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Statistical hybrid model is a statistical channel model suitable for the 
broadband over power lines (BPL) networks while it is based on the 
statistical processing of channel attenuation and capacity values of 
preassumed BPL topology classes. One of the key operation elements of 
the statistical hybrid model, which affects its results fidelity, is the 
selection of the appropriate channel attenuation statistical distribution 
among a set of well-known channel attenuation statistical distributions 
(i.e., such as Gaussian, Lognormal, Wald, Weibull and Gumbel 
distributions). The selection of the appropriate channel attenuation 
statistical distribution becomes a hard task since it depends on a number 
of factors such as the power grid type –either overhead (OV) or 
underground (UN) power grid–, the representative distribution BPL 
topology of the examined class, the applied electromagnetic interference 
(EMI) policies and the used coupling scheme type. The contribution of 
this paper is to identify the conditions whether the Empirical channel 
attenuation statistical distribution can act as the default distribution of 
statistical hybrid model (modified statistical hybrid model) thus replacing 
the required comparison analysis prior to the selection of the 
aforementioned distributions of the initial statistical hybrid model.  
The evaluation comparison is based on the already applied metrics of 
capacity percentage change and average absolute capacity percentage 
change. 
 
 

Keywords: Smart Grid; Broadband over Power Lines (BPL) networks; Power Line Communications 

(PLC); Distribution Power Grids; Capacity; Statistics; Modeling 

 

 
1. Introduction 
 

Living in the era of Internet of Things, we are witnessing an ever increasing 

number of devices with ubiquitous intelligence, which are interconnected via embedded 

systems and networks, that can communicate with humans and other devices changing 

our lives [1]. Under the auspices of the smart grid, further interoperability between 

electrical and electronic equipment can be delivered for the Internet of Things and, thus, 

new tremendous opportunities concerning the supported broadband applications of power 

utilities can be achieved [2]-[4]. Among the available communications solutions that have 
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been proposed and are used across the smart grid, Broadband over Power Lines (BPL) 

technology can play an important role, since it may support an electronic 

communications channel (i.e., BPL channel) upon the already installed wired power grid 

infrastructure without adding extra complexity and cost in contrast with other 

communications solutions of the smart grid [4]-[16]. 

 The initial statistical hybrid model that deals with the transmission and 

distribution BPL channel modeling through a statistical point of view has been 

demonstrated in [5], [6]. The core of the initial statistical hybrid model remains the 

deterministic well-validated hybrid model that has extensively been employed to examine 

the behavior of various multiconductor transmission line (MTL) configurations in 

transmission and distribution BPL networks [12]-[22]. Through the two interconnected 

submodules of the hybrid model, namely: (i) the bottom-up approach module; and  

(ii) the top-down approach module, the hybrid model acts as an internal phase of the 

statistical hybrid model flowchart that delivers as output crucial broadband performance 

metrics such as the channel attenuation and the capacity for given BPL topology,  

MTL configuration, coupling scheme, electromagnetic interference (EMI) policy and 

noise level. Actually, the initial statistical hybrid model consists of six phases where a set 

of indicative distribution BPL topologies act as the representative topologies of a set of 

respective distribution BPL topology classes. The statistical analysis of the distribution 

BPL topology classes offers the capacity range of each distribution BPL topology class 

for given power grid type, EMI policy, noise level, coupling scheme and channel 

attenuation statistical distribution. Actually, each distribution BPL topology class is filled 

with statistically equivalent BPL topologies, which are generated by appropriately 

deploying a random number generator, that are characterized by the same maximum 

likelihood estimators (MLEs) with the representative topology of the examined class for 

given power grid type, coupling scheme and channel attenuation statistical distribution. 

In [5], [6], a number of five well-known channel attenuation statistical distributions of the 

communications literature, say, Gaussian, Lognormal, Wald, Weibull and Gumbel 

distributions, have been benchmarked since they are involved in the MLE estimation and 

the operation of the random number generator. In accordance with [6], Weibull and Wald 

channel attenuation statistical distributions perform the best capacity estimations in  

OV MV and UN MV power grid types regardless of the examined BPL topology class 

and the applied coupling scheme when EMI policies committed to the broadband 

character of BPL technology are adopted (e.g., FCC Part 15 of [23]). When EMI policies 

less protective to the BPL technology are adopted (e.g., German Reg TP NB30 and the  

BBC / NATO Proposal of [13], [24], [25]), a more complex situation occurs in terms of 

the most suitable channel attenuation statistical distribution for the capacity estimations 

while the number of unsuccessful estimations significantly increases in all the cases 

examined. In this paper, it is investigated the potential of using only one channel 

attenuation statistical distribution, say, the Empirical channel attenuation statistical 

distribution, instead of trying to identify the best channel attenuation statistical 

distribution by taking into consideration each time the current operation settings.  

In accordance with [26], [27], the Empirical channel attenuation statistical distribution, 

which is the distribution function associated with the Empirical measure of coupling 

scheme channel attenuation differences, exploits the existing coupling scheme channel 

attenuation data of the examined distribution BPL topology class by computing their 

cumulative density function (CDF) for given coupling scheme while the adoption of the 

self-channel attenuation statistical distribution affects the flowchart of the statistical 
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hybrid model in the MLE computation module (Phase C of the statistical hybrid model) 

and the random number generator module (Phase D of the statistical hybrid model).  

In this paper, the initial hybrid statistical model performance after the adoption of the 

Empirical channel attenuation statistical distribution, which is hereafter denoted as 

modified statistical hybrid model, is compared against the best case of the scenarios 

presented in [6] that deal with the initial statistical hybrid model. The performance 

metrics are going to be used for the benchmark are the percentage capacity change and 

absolute percentage capacity change. 

The rest of this paper is organized as follows: In Section II, the OV MV and  

UN MV MTL configurations with the indicative BPL topology classes are presented. 

Section III summarizes the basics of the statistical hybrid model as well as the required 

flowchart changes for the adoption of the Empirical channel attenuation statistical 

distribution. In Section IV, a small briefing is given regarding the required operation 

settings of the initial and modified statistical hybrid model, say EMI policies, noise levels 

and applied coupling schemes. Section V compares the modified statistical hybrid model 

performance against the initial statistical hybrid model one for a number of different 

scenarios concerning the operation settings. 

 

 

2. OV MV and UN MV MTL Configurations and BPL Topologies 
 

 In this Section, OV MV and UN MV MTL configurations, which are used in this 

paper, are here presented while the topological characteristics of the indicative 

representative OV MV and UN MV BPL topologies of the respective BPL topology 

classes are also reported. 

 

2.1 OV MV and UN MV MTL Configurations 

 Typical cases of OV MV and UN MV distribution lines are depicted in Figs. 1(a) 

and 1(b) of [5], respectively. With reference to these figures, the examined OV MV 

distribution line consists of three parallel non-insulated phase conductors ( ) 

spaced by  and hang at typical heights  above lossy ground while the 

examined UN MV distribution line is the three-phase sector-type PILC distribution-class 

cable (8/10kV, 3×95mm2 Cu, PILC) surrounded by the shield and the armor conductor 

while the whole UN MV MTL configuration is buried to 1m depth in lossy ground.  

Due to the common UN grounding practices, the analysis in this UN MV MTL 

configuration is focused only on the inner conductor set of the three phases surrounded 

by the shield ( ). The exact dimensions of the OV MV and UN MV MTL 

configurations are given in [17] as well the applied grounding practices and the impact of 

the considered lossy ground on BPL signal propagation. 

 

2.2 Indicative OV MV and UN MV BPL Topologies of Respective Topology 
Classes 

 With reference to Fig. 2 of [5], BPL networks are divided into cascaded BPL 

topologies. Each BPL topology is bounded by the transmitting and receiving end 

repeaters while different number of branches , distribution cable lengths 

and branch lengths  are encountered across the  
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BPL signal transmission path. In accordance with [12]-[18], hybrid model treats each 

BPL topology separately as cascaded network modules.  

 With reference to Fig. 2 of [5], five indicative OV MV and UN MV BPL 

topologies are reported in Table 1 and 2, respectively. These indicative distribution  

 
Table 1 

Indicative OV MV BPL Topologies and Respective BPL Topology Classes [5], [28] 

Topology 

Number 

(OV MV l) 

Indicative BPL 

Topology Name 

BPL Topology Class 

Description 

Number 

of 

Branches 

Length of Distribution 

Lines 

Length of Branching Lines 

OV MV 1 Urban case A Typical OV MV BPL urban 

topology class 

3 L1=500m, L2=200m, 

L3=100m, L4=200m 

Lb1=8m, Lb2=13m, Lb3=10m 

OV MV 2 Urban case B Aggravated OV MV BPL 

urban topology class 

5 L1=200m, L2=50m, 

L3=100m, L4=200m, 

L5=300m, L6=150m 

Lb1=12m, Lb2=5m, Lb3=28m, 

Lb4=41m, Lb5=17m 

OV MV 3 Suburban case OV MV BPL suburban 

topology class 

2 L1=500m, L2=400m, 

L3=100m   

Lb1=50m, Lb2=10m 

OV MV 4 Rural case OV MV BPL rural topology 

class 

1 L1=600m, L2=400m Lb1=300m 

OV MV 5 “LOS” case OV MV BPL Line-of-Sight 

transmission class 

0 L1=1000m - 

 

 

Table 2 

Indicative UN MV BPL Topologies and Respective BPL Topology Classes [5], [28] 

Topology 

Number  

(UN MV l) 

Indicative BPL 

Topology Name 

BPL Topology Class 

Description 

Number 

of 

Branches 

Length of Distribution 

Lines 

Length of Branching Lines 

UN MV 1 Urban case A Typical UN MV BPL urban 

topology class 

3 L1=70m, L2=55m, 

L3=45m, L4=30m 

Lb1=12m, Lb2=7m, Lb3=21m    

UN MV 2 Urban case B Aggravated UN MV BPL 

urban topology class 

5 L1=40m, L2=10m, 

L3=20m, L4=40m, 

L5=60m, L6=30m   

Lb1=22m, Lb2=12m, Lb3=8m, 

Lb4=2m, Lb5=17m   

UN MV 3 Suburban case UN MV BPL suburban 

topology class 

2 L1=50m, L2=100m, 

L3=50m 

Lb1=60m, Lb2=30m   

UN MV 4 Rural case UN MV BPL rural topology 

class 

1 L1=50m, L2=150m Lb1=100m   

UN MV 5 “LOS” case UN MV BPL “LOS” 

transmission class 

0 L1=200m - 

 

 

BPL topologies act as the representative BPL topologies of respective BPL topology 

classes. Note that average long end-to-end connections of 1000m and 200m are assumed 

for the indicative OV MV and UN MV BPL topologies, respectively. 

 

 

3. Initial and Modified Statistical Hybrid Model 
 

In this Section, the flowchart of the initial statistical hybrid model, which exploits 

MLEs of the five channel attenuation statistical distributions, and the phases involved are 

presented with respect to [5], [6]. Then, the required changes in the flowchart and the 
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new phases of the modified statistical hybrid model after the replacement of the five 

channel attenuation statistical distributions of the initial statistical hybrid model from the 

Empirical channel attenuation statistical distribution are defined as well as the Empirical 

channel attenuation statistical distribution itself.  

 

3.1 Statistical Hybrid Model with MLEs (Initial Statistical Hybrid Model) 
 The initial statistical hybrid model, which exploits the five well-known channel 

attenuation statistical distributions (say, Gaussian, Lognormal, Wald, Weibull and 

Gumbel distributions), has been detailed and numerically validated in [5], [6].  

In Fig. 1(a), the flowchart of the initial statistical hybrid model is given in terms of a 

business process model notification (BPMN) diagram.  

In accordance with [5] and with respect to Fig. 1(a), the initial statistical hybrid 

model consists of six phases, namely: (i) Phase A. The hybrid model takes as inputs the 

distribution power grid type, the indicative distribution BPL topology, the respective 

distribution MTL configuration and the applied coupling scheme while it gives as output 

the coupling scheme channel transfer function 1×Q line vector  where Q is the 

number of flat-fading subchannels in the examined frequency range,  denotes the 

examined distribution power grid type (i.e., OV MV or UN MV),  C  denotes the applied 

coupling scheme (see Sec.3.2 of [5]),  is the 1×Q line vector that consists of the  

flat-fading subchannel start frequencies  and l is the topology number  

(see Table 1 and 2). (ii) Phase B. The coupling scheme channel attenuation difference 

module Δ of this Phase receives as input the coupling scheme channel transfer function 

line vector from Phase A and gives as output the coupling scheme channel attenuation 

difference  between each indicative distribution BPL topology and its respective 

“LOS” case for given power grid type and BPL topology class.  

(iii) Phase C. MLE computation module receives as input the coupling scheme channel 

attenuation difference and gives as output the MLEs for each of the five channel 

attenuation statistical distributions for given distribution BPL topology and coupling 

scheme. Note that this Phase is a synonym of the application of the five channel 

attenuation statistical distribution and the business process reengineering of this paper is 

focused on this Phase. To symbolize the existence of different MLE sets, three small 

vertical lines are applied to the output files of Phases C-F in Fig. 1(a).  

(iv) Phase D. The random number generator receives as input the MLEs of each channel 

attenuation statistical distribution and gives as output the random number 1×Q line vector 

 for given power grid type, coupling scheme and indicative distribution BPL 

topology where  denotes the applied channel attenuation statistical distribution,  

p, p=1,…,P+1 is the member number in the BPL topology class and P is the member 

number of each class. (v) Phase E. Δ-1 module performs the inverse procedure of  

Δ module of Phase B since it takes as input the random number line vector for given 

power grid type, coupling scheme, indicative distribution BPL topology and channel 

attenuation statistical distribution and gives as output the coupling scheme channel 

transfer function line vector  of each of the P members of each BPL topology 

class for given power grid type, coupling scheme and channel attenuation statistical 

distribution. After Phase E, each distribution BPL topology class consists of  

P+1 members whose coupling scheme channel transfer functions for given power grid 

type, coupling scheme and channel attenuation statistical distribution are considered as 

the output of the Phase E. (vi) Phase F. This Phase receives as input the coupling scheme 
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channel transfer functions of each distribution BPL topology class for given power grid 

type, coupling scheme and channel attenuation statistical distribution and gives as output  

 

 

 
Fig. 1.  Business Process Reengineering of the Statistical Hybrid Model. (a) BPMN diagram of the Initial 

Statistical Hybrid Model [5]. (b) BPMN diagram of the Modified Statistical Hybrid Model. 

 

 

the capacity range of each distribution BPL topology class 

 where ,  and 

 computes the minimum, the average and the maximum value of distribution BPL 

topology class capacity  that consists of all the capacities of its P+1 members.  

 In accordance with [6], the results of the initial statistical hybrid model are 

benchmarked in terms of the capacity percentage change and the average absolute 

capacity percentage change with respect to the applied channel attenuation statistical 

distribution, namely the Gaussian, Lognormal, Wald, Weibull and Gumbel distribution. 

A capacity estimation can be considered as successful when: (i) the capacity range of 

each distribution BPL topology class comprises the capacity of the respective indicative 

distribution BPL topology; and (ii) the average capacity value remains very close to the 

respective one of the indicative distribution BPL topology. In [6], it has been 
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demonstrated that Weibull and Wald channel attenuation statistical distributions perform 

the best maximum likelihood estimations in OV MV and UN MV power grid types, 

respectively, regardless of the examined BPL topology class and the applied coupling 

scheme for EMI policies of high injected power spectral density (IPSD) limits such as 

those of FCC Part 15 (see Sec.4.2). As the IPSD limits become lower, a mixed scenario 

regarding the selection of the most suitable channel attenuation statistical distribution for 

the capacity estimation among the BPL topology classes and power grid types occurs.  

 

 

3.2 The Empirical Channel Attenuation Statistical Distribution of the Modified 
Statistical Hybrid Model 
 The insertion of the Empirical channel attenuation statistical distribution aims at 

bypassing the difficult task of the evaluation and the selection among the available 

channel attenuation statistical distributions that are based on MLEs. In Fig. 1(b),  

the flowchart of the modified statistical hybrid model is given in terms of a BPMN 

diagram thus allowing the process comparison between the initial and the modified 

statistical hybrid models.  

By comparing Figs. 1(a) and 1(b), the following observations concerning the 

operation of the modified statistical hybrid model can be made, namely: 

• Phases A and B remain identical between the initial and modified statistical 

hybrid model.  

• The insertion of the Empirical channel attenuation statistical distribution mainly 

affects Phases C and D. More specifically, the following changes occur for the 

Phases C and D: 

o Phase C. Instead of the MLE computation module, the Empirical channel 

attenuation statistical distribution module is here added that receives as 

input the coupling scheme channel attenuation difference while it gives as 

output the Empirical CDF of the coupling scheme channel attenuation 

difference  for given distribution BPL topology and coupling 

scheme. Note that each coupling scheme channel attenuation difference of 

the indicative distribution BPL topologies is characterized by its own CDF 

and, for this reason, the term of Empirical channel attenuation statistical 

distribution is used to describe this unique statistical distribution 

behaviour [29].  

o Phase D. Conversely to the initial statistical hybrid model, the random 

number generator receives as input the Empirical CDF of the examined 

coupling scheme channel attenuation difference instead of MLEs.  

With reference to [26], [27], random number generator module performs 

an inverse interpolation to achieve CDF projection of the random values 

thus giving as output the random number 1×Q line vector  for given 

coupling scheme and indicative distribution BPL topology. Actually, 

given the MLE sets, the random number generator module of the initial 

statistical hybrid model computes the corresponding continuous CDF as 

reported in Appendix A of [5] for each of the five channel attenuation 

statistical distribution and then the reverse interpolation is easily applied to 

these continuous CDFs. In contrast, an additional interpolation for the 
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discrete CDF of the modified hybrid statistical model may be required if 

the random number is not among the available discrete CDF values.  

• Phases E and F are slightly affected since these two Phases now operate with only 

one statistical distribution, say the Empirical channel attenuation statistical 

distribution, instead of the five ones of the initial statistical hybrid model.  

• The output of the modified statistical hybrid model, which coincides with the 

output of the Phase F, is the capacity range of each distribution BPL topology 

class  where distribution BPL 

topology class capacity  consists of all the capacities of its P+1 members 

when the Empirical channel attenuation statistical distribution is applied. 

Similarly to the benchmark of the initial statistical hybrid model, the performance 

results of the modified statistical hybrid model are going to be investigated by the 

application of the metrics of capacity percentage change and average absolute capacity 

percentage change for the set of scenarios presented in [6]. In fact, each scenario is 

characterized by its own operation settings on the basis of a default operation setting set 

presented in Sec.4. 

 

 

4. Operation Settings of Statistical Hybrid Model 
 

In this Section, the default operation settings of the statistical hybrid model, which 

remain common for the initial and the modified model and constitute the baseline 

scenario, are presented. Also, the set of scenarios of [6], which is here deployed in order 

to assess the performance of the initial and modified statistical hybrid model performance 

comparison, is detailed as well as the respective operation settings.  

 

4.1 Primary and Secondary Operation Settings 

 As already identified in [6], the distribution power grid type, the BPL topology 

class, the channel attenuation statistical distribution, EMI policy, noise level and applied 

coupling scheme are the primary factors that influence the performance of the initial 

statistical hybrid model. The same primary factors are also going to influence the 

modified statistical hybrid model performance apart from the channel attenuation 

statistical distributions since the Empirical channel attenuation statistical distribution is 

used in the latter model case to substitute them. As EMI policies, noise levels and applied 

coupling schemes are concerned, there is a selection of default values (see Secs.4.2, 4.3 

and 4.4, respectively) that constitutes the default operation settings while the value 

variation of the aforementioned three primary factors constitute the different scenarios 

that are examined in the following numerical analysis.  

 Except for the primary operation settings, there is a number of secondary 

operation settings that are required by both the initial and the modified statistical hybrid 

model for their fine operation, namely: 

• Circuital parameters of the hybrid model. To apply the hybrid model of Phase A 

of the statistical hybrid model, the set of circuital parameters, which is detailed in 

[7]-[9], [11]-[17], [19], [20], [22], [30]-[41], needs to be assumed, synoptically:  

o The identicalness of the branching and the distribution cables. 

o The full activation of the interconnections between the distribution and 

branch conductors.  



 

Peer-Reviewed Article   Trends in Renewable Energy, 5 

 

 

Tr Ren Energy, 2019, Vol.5, No.2, 181-217. doi: 10.17737/tre.2019.5.2.0093 189 

 

o The matched termination in the transmitting and receiving ends. 

o The open-circuit branch terminations. 

• Representative distribution BPL topology of each topology class. With reference 

to Tables 1 and 2, the indicative OV MV and UN MV BPL topologies are 

assumed to be the representative ones for the respective OV MV and UN MV 

BPL topology classes. The OV MV and UN MV MTL configurations, which are 

used in this paper, are presented in Fig. 1(a) and 1(b) of [5], respectively. 

• Number of members of each distribution BPL topology class. 100 member 

distribution BPL topologies (i.e., P=100) are assumed to be added in each BPL 

topology class of Tables 1 and 2.  

• Frequency range and flat-fading subchannel frequency spacing.  

The BPL operation frequency range and the flat-fading subchannel frequency 

spacing are assumed to be equal to 3-30MHz and 0.1MHz (i.e, 0.1MHz), 

respectively. Hence, there are 270 subchannels in the frequency range of interest 

(i.e., 270).  

• Negative and zero values of the coupling scheme channel attenuation differences. 

During the computation of the coupling scheme channel attenuation differences in 

the Phase B of [5], values that are greater or equal to zero are expected in the vast 

majority of the cases. However, in the scarce cases of negative coupling scheme 

channel attenuation differences and in “LOS” cases, the coupling scheme channel 

attenuation differences are assumed to be equal to an arbitrarily low value,  

say 1×10-11. Since the MLE computation of Lognormal, Wald and Weibull 

channel attenuation distributions comprises natural logarithms and denominators, 

this low value is used in order not to render the aforementioned terms infinite in 

the case of the initial statistical hybrid model. For comparison reasons between 

the initial and modified statistical hybrid model and in accordance with [5], [6], 

the same assumption remains valid for the modified statistical hybrid model. 

 

4.2 EMI Policies and Default Operation Settings 

 BPL networks and systems operate in frequency ranges that are already occupied 

by other licensed communications services. Since, BPL networks and systems are, at the 

same time, unintentional EMI transmitters to these already licensed communications 

services (e.g., aeronautical radionavigation, radio astronomy, mobile satellite and 

maritime mobile) and EMI receivers from the aforementioned services, EMI policies that 

try to regulate these EMI emissions have been proposed by a number of regulation 

bodies. These EMI policies may correspond to respective IPSD limits  that regulate 

the EMI emissions of BPL networks and systems so that BPL networks and systems do 

not interfere with the other already licensed communications services in the same 

frequency band of operation.  

Among the proposals concerning EMI policies, the most noted are FCC Part 15, 

German Reg TP NB30 and the BBC / NATO Proposal. The electric field strength limits 

proposed by the above proposals are presented in [43], [44], [112] while the respective 

IPSD limits are determined in [13], [15], [25], [44]. During the following analysis,  

FCC Part 15 defines the default primary operation setting concerning EMI policy while 

German Reg TP NB30 and the BBC / NATO Proposal are the different scenarios 

concerning the EMI policy.  
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4.3 Noise and Default Operation Settings 

 In accordance with Sec. 4.3 of [5], capacity of distribution BPL networks depends 

on the applied MTL configuration, the examined BPL topology, the coupling scheme 

applied, the EMI policies adopted and the noise environment [7]-[14]. Actually, with 

reference to eq. (3) of [5], noise can be identified as a leading inherent BPL deficiency 

that critically degrades the BPL network capacities [45]. However, a typical noise 

scenario for capacity computations is the adoption of uniform AWGN PSD levels that 

can be considered as a very accurate approximation during the capacity computations as 

presented through FL noise model in [45], [46]. Therefore, as the default operation 

properties of noise properties in distribution BPL networks, -105dBm/Hz and  

-135dBm/Hz are the default AWGN PSD limit levels  for OV MV and UN MV BPL 

networks, respectively, in the 3-30MHz frequency range are considered. Note that only 

default noise operation settings are assumed without other noise scenarios. 

 

4.4 Coupling Schemes and Default Operation Settings 

 BPL signals are injected into and extracted from the lines of OV MV and UN MV 

BPL networks through different coupling schemes that are implemented by coupling 

scheme modules (CS modules) [11], [17], [19], [28], [47]. CS modules are integrated into 

the deterministic hybrid model of Phase A of the initial and modified statistical hybrid 

model. In accordance with [28], [47], CS2 module that is applied in this paper and 

remains the most recently upgraded coupling CS module for BPL networks may support 

three types of coupling schemes, namely: (1) Coupling Scheme Type 1: Wire-to-Ground 

(WtG) or Shield-to-Phase (StP) coupling schemes for OV or UN BPL networks, 

respectively; (2) Coupling Scheme Type 2: Wire-to-Wire (WtW) or Phase-to-Phase (PtP) 

coupling schemes for OV or UN BPL networks, respectively; and (3) Coupling Scheme 

Type 3: MultiWire-to-MultiWire (MtM) or MultiPhase-to-MultiPhase (MtM) coupling 

schemes for OV or UN BPL networks, respectively. Depending on the involved 

conductors of the examined MTL configuration and the power restrictions of [28], [47] 

concerning the power allocation among the involved conductors, different coupling 

schemes can occur for given coupling scheme type. In accordance to [6], to give a 

broader image of the coupling scheme selection impact, coupling scheme types 1, 2 and 3 

are examined in this paper, namely: 

• Coupling Scheme Type 1. WtG1 and StP1 coupling schemes are deployed for the 

assessment of OV MV and UN MV BPL topology classes, respectively.  

• Coupling Scheme Type 2.  and  coupling schemes are deployed 

for the assessment of OV MV and UN MV BPL topology classes, respectively. 

• Coupling Scheme Type 3.  coupling scheme is deployed for the 

assessment of both OV MV and UN MV BPL topology classes.  

In accordance with [6], the two coupling schemes of type 1 are assumed to be the default 

ones while the coupling schemes of type 2 and 3 define the different coupling scheme 

type scenarios.  

 

 

5. Numerical Results and Discussion 
 

 In this Section, numerical results concerning the performance comparison of the 

initial and modified statistical hybrid model are presented. Taking into account the 
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already identified default operation settings of Secs.4.1-4.4, the possibility of only 

adopting the Empirical channel attenuation statistical distribution of the modified 

statistical hybrid model against the five aforementioned channel attenuation statistical 

distributions of the initial statistical hybrid model is assessed. In fact, the comparison is 

based on the paper format of [6]. 

 

5.1 Initial and Modified Statistical Hybrid Model – Coupling Scheme Channel 
Attenuation Differences and CDFs of the Indicative OV MV and UN MV BPL 
Topologies for the Default Operation Settings 

 By comparing the flowcharts of the initial and modified statistical hybrid model 

of the respective Figs. 1(a) and 1(b), their main difference is located at the Phase C where 

MLE computation module and Empirical channel attenuation statistical distribution 

module are deployed for the initial and modified statistical hybrid model, respectively.  

However, both modules receive as input the coupling scheme channel attenuation 

difference data for given indicative distribution BPL topology and coupling scheme.  

In Fig. 2, the coupling scheme channel attenuation difference of the indicative OV MV 

BPL topology of urban case A, which is reported in Table 1, is plotted versus the 

frequency in the 3-30MHz frequency band when WtG1 coupling scheme, which is 

anyway the default coupling scheme for OV MV BPL topologies, is applied. In the same 

figure, the plots of the indicative OV MV BPL topologies of urban case B, suburban case 

and rural case, which are also reported in Table 1, are shown. It should be reminded here 

that the “LOS” case of Table 1 is not presented in Fig. 2 since its coupling scheme 

channel attenuation differences are equal to zero. Note that the plots of the indicative OV 

MV BPL topologies are computed with reference to the OV MV BPL “LOS” case –see 

eq. (5) of [5]–. In Fig. 3, same curves with Fig. 2 are demonstrated but for the case of the 

indicative UN MV BPL topologies of Table 2 when StP1 coupling scheme is applied in 

the same operation frequency band.  

Since the coupling scheme channel attenuation difference data are received by the 

MLE computation module and Empirical channel attenuation statistical distribution 

module, MLE computation module and Empirical channel attenuation statistical 

distribution module give as output the MLEs of the five statistical distribution and the 

Empirical CDF, respectively. In the case of the initial statistical hybrid model, the 

random number generator module of Phase D initially and internally computes CDFs of 

the five channel attenuation statistical distribution on the basis of the respective MLEs of 

Phase C. Hence, either initial or modified statistical hybrid model compute CDFs of the 

applied channel attenuation statistical distributions. With reference to Fig. 2, in Fig. 4(a), 

CDFs of the five channel attenuation statistical distributions (say, Gaussian, Lognormal, 

Wald, Weibull and Gumbel distributions) of the initial statistical hybrid model and of the 

Empirical channel attenuation statistical distribution of the modified statistical hybrid 

model are plotted versus the coupling scheme channel attenuation difference for the case 

of the OV MV BPL urban case A. In Figs. 4(b)-(d), same plots with Fig. 4(a) are given 

bur for the case of the OV MV BPL urban case B, suburban case and rural case, 

respectively. In Figs. 5(a)-(d), same curves are presented with Figs. 4(a)-(d) but for the 

case of the indicative UN MV BPL topologies. 
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Fig. 2.  Coupling scheme channel attenuation difference of the indicative OV MV BPL topologies of  

Table 1 in the 3-30MHz frequency band when WtG1 coupling scheme is deployed (the subchannel 

frequency spacing is equal to 0.1MHz).  

 

 
Fig. 3.  Coupling scheme channel attenuation difference of the indicative UN MV BPL topologies of  

Table 2 in the 3-30MHz frequency band when StP1 coupling scheme is deployed (the subchannel frequency 

spacing is equal to 0.1MHz).  
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Fig. 4.  CDF of the indicative OV MV BPL topologies of Table 1 versus coupling scheme channel 

attenuation difference in the 3-30MHz frequency band when WtG1 coupling scheme is deployed.  

(a) Urban case A. (b) Urban case B. (c) Suburban case. (d) Rural case. 
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Fig. 5.  Same plots with Fig. 4 but for the case of the indicative UN MV BPL topologies of Table 2 when 

StP1 coupling scheme is deployed.  

 

 

From Figs. 2-5, several interesting remarks can be reported concerning the CDF 

behavior of the channel attenuation statistical distributions of the initial and modified 

statistical hybrid model. More specifically: 
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• By comparing Figs. 2 and 3, it is evident that the coupling scheme channel 

attenuation difference of OV MV BPL topologies presents higher spectral notches 

in comparison with the ones of UN MV BPL topologies. This is due to the fact 

that the main channel attenuation mechanism of OV MV BPL networks is the 

multipath propagation in contrast with the high “LOS” propagation of UN MV 

BPL networks [8], [12]-[15], [17]. Due to this attenuation mechanism,  

the Empirical CDFs of OV MV BPL topologies, which are demonstrated in  

Figs. 4(a)-(d), normally start to increase from zero whereas Empirical CDF of  

UN MV BPL topologies, which are presented in Figs. 5(a)-(d), start to increase 

from positive values greater than zero depending on the examined indicative  

UN MV BPL topology. Also, apart from the distribution BPL rural case, 

Empirical CDFs of OV MV BPL topologies reach up to 1 at significant higher 

coupling scheme channel attenuation differences in contrast with the CDFs of  

UN MV BPL topologies.  

• In the vast majority of the indicative distribution BPL topologies examined, 

Gaussian, Lognormal, Wald, Weibull and Gumbel channel attenuation statistical 

distributions asymptotically approach heights of 0 and 1 out of the range of 

minimum and maximum coupling scheme channel attenuation difference of the 

examined BPL topology. Conversely, the Empirical channel attenuation statistical 

distribution accurately represents the coupling scheme channel attenuation 

difference for given distribution BPL topology. For that reason, horizontal steps 

occur in the Empirical channel attenuation statistical distribution whose extent 

depends on the examined distribution BPL topology. Distribution BPL topologies 

that are characterized by frequent and of the same height coupling scheme 

channel attenuation difference notches (e.g., indicative OV MV BPL rural case) 

tend to be characterized by CDFs of important horizontal steps.  

• Since shorter horizontal steps occur in indicative UN MV BPL topologies,  

the CDFs of the five channel attenuation statistical distributions of the initial 

statistical hybrid model can better fit the CDF of the Empirical distribution of the 

modified statistical hybrid model in contrast with their fit in indicative OV MV 

BPL topologies. Despite the fact of the better fit in indicative UN MV BPL 

topologies, the five channel attenuation statistical distributions fail to accurately 

approach the CDF heights of 0 and 1 thus entailing that the random number 

generator module of Phase D is going to produce: (i) lower coupling scheme 

channel attenuation differences than the real ones and a lot of zero coupling 

scheme channel attenuation differences; and (ii) higher coupling scheme channel 

attenuation differences than the real ones, respectively, for given distribution BPL 

topology. 

• The CDF of the Wald channel attenuation statistical distribution fails to fit the 

Empirical distribution in the indicative OV MV BPL urban case A, suburban case 

and rural case. This is due to the MLEs provided by the MLE computation 

module of Phase C for the given coupling scheme channel attenuation differences 

(see Table 1 of [6]). 

• Although the random number generator module of Phase D is going to produce 

random coupling scheme channel attenuation differences for the distribution BPL 

topology members that are more realistic to the indicative ones when the 

Empirical channel attenuation statistical distribution is applied, this does not 
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automatically imply that the Empirical distribution can achieve better capacity 

metrics than the Gaussian, Lognormal, Wald, Weibull and Gumbel channel 

attenuation statistical distributions. In accordance with [6], the performance 

metrics, which are used in this paper during the comparison evaluation of the 

initial and modified statistical hybrid model, are the capacity percentage change 

and average absolute capacity percentage change whose values also depend on the 

positions of the random coupling scheme channel attenuation differences,  

EMI policy and coupling scheme. 

Consequently, after Phases A-D of either the initial or the modified statistical 

hybrid model, each BPL topology class is enriched with 100 topology members per each 

channel attenuation statistical distribution through the random coupling scheme channel 

attenuation differences that are produced by the random number generator (see in [5], [6]) 

for given power grid type and coupling scheme. Then, Phase E determines the coupling 

scheme transfer function of the members of each BPL topology class for given power 

grid type and coupling scheme. In the following subsections, the maximum, the average 

and the minimum capacity of each BPL topology class, which are hereafter denoted as 

capacity range of each BPL topology class, are going to be computed by the Phase F 

while the critical performance metrics of the capacity percentage change and average 

absolute capacity percentage change are evaluated so that the success of the channel 

attenuation statistical distribution of the initial and modified statistical hybrid model are 

assessed for the default operation settings as well as a number of different scenarios. 

 

 

5.2 Initial and Modified Statistical Hybrid Model – Capacity Ranges of OV MV 
and UN MV BPL Classes for the Default Operation Settings 

Since coupling scheme transfer functions of each distribution BPL topology class 

member are well computed by Phase E of the statistical hybrid model for each channel 

attenuation statistical distribution for given power grid type and coupling scheme,  

Phase F of the initial or modified statistical hybrid model computes the maximum,  

the average and the minimum capacity of each BPL topology class among its 100 BPL 

topology members for given power grid type, coupling scheme, channel attenuation 

statistical distribution and EMI policy. 

Based on the theoretical framework of [5] and the findings of [6],  

the comparison of the initial and modified statistical hybrid model is going to be based on 

the successful capacity for given channel attenuation statistical distribution in terms of 

the metrics of capacity percentage change and average absolute capacity percentage 

change. In [6], it has been demonstrated for the initial statistical hybrid model that 

Weibull and Wald channel attenuation statistical distributions perform the best capacity 

estimations in OV MV and UN MV power grid types, respectively, regardless of the 

examined BPL topology class when the default operation settings are assumed. In fact, 

the previous observations are validated by the metrics of capacity percentage change and 

average absolute capacity percentage change in Table 3 of [6]. In order to evaluate the 

success performance of the Empirical channel attenuation statistical distribution,  

in Fig. 6(a), the maximum, average and minimum capacity of the typical OV MV urban 

topology class is plotted for the Weibull distribution of the initial statistical hybrid model 

and the Empirical distribution of the modified statistical hybrid model when the default 

operation settings are assumed. Also, the capacity of the indicative BPL topology of the  
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Fig. 6.  Maximum, average and minimum OV MV BPL topology class capacities for the Weibull and 

Empirical channel attenuation statistical distribution of the initial and modified statistical hybrid model, 

respectively. (a) Typical OV MV BPL urban topology class. (b) Aggravated OV MV BPL urban topology 

class. (c) OV MV BPL suburban topology class. (d) OV MV BPL rural topology class. 

 

 

BPL topology class, say, OV MV urban case A, that is computed by the hybrid model is 

used as the reference value of the figure. In Figs. 6(b)-(d), same bar graphs are 

demonstrated with Fig. 6(a) but for the aggravated OV MV BPL urban topology class, 

OV MV BPL suburban topology class and OV MV BPL rural topology class, 

respectively. Figs. 7(a)-(d) are the same with the respective Figs. 6(a)-(d) but for the  

UN MV BPL topology classes and Wald channel attenuation statistical distribution 

instead of Weibull one.  
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Fig. 7.  Same curves with Fig. 6 but for the UN MV BPL topology classes and the Wald channel 

attenuation statistical distribution instead of the Weibull one . 

 

 

The behavior of channel attenuation statistical distribution CDFs of Figs. 4(a)-(d) 

and 5(a)-(d) can be reflected on the respective Figs. 6(a)-(d) and 7(a)-(d), namely: 

• In accordance with [6], a channel attenuation statistical distribution is considered 

to be successful if the following two criteria are satisfied, namely:  

(i) capacity range of each distribution BPL topology class (say, the minimum and 

the maximum capacity value of the distribution BPL topology class) comprises 

the capacity of the respective indicative distribution BPL topology; and  

(ii) the average capacity value of the distribution BPL topology class remains very 
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close to the respective one of the indicative distribution BPL topology.  

Already been validated for the Weibull and Wald statistical distributions, which 

present the best performance for the OV MV and UN MV BPL topology classes, 

respectively, the Empirical channel attenuation statistical distribution also 

satisfies both the criteria in all the examined OV MV and UN MV BPL topology 

classes.  

• To numerically assess the capacity estimation success of channel attenuation 

statistical distributions of the initial and modified statistical hybrid model,  

the metrics of percentage change and the average absolute percentage change, 

which have been proposed in [6], are applied apart from the graphical comparison 

of Figs. 6 and 7. Here, it should be reminded that the percentage change computes 

the difference percentage between the capacity average value of the examined 

distribution BPL topology class in relation with the respective indicative 

distribution BPL topology for given channel attenuation statistical distribution. 

Then, the average absolute percentage change is equal to the average value of the 

absolute percentage changes of the four distribution BPL topology classes for 

given power grid type and channel attenuation statistical distribution. 

• In accordance with [6], high values of percentage change indicate that the 

estimation of the applied channel attenuation statistical distribution is 

unsuccessful while a threshold of 3% (i.e., first rule of thumb in [6]) has been 

proposed either in the percentage change or in the average absolute percentage 

change so that the partial and overall success capacity estimation can be 

numerically checked. With reference to Table 3 of [6], it is also numerically 

validated that Weibull and Wald channel attenuation statistical distributions 

perform the best capacity estimations in OV MV and UN MV power grid types, 

respectively, regardless of the examined BPL topology class when the default 

operation settings are assumed.  

In Table 3, the percentage change of each OV MV BPL topology class is reported 

for the Weibull channel attenuation statistical distribution, which performs the best 

capacity estimation in OV MV BPL topology classes for the initial statistical hybrid 

model, and for the Empirical channel attenuation statistical distribution for the modified 

statistical hybrid model. Similarly to the OV MV BPL topology class case,  

the percentage change of each UN MV BPL topology class is reported in the same Table 

but for the Wald channel attenuation statistical distribution, which performs the best 

capacity estimation in UN MV BPL topology classes for the initial statistical hybrid 

model. Also, at the bottom of the Table, the average absolute percentage change of each 

channel attenuation statistical distribution is given per each power grid type. 

 The results that are reported in Table 3 numerically verify the graphical 

observations of Figs. 6 and 7. More specifically: 

• The rule of thumb of 3% threshold, denoted as first rule of thumb, is valid in all 

the cases examined for the applied channel attenuation statistical distributions 

when the default operation settings are assumed. The first rule of thumb is valid 

for the Empirical channel attenuation statistical distribution either in all 

distribution BPL topology classes (i.e., the absolute value of percentage change 

significantly remains below 3% in all the examined distribution BPL topology 

classes) or in the examined power grid type as a whole  
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Table 3 

Percentage Change of the Distribution BPL Topology Classes for the Best Channel Attenuation Statistical 

Distributions of the Initial Statistical Hybrid Model and the Empirical Channel Attenuation Statistical 

Distribution of the Modified Statistical Hybrid Model (The Default Settings Are Assumed, say,  

WtG1/StP1 coupling scheme and FCC Part 15) 

(black background: unsuccessful CDF estimation) 

Indicative BPL 

Topology Name 

(OV MV Capacity / 

UN MV Capacity  

in Mbps) 

BPL 

Topology 

Class 

Description 

Percentage Change  

(%) 

Initial Statistical Hybrid Model  Modified Statistical Hybrid Model 

Best Channel Attenuation 

Statistical Distribution 

Empirical Channel Attenuation 

Statistical Distribution 

OV MV 

(Weibull) 

UN MV 

(Wald) 

OV MV UN MV 

Urban case A 

(266 / 604) 

Typical BPL 

urban class 

1.32 0.01 0.10 0.11 

Urban case B 

(225 / 519) 

Aggravated 

BPL urban  

0.12 0.02 0.18 0.11 

Suburban case 

(313 / 636) 

BPL suburban 

class 

-0.26 0.003 0.07 0.04 

Rural case 

(351 / 667) 

BPL rural 

class 

-0.16 0.0004 0.01 0.02 

Average Absolute Percentage Change  

(%) 0.47 0.01 0.09 0.07 

 

 

(i.e., the average absolute percentage change of OV MV and UN MV BPL 

networks also remains below 3%). In accordance with [6] and the Table 3, 

Weibull and Wald channel attenuation statistical distributions comply with the 

first rule of thumb in OV MV and UN MV BPL topology classes, respectively.  

In total, since all the examined cases are in compliance with the first rule of 

thumb, there is no cell in black background. 

• In addition, the metrics of the percentage change and the average absolute 

percentage change assess the success of the channel attenuation statistical 

distributions, namely: 

o In OV MV BPL topology classes, the application of the Empirical channel 

attenuation statistical distribution has achieved better percentage change 

results in 3 out of 4 classes (i.e., typical OV MV BPL urban class, OV MV 

BPL suburban class and OV MV BPL rural class) with significant 

improvement while the percentage change difference between the Weibull 

and Empirical channel attenuation statistical distributions remain low  

in the case of the aggravated OV MV BPL class. 

o In UN MV BPL topology classes, the application of the Empirical channel 

attenuation statistical distribution has not achieved the best percentage 

change results in comparison with the ones of the Wald channel 

attenuation statistical distribution but the differences remain low.  

o The results of the average absolute percentage change verify that the 

Empirical channel attenuation statistical distribution can provide reliable 

results that are comparable to the best ones that can be achieved by the 

initial statistical hybrid model through its five channel attenuation 

statistical distribution. 
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After the graphical analysis and the performance metric analysis for the  

default operation settings, it is shown that the Empirical channel attenuation statistical 

distribution of the modified statistical hybrid model can safely substitute the statistical 

distributions of the initial statistical hybrid model with very satisfactory results.  

It should be noted that the application of the Empirical channel attenuation statistical 

distribution allows the bypass of the comparison/selection process among the five 

statistical distributions that is anyway a time consuming process and imply the 

application of all the five statistical distributions. However, the performance of the 

Empirical channel attenuation statistical distributions is investigated in Sec.5.3 and 

Sec.5.4 when different scenarios concerning the operation scenarios are applied similarly 

to Sec.2.2 and Sec.2.3 of [6], respectively. 

 

5.3 Initial and Modified Statistical Hybrid Models for Different EMI Policies 

 Already been mentioned in Sec.4.2, EMI policies regulate the EMI of BPL system 

operation so that OV MV and UN MV BPL networks do not become sources of EMI to 

other already existing wireless and telecommunications systems [8], [13], [15], [48]-[50]. 

Apart from the IPSD limits of the FCC Part 15, that are considered anyway among the 

default operation settings, respective IPSD limits of German Reg TP NB30 and the  

BBC/NATO Proposal, which are computed in [43], [44], [112], can be assumed to act as 

the different scenarios in order to examine the impact of different EMI policies on the 

performance of the initial and modified statistical hybrid models. 

 Similarly to [6], since no MTL configuration, BPL topology and coupling scheme 

changes occur in the examined scenario, the CDFs and the coupling scheme channel 

attenuation values of the channel attenuation statistical distributions of the initial and 

modified statistical hybrid models concerning the indicative OV MV and UN MV BPL 

topologies remain the same with the respective ones of Sec. 5.1 and 5.2. 

To numerically assess the performance of the initial and modified statistical 

hybrid model when lower IPSD limits in comparison with those of FCC Part 15 ones are 

applied, the percentage change and the average absolute percentage change are reported 

for the indicative distribution BPL topology classes of Tables 1 and 2; in Tables 4 and 5, 

the percentage change and the average absolute percentage change are computed when 

German Reg TP NB30 and BBC/NATO Proposal are applied, respectively.  

 In accordance with [6] and by comparing Tables 4 and 5 with Table 3,  

it is obvious that the more EMI protective to other telecommunication services  

IPSD limits (i.e., German Reg TP NB30 and BBC/NATO proposal) entail significant 

capacity reductions and unsuccessful capacity estimations either in OV MV or in UN MV 

BPL topologies regardless of the applied statistical hybrid model and channel attenuation 

statistical distribution. The following observations can be pointed out: 

• As the initial statistical hybrid model is concerned, Weibull and Wald channel 

attenuation statistical distributions are not the dominant distributions to estimate 

in total the capacity of the OV MV and UN MV BPL topology classes, 

respectively. A mix of different channel attenuation statistical distributions can 

now describe the different distribution BPL topology classes. For each 

distribution BPL topology class, the selection of the best channel attenuation 

statistical distribution in terms of the percentage change among the five ones 

depends on the power grid type, the BPL topology class and  
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Table 4 

Same with Table 3 but for German Reg TP NB30. 

Indicative BPL 

Topology Name 

(OV MV Capacity / 

UN MV Capacity  

in Mbps) 

BPL 

Topology 

Class 

Description 

Percentage Change  

(%) 

Initial Statistical Hybrid Model  Modified Statistical Hybrid Model 

Best Channel Attenuation 

Statistical Distribution 

Empirical Channel Attenuation 

Statistical Distribution 

OV MV UN MV OV MV UN MV 

Urban case A 

(5.99 / 218) 

Typical BPL 

urban class 

1.97 

(Gaussian) 

-0.27 

(Weibull) 

4.99 0.87 

Urban case B 

(3.93 / 144) 

Aggravated 

BPL urban  

1.61 

(Lognormal) 

0.09 

(Lognormal) 

-3.37 -0.88 

Suburban case 

(10.75 / 248) 

BPL suburban 

class 

2.38 

(Weibull) 

0.001 

(Gaussian) 

0.29 0.12 

Rural case 

(14.88 / 280) 

BPL rural 

class 

1.97 

(Weibull) 

-0.001 

(Gaussian) 

0.50 0.06 

Average Absolute Percentage Change  

(%) 1.98 0.09 2.28 0.48 

 

 
Table 5 

Same with Table 3 but for BBC/NATO Proposal. 

Indicative BPL 

Topology Name 

(OV MV Capacity / 

UN MV Capacity  

in Mbps) 

BPL 

Topology 

Class 

Description 

Percentage Change  

(%) 

Initial Statistical Hybrid Model  Modified Statistical Hybrid Model 

Best Channel Attenuation 

Statistical Distribution 

Empirical Channel Attenuation 

Statistical Distribution 

OV MV 

 

UN MV 

 

OV MV UN MV 

Urban case A 

(0.0017 / 9.83) 

Typical BPL 

urban class 

10.92 

(Gaussian) 

10.02 

(Wald) 

7.31 13.53 

Urban case B 

(0.0011 / 4.65) 

Aggravated 

BPL urban  

-2.54 

(Lognormal) 

8.41 

(Gumbel) 

-5.13 -35.74 

Suburban case 

(0.0032 / 14.28) 

BPL suburban 

class 

2.37 

(Gumbel) 

-0.28 

(Lognormal) 

0.21 -1.73 

Rural case 

(0.0045 / 22.09) 

BPL rural 

class 

2.16 

(Weibull) 

0.09 

(Lognormal) 

0.67 0.35 

Average Absolute Percentage Change  

(%) 
4.50 

(mixed) 

4.70 

(mixed) 3.33 12.84 

 

 

the applied EMI policy. As the modified statistical hybrid model is examined,  

the Empirical channel attenuation statistical distribution demonstrates a fairly 

stable behavior that anyway depends on the same aforementioned factors. 

• As German Reg TP NB30 is applied in the indicative OV MV BPL topology 

classes, a mix of three different channel attenuation statistical distributions of the 

initial statistical hybrid model (say, Gaussian, Lognormal and Weibull) needs to 

be adopted so that a fine capacity estimation can be achieved in compliance with 

the first rule of thumb. At the same time, the Empirical channel attenuation 

distribution of the modified statistical hybrid model performs better estimations 

than the ones of the aforementioned distributions of the initial statistical hybrid 

model when OV MV BPL suburban and rural topology classes are examined.  
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In contrast, the Empirical channel attenuation statistical distribution fails to 

provide a successful estimation in OV MV BPL urban topology classes.  

• As BBC/NATO proposal is applied in the indicative OV MV BPL topology 

classes, the number of unsuccessful capacity estimations of the initial and 

modified statistical hybrid model skyrockets, which is anyway shown from the 

dramatic increase of the percentage change values. Actually, Lognormal, Gumbel 

and Weibull channel attenuation statistical distributions of the initial statistical 

hybrid model are the most suitable to estimate the capacity of the indicative  

OV MV BPL urban case B, suburban and rural topology classes, respectively,  

in compliance with the first rule of thumb while the capacity estimation of the 

indicative OV MV BPL urban case A topology class remains unsuccessful. 

Again, the Empirical channel attenuation statistical distribution of the modified 

statistical hybrid model achieves better capacity estimation results than the ones 

of the statistical distributions of the initial statistical hybrid model in the suburban 

and rural cases while its capacity estimation remains unsuccessful during the 

capacity computations of the urban cases. 

• Similarly to the OV MV BPL topology classes, as German Reg TP NB30 is 

applied in the indicative UN MV BPL topology classes, a mix of three different 

channel attenuation statistical distributions of the initial statistical hybrid model 

(say, Weibull, Lognormal and Gaussian) needs to be implemented so that a fine 

capacity estimation can be achieved on the basis of the first rule of thumb.  

Note that the Lognormal channel attenuation statistical distribution achieves the 

best capacity estimations in urban case B topology class when German Reg TP 

NB30 is applied regardless of the examined power grid type. Here, the capacity 

estimations of the distributions of the initial statistical hybrid model remains 

better than the ones of the Empirical channel attenuation statistical distribution 

but with a decent percentage change difference. 

• As BBC/NATO proposal is applied in the indicative UN MV BPL topology 

classes, the best channel attenuation statistical distribution of the initial statistical 

hybrid model is the Lognormal one when the suburban and rural BPL topology 

classes are examined. In the case of the urban BPL topology classes, the channel 

attenuation statistical distributions of the initial statistical hybrid model fail to 

perform a successful capacity estimation. In a similar way to the statistical 

distributions of the initial statistical hybrid model, the Empirical channel 

attenuation statistical distribution successfully estimates the capacity of the BPL 

suburban and rural topology classes in contrast with the BPL urban topology 

classes. Anyway, the percentage change difference between the Lognormal and 

the Empirical channel attenuation statistical distribution in UN MV BPL suburban 

and rural topology classes remains low. 

• All the previous observations can be explained through the prism of the second 

rule of thumb proposed in [6]. In accordance with this second rule of thumb,  

the percentage change of the channel attenuation statistical distributions of  

the initial statistical hybrid model remains inversely proportional to the capacity. 

Indeed, when strict EMI policies are adopted, the capacity of all the indicative 

distribution BPL topologies is significantly reduced. Thus, the percentage changes 

of the channel attenuation statistical distributions of the initial statistical hybrid 

model increase while these percentage changes are more affected when 
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BBC/NATO proposal is adopted and urban distribution BPL topology classes are 

examined. The same results occur in the Empirical channel attenuation statistical 

distribution. 

• With reference to the average absolute percentage change, the modified hybrid 

statistical model presents almost the same behavior with the initial one.  

When German Reg TP NB30 is adopted, both hybrid statistical models 

successfully estimate the capacities of the BPL topology classes in a whole 

regardless of the power grid type. Conversely, both the statistical hybrid models 

fail to successfully estimate the capacities of the BPL topology classes in a whole 

when BBC/NATO proposal is applied.  

• To detect the best channel attenuation statistical distribution of the initial 

statistical hybrid model in terms of the percentage change, the percentage change 

of each statistical distribution should be computed for given distribution BPL 

topology class and after comparing their percentage change results, the minimum 

percentage change is added in Tables 3-5 for given distribution BPL topology as 

well as the name of the statistical distribution. Since different channel attenuation 

statistical distributions of the initial hybrid model are used for the different 

distribution BPL topology classes, the average absolute percentage change is 

considered as the average value of the percentage changes of the best channel 

attenuation statistical distributions of distribution BPL topology classes for given 

power grid type, coupling scheme and EMI policies. The result of the average 

absolute percentage change describes the best possible average absolute 

percentage change for the initial statistical hybrid model that is anyway 

unachievable by only one channel attenuation statistical distribution. Conversely, 

the evaluation of the percentage change of the Empirical channel attenuation 

statistical distribution of the modified statistical hybrid model, which is added in 

Tables 3-5, is a straightforward process since there is no need for comparison 

delays among channel attenuation statistical distributions. At the same time, the 

evaluation of the average absolute percentage change of the Empirical channel 

attenuation statistical distribution of the modified statistical hybrid model, which 

is added in Tables 3-5, is the average among the four percentage changes for 

given power grid type, coupling scheme and EMI policy, which is again an easy 

and straightforward computation task. 

• In accordance with [6], the unsuccessful capacity estimations of the channel 

attenuation statistical distributions when strict EMI policies are adopted is due to 

the fact that the German Reg TP NB30 and BBC/NATO proposal EMI policies 

present a strong frequency selective behavior [24]. Hence, the random position of 

the random coupling scheme channel attenuation differences produced by the 

random number generator module of Phase D is the suspect of the unsuccessful 

capacity estimations rather CDFs of random number generator. 

• A trade-off between the computation / comparison time and the capacity 

estimation accuracy is here defined for the UN MV BPL topology classes.  

The initial statistical hybrid model achieves a slight improved percentage change 

and average absolute percentage change results in UN MV BPL topology classes 

in comparison with the ones of the modified statistical hybrid model regardless of 

the applied EMI policies but the computational time of the initial statistical hybrid 

model remains significantly higher in comparison with the one of the modified 
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statistical hybrid model. In contrast, when OV MV BPL topology classes are 

examined, the Empirical channel attenuation statistical distribution achieves 

significantly better percentage change and average absolute percentage change 

results in comparison with the ones of the five channel attenuation statistical 

distributions of the initial statistical hybrid model. At the same time, the Empirical 

channel attenuation statistical distribution achieves significantly better 

computational times. As the OV MV BPL topology classes are concerned,  

the modified statistical hybrid model is a straightforward selection.  

In accordance with [6], strict EMI policies undermine the capacity estimations of 

the channel attenuation statistical distributions. Taking into account the high comparison 

delays of the initial statistical hybrid model, the Empirical channel attenuation statistical 

distribution of the modified statistical hybrid model proposes a fair and fast capacity 

estimation. Also, when OV MV BPL topology classes are examined, the Empirical 

channel attenuation statistical distributions offers the best possible and rapid capacity 

estimation. Apart from the different ISPD limits, the capacity estimation performance of 

the Empirical channel attenuation statistical distributions should also be examined when 

different coupling schemes are applied. 

 

5.4 Initial and Modified Statistical Hybrid Models for Different Coupling Schemes 

 Already detailed in [5], [28], [47], CS2 module, which is the most updated BPL 

coupling scheme module, describes the injection of the input BPL signal onto and the 

extraction of the output BPL signal from the power lines of BPL networks through three 

different types of coupling schemes, namely: (1) Coupling Scheme Type 1:  

Wire-to-Ground (WtG) or Shield-to-Phase (StP) coupling schemes for OV or UN BPL 

networks, respectively; (2) Coupling Scheme Type 2: Wire-to-Wire (WtW) or  

Phase-to-Phase (PtP) coupling schemes for OV or UN BPL networks, respectively; and 

(3) Coupling Scheme Type 3: MultiWire-to-MultiWire (MtM) or MultiPhase-to-

MultiPhase (MtM) coupling schemes for OV or UN BPL networks, respectively.  

 In [6], one representative coupling scheme per each coupling scheme type of  

CS2 module and power grid type has been chosen to be presented, namely:  

(i) Coupling Scheme Type 1: WtG1 and StP1 coupling schemes have been chosen for the 

OV MV and UN MV BPL networks, respectively; (ii) Coupling Scheme Type 2: 

 and  coupling schemes are applied for OV MV and UN MV BPL 

topology classes, respectively; and (iii) Coupling Scheme Type 3:  

coupling scheme is applied for OV MV and UN MV BPL topology classes. In this paper, 

the aforementioned coupling schemes are applied for comparison reasons. 

 As the five channel attenuation statistical distributions of the initial statistical 

hybrid model are concerned, the different coupling schemes entail changes in coupling 

scheme channel attenuation and capacity values and for that reason new MLEs for the 

indicative OV MV BPL topologies of Table 1 and indicative UN MV BPL topologies of 

Table 2 should be recomputed. In fact, the MLEs of the five channel attenuation 

distributions of the initial statistical hybrid model for the indicative OV MV BPL 

topologies are reported in Table 6 of [6] when the default operation settings are assumed 

and  and  coupling schemes are applied. In Table 7 of [6],  

MLEs of the five channel attenuation distributions of the initial statistical hybrid model 

for the indicative UN MV BPL topologies are reported when the default operation 

settings are assumed and  and  coupling schemes are applied. As 
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the capacity and the corresponding metrics are regarded, the percentage change between 

each average capacity of the distribution BPL topology class and the capacity of the 

indicative topology of the respective class for the channel attenuation distributions of the 

initial and modified statistical hybrid model is given in Table 6 when the default 

operation settings are applied but for the WtW1-2 and PtP1-2 coupling schemes for OV 

MV and UN MV BPL topology classes, respectively. Here it should be noted that the 

respective MLEs of Table 6 and 7 of [6] for the five channel attenuation statistical 

distributions are applied while the best channel attenuation statistical distribution in terms 

of the percentage change and the Empirical channel attenuation statistical distribution are 

considered in the case of the initial and the modified statistical hybrid model, 

respectively. Similarly to Table 3, at the bottom of the Table, the average percentage 

change of each channel attenuation statistical distribution is given per each power grid 

type. In Table 7, same Table with Table 6 is given but for the application of 

 coupling scheme for OV MV and UN MV BPL topology classes. 

 By comparing Tables 6 and 7 with Table 3, important observations can be made 

concerning the capacity estimation performance from the channel attenuation statistical 

distributions when different coupling schemes of CS2 module are applied, namely: 

• In accordance with [6] and [47], by adopting CS2 module, WtW coupling 

schemes of OV MV BPL topologies and PtP coupling schemes of UN MV BPL 

topologies become almost equivalent to respective WtG coupling schemes and 

StP coupling schemes in terms of channel attenuation and capacity. MtM coupling 

schemes can achieve slightly better channel attenuation and capacity results in 

comparison with the ones of the previous coupling schemes due to their adaptive 

use of the available conductors of the examined MTL configurations.  

• The impact of the different coupling schemes on the percentage change remains 

significantly lower in comparison with the impact of the different EMI policies. 

Additional evidence of this assertion is that among the channel attenuation 

statistical distributions of the initial statistical hybrid model, Weibull and Wald 

channel attenuation statistical distributions still best estimate capacity in OV MV 

and UN MV BPL topology classes, respectively, regardless of the coupling 

scheme applied when the default operation settings are adopted. In the case of the 

Empirical channel attenuation statistical distribution, the strongest evidence is that 

the percentage change values remain extremely lower in the case of the different 

coupling schemes rather than in the case of the different EMI policies.  

• The second rule of thumb does not occur during the application of the Empirical 

channel attenuation statistical distribution since the observed percentage changes 

of the OV and UN MV BPL topology classes remain comparable. This is due to 

the fact that Empirical channel attenuation statistical distribution is based on 

Empirical CDFs in both power grid types and not on the best CDF of channel 

attenuation statistical distributions of the initial statistical hybrid model in terms 

of the percentage change. 

• Different coupling schemes have little impact on the percentage change of 

Empirical channel attenuation statistical distribution for given power grid type 

and BPL topology class. Anyway, small percentage change differences among 

coupling schemes can be observed when MtM coupling schemes are applied. 
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Table 6 

Same with Table 3 but for  and  coupling schemes for OV MV and UN MV BPL topology 

classes, respectively 

Indicative BPL 

Topology Name 

(OV MV Capacity / 

UN MV Capacity  

in Mbps) 

BPL 

Topology 

Class 

Description 

Percentage Change  

(%) 

Initial Statistical Hybrid Model  Modified Statistical Hybrid Model 

Best Channel Attenuation 

Statistical Distribution 

Empirical Channel Attenuation 

Statistical Distribution 

OV MV 

(Weibull) 

UN MV 

(Wald) 

OV MV UN MV 

Urban case A 

(232 / 550) 

Typical BPL 

urban class 
1.72 

 
0.01 

 

0.10 0.12 

Urban case B 

(193 / 465) 

Aggravated 

BPL urban  
0.66 

 
0.04 

 

0.28 0.12 

Suburban case 

(278 / 582) 

BPL suburban 

class 
-0.27 

 
0.003 

 

0.09 0.05 

Rural case 

(317 / 613) 

BPL rural 

class 
-0.20 

 
0.0005 

 

0.02 0.03 

Average Absolute Percentage Change  

(%) 0.71 0.02 0.12 0.08 

 

 
Table 7 

Same with Table 3 but for  coupling scheme for OV MV and UN MV BPL topology 

classes 

Indicative BPL 

Topology Name 

(OV MV Capacity / 

UN MV Capacity  

in Mbps) 

BPL 

Topology 

Class 

Description 

Percentage Change  

(%) 

Initial Statistical Hybrid Model  Modified Statistical Hybrid Model 

Best Channel Attenuation 

Statistical Distribution 

Empirical Channel Attenuation 

Statistical Distribution 

OV MV 

(Weibull) 

UN MV 

(Wald) 

OV MV UN MV 

Urban case A 

(243 / 571) 

Typical BPL 

urban class 
1.60 

 
0.01 

 

0.26 0.12 

Urban case B 

(203 / 487) 

Aggravated 

BPL urban  
0.34 

 
0.03 

 

0.51 0.12 

Suburban case 

(290 / 603) 

BPL suburban 

class 
-0.27 

 
0.003 

 

0.16 0.04 

Rural case 

(327 / 635) 

BPL rural 

class 
-0.12 

 
0.0004 

 

0.44 0.03 

Average Absolute Percentage Change  

(%) 0.58 0.01 0.34 0.08 

 

 

• Also in the case of different coupling schemes, the same trade-off relation 

between the computation / comparison time and the capacity estimation accuracy 

occurs during the selection of the initial and modified statistical hybrid model. 

With reference to the average absolute percentage change of Tables 3, 6 and 7, 

Weibull and Wald channel attenuation statistical distributions remain a permanent 

selection when the OV MV and UN MV BPL topology classes are examined, 
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respectively, but Empirical channel attenuation statistical distribution can very 

satisfactorily cope with both distribution power grid types.  

 Concluding this Section, the main disadvantage that has been highlighted in [6] is 

mitigated in this paper when relatively high EMI policies occur; without estimating 

MLEs and without losing MLE computation and comparison time, the Empirical channel 

attenuation statistical distribution can successfully estimate the capacity of OV MV and 

UN MV BPL topology classes by achieving results that are better in at least the half of 

the cases in comparison with the respective results of the best channel attenuation 

statistical distribution of the initial statistical hybrid model. Even in the cases where the 

Empirical channel attenuation statistical distribution does not achieve the best capacity 

estimation results, the performance differences in comparison with the best channel 

attenuation statistical distribution remain limited.  

 

6. Conclusions 

 

 In this paper, the performance results of the modified statistical hybrid model 

have been compared against the results of the initial statistical hybrid model when 

various scenarios occur such as different power grid types, BPL topology classes,  

EMI policies and coupling schemes. In fact, based on the benchmark of [6],  

the Empirical channel attenuation statistical distribution has been compared against the 

Gaussian, Lognormal, Wald, Weibull and Gumbel channel attenuation statistical 

distributions with reference to the aforementioned scenarios. With reference to the 

capacity metrics of percentage change and average absolute percentage change as well as 

the first rule of thumb, the Empirical channel attenuation statistical distribution of the 

modified hybrid statistical model better estimates the capacity of the OV MV BPL 

topology classes in comparison with the Weibull channel attenuation statistical 

distribution of the initial statistical hybrid model when the default operation are assumed. 

Also, the capacity estimation results of the Empirical channel attenuation statistical 

distribution of the modified hybrid statistical model remain comparable to the ones of the 

Wald channel attenuation statistical distribution. Note that Weibull and Wald channel 

attenuation statistical distributions achieve the best capacity estimation results when the 

initial statistical hybrid model is adopted and the default operation settings are assumed.  

When different EMI policies, which are more protective to the other telecommunications 

services that coexist with BPL systems and are characterized by relatively lower IPSD 

limits (e.g., German Reg TP NB30 and BBC/NATO proposal), are assumed, same results 

concerning the capacity estimation result comparison between the Empirical channel 

attenuation statistical distribution and the set of channel attenuation statistical 

distributions of the initial statistical hybrid model occur although the percentage change 

and average absolute percentage change significantly increase as IPSD limits of the 

examined EMI policies decrease. In addition, the same number of unsuccessful capacity 

estimations approximately occurs between the Empirical channel attenuation statistical 

distribution and the best channel attenuation statistical distribution of the initial statistical 

hybrid model in relation with the percentage change. In the scenario of different coupling 

schemes, the impact of the different coupling schemes remains negligible on the 

percentage change and the average absolute percentage of all the channel attenuation 

statistical distributions in comparison with the respective impact of the different EMI 

policies. Again, the performance results of the Empirical channel attenuation statistical 

distribution coincide with the ones of the default operation settings scenario. In addition, 
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a trade-off between the computation / comparison time and the capacity estimation 

accuracy has been defined for the initial and modified statistical hybrid models. Hence, 

apart from the high capacity estimation performance of the Empirical channel attenuation 

statistical distribution, the modified statistical hybrid model achieves low computation 

time and zero comparison time since only one, say, the Empirical channel attenuation 

statistical distribution, occurs. Concluding this paper, the proposed modified statistical 

hybrid model with its Empirical channel attenuation statistical distribution offers a rapid 

and accurate upgrade of the initial statistical hybrid model that is considered as a 

valuable simulation tool towards the enrichment of BPL topology classes with realistic 

BPL topology members. 
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