of 

macroalgae, marine macroalgae, and seaweed are used interchangeably within the context 

of this article. The major advantages offered by marine macroalgae over terrestrial plants 

are: (1) no competing with conventional agricultural plants for land, and utilization of 

different water sources (seawater, brackish water, and wastewater), (2) high area 

productivity, (3) non-dependence on agricultural input (fertilizer, pesticides, etc.), (4) 

being hydrolyzed easily into glucose as they contain lower lignin content in the cell wall 

[10, 11], and (5) easier harvesting as their plant-like characteristics [12]. All of those 

features enable macroalgae to become a very promising biofuel feedstock for the future.  

 

 
2. Macroalgae Availability and Chemical Composition 
 

Macroalgae, namely seaweeds, are conventionally classified into three major groups 

based on their photosynthetic pigments: red algae (Rhodophyta), green algae 

(Chlorophyta), and brown algae (Phaeophyta) [13]. The green algae can grow in all types 

of water environments. While red algae grow mainly in intertropical zones, and brown 

algae especially grow in tempered to cold or very cold waters [14]. Macroalgae can be 

mass-cultivated based on current farming technologies. Up-to-date, brown and red 

macroalgae are cultivated more than green species. The production of brown algae alone 

reached 15.8 million wet tons in 2010, which were harvested from both wild habitats and 

coastal farms [15]. At present macroalgae are grown for food production, fertilizers, and 

hydrocolloid extraction in Asia (mainly in China, Korea, Philippines, and Japan) 
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accounting for about 72% of global annual production [16]. The macroalgae productivity 

ranged from 150 to 600 t/hay fresh weight [14], and the total worldwide production 

attains 19 million tonnes dry matter in 2014 [17]. The amount of the mass-cultivated 

macroalgae is six orders of magnitude greater than that of lignocellulosic biomass [18]. 

That implies that macroalgae could supply sufficient feedstocks for bioethanol production. 

Macroalgae are significantly different from terrestrial plants in terms of their 

chemical compositions. Macroalgae have agar, carrageenan, laminarin, mannitoal, 

mannan, ulvan, fucoidin, and alginate, which are not available in lignocellulosic biomass 

[13, 18]. A summary of macroalgal divisions, compositions of their cell walls, and most 

significant characteristics is given in Table 2.  

 

Table 2 Three macroalgae divisions and significant characteristics (modified from 
[19]) 

 Red algae Green algae Brown algae 

Species 6000 4500 2000 

Pigments Chlorophyll a (d in some 

Florideophyceae);  

R- and C-phycocyanin; 

R- and B-phycoerythrin; 

allophycocyanin; 

- and -carotene and 

several xanthophylls 

Chlorophyll a, b; -, - and 

γ-carotenes and several 

xanthophylls 

Chlorophyll a,c; -carotene 

and fucoxanthin and several 

other xanthophylls 

Storage product Floridean starch 

(amylopectin-like) 

 

Starch  

(amylose and amylopectin) 

Laminaran  

(-1,3-glucopyranoside);  

Mannitol 

Cell wall Cellulose, xylans, several 

sulfated polysaccharides 

(galactans), alginate in 

corallinaceae 

Cellulose  (-1,4-

glucopyroside), 

Hydroxyproline glucosides; 

xylans and mannans 

Cellulose, alginic acid, and 

sulfated mucopolysaccharides 

(fucoidan) 

Representative Gracilaria spp. Ulva fasciata Laminaria spp. 

Carbohydrate (%wt) 76.7 43 60 

Protein (%wt) 16.0 14.4 12 

Lipid (%wt) 1.2 1.8 2 

Ash (%wt) 6.1 16 26 

Source [20] [10] [21] 

 

The pigment in red macroalgae is R-phycoerythrin, and their cell walls contain a 

small quantity of cellulose. Because the great majority of their components is gelatinous 

or amorphous sulfated galactan polymers, such as carageenan (up to 75% dry wt.), agar 

(up to 52%), and funoran, red macroalgae are also called as carrageenophytes and 

agarophytes [22]. Another distinctive feature for red algae is accumulating floridean 

starch and floridoside, which are similar to starch. But green and brown algae do not have 

these carbohydrates [23, 24]. 

The major photosynthetic product of green macroalgae is starch, and the cell walls of 

their outer and inner layers are predominantly cellulose and pectin, respectively. Ulva spp. 

and Enteromorpha spp. have 38-52% (dry wt.) of water-soluble ulvan and insoluble 

cellulose in the cell walls. Ulvan, the unique carbohydrates of green algae, is composed 

mainly of D-xylose, D-glucuronic acid, L-rhamnose, and sulfate [18].  

Brown macroalgal cell walls are composed of cellulose, alginic acid, and other 

polysaccharides [19]. The accumulation product of this group are the carbohydrates of 

laminarin and mannitol [20]. Laminarin (i.e., β-1,3-glucans) is a unique polysaccharide 

present in brown seaweeds [21]. Alginate accounts for up to 40% dry wt. as a principal 

material of the cell wall [14], and is composed of three different uronic acids: guluronic 
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acid blocks, mannuronic acid blocks, and alternative blocks of mannuronic and guluronic 

units.  

Macroalgae biomass is easier to be converted into simple sugars than land-plant 

biomass due to lack of lignin. Besides cellulose and hemicellulose, many algal species 

accumulate high content of starch as their food material. Carbohydrate contents of 

macroalgae vary widely by species and cultivar, representing 30-70%, 25-40%, and 30-

50% of dry wt. for red, green, and brown algae, respectively [4, 18, 25]. Macroalgae 

species with high carbohydrate contents include: Sargassum, Gracilaria, Euglena 

gracilis, Prymnesium parvum, Gelidium amansii [26], and Laminaria [27]. Further 

species selection is still needed to develop strains with higher carbohydrate contents for 

use as the promising candidates for bioethanol production.  

 

 

3. Bioethanol Conversion Processes from Macroalgae 
 

In general, the steps for bioethanol production from biomass include pretreatment, 

enzymatic hydrolysis, fermentation, and distillation. Almost all kinds of macroalgae can 

be converted to bioethanol by decomposing their polysaccharides into simple sugars, 

followed by fermentation with suitable bacteria. However, the development of 

macroalgal conversion technology is still at an early stage, and the researches were 

conducted mainly on lab-scale.  

Figure 1 shows the flow diagram of bioethanol conversion processes from 

macroalgae. Unlike the terrestrial biomass, macroalgae contain contaminants from the 

growth environment and unique chemicals, thus there are some differences in the 

bioethanol technological processes from other feedstock. The fresh algal biomass 

collected from the cultivation site need to be processed prior to bioethanol conversion 

steps [28]. The biomass can be washed with tap water to remove adhering salt, sand, 

epiphytes, and then sun-dried. Dry seaweed is more easily transported and stored. The 

granular dried seaweeds can be cooked with hot water and alkali or acid to extract the 

polysaccharides, or be directly extracted by using supercritical fluids. The extract may be 

purified and separated through filtration or centrifugation. Since macroalgae have various 

carbohydrates such as starch, cellulose, carrageenan, laminarin, mannitol, and agar, the 

saccharification of them is different from that of lignocellulosic biomass [13]. The 

hydrolysis of macroalgae commonly conducted by using dilute sulfuric acid and enzymes. 

And then bacteria, such as Saccharomyces cerevisiae (NCIM 3455 and ATCC 24858) 

and recombinant Escherichia coli KO11 (ATCC 55124), were added to the algae 

hydrolysates for ethanol fermentation. There are two methods for fermentation: one is the 

separate hydrolysis and fermentation process (SHF), and the other is the simultaneous 

saccharification and fermentation process (SSF). Bioethanol distillation in the lab is often 

carried out by using vacuum evaporation or small-scale distillation columns.  
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Figure 1. Block flow diagram of bioethanol conversion processes for macroalgae 
 

 

4. Overview of Pretreatment Technologies for Macroalgae 
 

The establishment of economic pretreatment methods is always the first key step for 

bioethanol production. The carbohydrate compositions of marine macroalgae highly 

depend on their species, which largely differ from those of terrestrial plants, so new 

efficient pretreatment methods are required to make the sugar monomers available for 

fermentation. Nowadays, although some physical, chemical, and biological pretreatments 

of macroalgae have been studied to increase the saccharification efficiency, those 

research activities looking for economically efficient technological solutions are in the 

early phase.  

Different examples of bioethanol production and pretreatment technologies for 

macroalgae have been described in Table 3. Dilute-acid and alkali hydrolysis are typical 

physicochemical methods to treat raw macroalgal biomass [29, 30]. 
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Table 3 Comparison of bioethanol yield from various seaweed feedstocks 
(Modified from [11]).  
Algae feedstock Pretreatment Sugar released 

 (g/g biomass)  

Ethanol yield 

(g/g sugar) 

Ethanol 

(g/L) 

Reference 

E. cottonii Residue after agar  

extraction 

Solid acid + enzyme 0.814 - 14.1 [31] 

Kappaphycus alverzii Whole thallus Acid - 0.369 6.8 [32] 

Kappaphycus alverzii Whole biomass plus  

carrageenan granule 

Acid 0.306 0.39 20.6 [30] 

Gelidium amansii Whole thallus Acid+ enzyme 0.566 - - [23] 

Gelidium amansii Whole thallus Dilute acid 0.422 0.38 27.6 [33] 

Gelidium amansii Whole thallus autoclave+ enzyme 0.227 - 25.7 [34] 

Gracilaria Salicornia Two stage hydrolysis of 

fresh biomass 

Acid+ enzyme 0.166 0.079 - [35] 

Gracilaria spp. Whole thallus Sequential acid + 

Enzyme 

0.592 0.48 4.93 [20] 

Gracilaria verrucosa Pulp after agar extraction Enzyme 0.87 g/g 

cellulose 

0.43 - [11] 

Laminaria japonica Whole thallus Acid+ enzyme 0.376 0.41 23–29 [23] 

Sargassum 

sagamianum 

Whole thallus Thermal liquefaction - 0.386 1-2 [36] 

Sargassum fulvellum Whole thallus Acid+ enzyme 0.096 - - [23] 

Saccharina japonica Whole thallus Enzyme 0.614 0.41 37.8 [37] 

Saccharina japonica Whole thallus Thermal acid 0.456 0.169 7.7 [38] 

Ulva lactuca Whole thallus Acid+ enzyme 0.194 - - [23] 

Ulva fasciata Whole thallus Hot buffer+ enzyme 0.205 0.45 - [10] 

Ulva fasciata Whole thallus Enzymatic 0.112 0.47 - [39] 

Zostera marina Supercritical CO2 

extraction residue 

Sulfuric acid + 

Enzyme 

0.582 - 6.55 [40] 

 
 

5 Ethanol Production from Marine Macroalgae 
 

5.1 Red Macroalgae 
Gelidium amansii, one of the most abundantly available red seaweed species, are 

known for high carbohydrate content. G. amansii predominantly consists of fibrin 

(cellulose) and agar (galactan) whose basic monomers are glucose and galactose, 

respectively [41]. The main products from dilute-acid hydrolysis of G. amansii are D-

galactose, 3,6-anhydro-L-galactose (3,6-AHG), and D-glucose [42]. The galactose and 

glucose are classified as fermentable simple sugars, and the 3,6-AHG is non-fermentable. 

Since the physical morphology of agar is softer than that of cellulose, the hydrolyzed 

products of galactose and 3,6-AHG are released firstly under mild hydrolysis conditions. 

However, the 3,6-AHG, is also known as so acid-labile that it is very apt to be 

decomposed into 5-(Hydroxymethyl)furfural and, subsequently, into organic acids such 

as formic acid and levulinic acid, which act as inhibitors in the fermentation process [43].  

It is well known that the fermentable sugar yields and the amount of inhibitors 

primarily depends on the three major factors: acid concentration, reaction temperature, 

and reaction time (or residence time for continuous process)[44]. A facile continuous 

method for dilute-acid hydrolysis of Gelidium amansii was developed to compare with 

the batch operation. The continuous acid pretreatment was done at a flow rate of 40 L/h, 

15% (w/w) seaweed slurry containing 2% (w/w) of sulfuric acid at 150°C, and auto-

generated pressure range of 3.0-3.5 bar. The product mixtures were continuously 

collected and the unreacted solid residual fibers were subsequently separated, followed 

by neutralization of hydrolysates by adding limestone (CaCO3). The hydrolysate of G. 

amansii was then fermented by Brettanomyces custersii KCTC 18154P. Results showed 

the hydrolysate obtained from the continuous process attained a high sugar concentration 

with low quantity of inhibitors, thereby leading to the higher ethanol yield (the final 
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ethanol titer of 27.6 g/L after 39 h), than that of the batch reactor (11.8 g/L after 56 h) 

[33].  

In order to produce a high quality hydrolysate with minimal inhibitors, sequential 

acid and enzyme hydrolysis of Gracilaria spp. was studied. The dilute-sulfuric acid 

hydrolysis process was carried out by using 2% (w/v) of dried Gracilaria spp., and 

optimized at 121℃ via varying acid concentrations (0.025-0.25 mol/L) and residence 

time (up to 60 min). The hydrolysates were adjusted to various pHs (pH 2–8) at the end 

of the acid treatment. After pH adjustment, the enzymatic hydrolysis was performed with 

various amounts of cellulase (0.01- 8% w/v) at 50°C for 6 h. The Gracilaria hydrolysate 

was fermented in batch and repeated batch modes by using immobilized S. cerevisiae 

Wu-2 cells. The process maximally released 11.85 g/L of glucose and galactose, yielding 

4.72 g/L of ethanol at the rate of 0.48 g/g sugar-consumed with a 94% conversion 

efficiency [20].  

For converting red macroalga Gelidium amansii (GA), GA was autoclaved at 121°C 

for 60 min to reduce the galactan content. After the autoclave treatment, 177 g glucose 

and 50 g galactose were produced from 1 kg GA. Enzymatic hydrolysis was conducted 

with a cocktail of cellulase (Celluclast ® 1.5 L) and β-glucosidase (Novozyme 188). SHF 

(2% substrate loading, w/v) produced a maximum ethanol concentration of 3.33 g/L and 

an ethanol conversion yield of 74.7% after 6 h. In contrast, SSF achieved an ethanol 

concentration of 3.78 g/L and an ethanol conversion yield of 84.9% after 12 h. With an 

increased biomass concentration, the ethanol concentration of 25.7 g/L was attained from 

15% (w/v) treated biomass after 24 h SSF processing [34]. The results indicated that 

autoclaving can increase the sugar yields and ethanol conversion yield of GA, and also 

showed that SSF is superior to SHF for ethanol production. 

Carrageenan is the major polysaccharide constituent of red algae, which consists of 

repeating of (1-3)-D-galactose and (1-4)-3,6-anhydro-D-galactose [41]. Purified 

carrageenan is generally used for forming thick solution or gel [22]. During 

manufacturing carrageenan, seaweeds were treated with alkali solution (1-10% NaOH or 

KOH) at 80°C for 0.5-5h, resulting in 60-70% solid residues (SWBC) with high 

carbohydrates content. One study used this stream of seaweed wastes as the bioethanol 

feedstock [45]. Researchers treated seaweed wastes with peracetic acid (PAA) followed 

by different types of ionic liquids (ILs): 1-ethyl-3-methylimidazole acetate 

([Emim][OAc]), 1-hexylpyridinium chloride ([Hpy][Cl]), and 1-ethyl-3-

methylimidazolium diethylphosphate ([Emim][DEP]). For a 48-hour saccharification, the 

cellulose conversions of untreated and pretreated seaweed wastes with PAA followed by 

[Emim][OAc], [Hpy][Cl], and [Emim][DEP] were 77, 62, 91, and 84%, respectively. The 

untreated SWBC had a high cellulose conversion, which may be caused by the alkali 

pretreatment or low lignin and hemicellulose contents of this seaweed. Meanwhile, PAA-

IL pretreatments did produce more amorphous cellulose structures, which are beneficial 

to cellulose conversion [46].  

 

5.2 Green Macroalgae 
The most common green macroalga, Ulva prolifera (UP), contains about 62% 

carbohydrates, 27% protein, 0.3% lipid, and 11% ash of dry matter [47]. However, the 

carbohydrates of U. prolifera are chiefly in the form of complex hydrocolloid ulvan, 

which shows very high viscosity by undergoing a random coil to double helix transition 

while cooling [48]. The high viscosity of ulvan is one reason that hindered the high 

production of bioethanol from this species. The depolymerase produced by Catenovulum 
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spp. LP, showed high efficiency and high specificity to UP for monomer sugar 

production. During the enzymatic hydrolysis, the viscosity of 1.2% UP solution 

obviously declined from initially 1127 to 7.2 mPas within 95 min. Reducing sugar yield 

attained 50.2% in 6 h at the optimal conditions of pH 6.0 and 35°C [49]. Compared to the 

commercial enzymes, this depolymerase might bring promising prospects for bioethanol 

production from U. prolifera biomass.  

Chaetomorpha linum, one of green macroalgae species, has rigid epidermal cell 

walls consisting of highly crystalline cellulose [35]. The cellulose content (35-40%) of C. 

linum is higher than that of other algae, and similar to that of land-based biomass. For 

breaking down the cellulosic structure of C. linum, following five pretreatment methods 

have been employed: steam explosion (STEX), hydrothermal pretreatment (HTT), 

plasma-assisted pretreatment (PAP), wet oxidation (WO), and ball milling (BM) [50]. 

HTT and WO were performed with 4% C. linum at 200°C; C. linum (35%) was treated 

by STEX at 200-210°C for 5 min; the PAP treatment was performed with raw material 

(50%) for 20-60 min with 1% ozone gas flow rate of 0.01 L/s; and the BM experiment 

was carried out for 18 h at 180 rpm. WO, HTT, PAP, BM, and STEX resulted in glucan 

concentrations of 74, 60, 46, 38, 36 g/100 g dry matter, respectively. Using a SSF process 

with the commercial cellulase enzymes (Celluclast 1.5 L and Novozyme 188) and S. 

cerevisiae ATCC 96581 for ethanol fermentation, WO and BM showed the highest 

ethanol yield of 77.2% of the theoretical ethanol yield. However during WO, about 50% 

of the biomass (especially C5 sugars) was lost. The results suggested that physical 

pretreatment method like BM is already effective enough to break down the cellulosic 

structure of C. linum. 

 

5.3 Brown Macroalgae 
Conversion of Sargassum spp., a brown seaweed species, was conducted by using 

dilute acid hydrolysis and SHF [51]. In terms of glucose and other reducing sugar yields, 

the optimal pretreatment condition was found to be (3.4-4.6%w/v H2SO4, 115°C and 1.50 

h). The residue after pretreatment was hydrolyzed with cellulase (Trichoderma reeseii 

ATCC 26921) and β-glucosidase, and then fermented by S. cerevisiae for 48 h. The 

ethanol conversion rate achieved 89%, which was obviously higher than the theoretical 

yield of 51% based on glucose as substrate. Since all glucose was consumed during 

fermentation, other sugar sources might be present in the hydrolysate. 

Zostera marina is a source of natural antioxidants in the food and pharmaceutical 

industries. After washing, drying, grinding, and sieving, antioxidants (phenolic 

compounds) were extracted by using supercritical CO2 from this brown alga. The 

contents of lignin, hemicellulose, and -cellulose in the residues were 22.4%, 16.89%, 

and 27.39%, respectively. Because supercritical fluid extraction already loosen the lignin 

structure [40], the raffinate phase would either be directly used for SSF or hydrolyzed by 

enzyme/dilute acid. Under optimized conditions, a reducing sugar yield of 58.24 g/100 g 

dry-feed was reached by consecutive enzymatic and acid hydrolysis with a commercial 

cellulase (Cellic CTec2).  

 

 

6 Prospect on the Utilization of Macroalgae for Biofuels Production 
 

As an abundant and carbon-neutral renewable resource, macroalgae represent an 

unrealized feedstock that might expand existing bioethanol industries. Currently, 
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macroalgae are gaining more attention because of their plant-like characteristics, fast 

growth rate, superior productivity, lower energy inputs, and no land requirements. In 

terms of availability, the annual production of brown algae was 9.72 million tons (dry 

weight) in 2004, representing the largest seaweed source; and red algae produced 3.99 

million tons of dry biomass at the second place [52]. Another advantage of macroalgae is 

high content of carbohydrates (cellulose and hemicellulose) and the paucity of lignin 

resistant [53]. Although, the notion of macroalgae-based bioethanol production is 

environmentally better than the fossil fuels, but still suffer from low cost effectiveness 

and technological barriers [14]. The industrial-scale technologies for seaweed conversion 

still require significant basic research and development.  

  Since the price of a final product is directly related to the cost of feedstock, the 

price of seaweed is an important factor in the economics of a bioethanol process. The 

estimated macroalgal bioethanol production cost is ca. $0.50/kg (dw) ($0.16 from corn) 

[54]. Algae production cost is connected with the available technologies for cultivation, 

harvesting, and processing. Although macroalgae can be cultivated both naturally and 

artificially, approximately 90% of total feedstock were currently harvested from 

cultivated sources [21]. The production cost will decrease with the increase of 

macroalgae yield per unit area. To date, there are limited numbers of economic 

assessments on seaweed-based bioethanol technologies, as the research just started. 

Although it is impossible to make full-scale and periodically life cycle assessment right 

now, the processing technologies for bioethanol production from macroalgae should be 

estimated not only from the viewpoints of technical feasibility and economic efficiency, 

but also from the environmentally friendly point and the recycling of byproducts. 
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