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Abstract—Decoding complexity of convolutional and trellis
codes by Viterbi decoder can be reduced by applying suggested
merging algorithm to the Forney code trellis. The algorithm can
be applied for every trellis section separately, which is convenient
for time-varying codes, and it outputs the minimal trellis of the
section. In case of convolutional codes, the same minimal trellis
of every section can be obtained from the syndrome trellis of
proposed split code.

I. INTRODUCTION

A. History and Motivation

Convolutional codes were introduced by Elias in 1955 [1].
These codes become popular when in 1967 Viterbi invented
maximum-likelihood decoding algorithm [2] and Forney [3]
drew a “code trellis” which made understanding of Viterbi
algorithm easy and its maximum-likelihood nature obvious.
Convolutional codes are linear and their trellis can be obtained
from a generator matrix. One can draw a trellis arbitrarily and
obtain in this way a wider class of so-called trellis codes.

Up to now convolutional codes and trellis codes, see e.g.
[4], are widely used in telecommunications, computer security
[5] and so on. We would like to decrease decoding complexity
for these codes by minimizing code trellises.

To introduce constant and time-varying trellis codes we
will give a couple of examples of simple binary convolutional
codes. Detailed explanations can be found e.g. in [6].

B. Example of rate R = 1/2 binary convolutional code C1/2

Fig. 1 shows encoder of the code based on the shift-register,
which consists of ν = 2 binary (q = 2) memory elements. At
the input, the decoder has one (k = 1) binary information
sequence u, ui ∈ Fq = F2, and the decoder outputs n = 2
binary code sequences v(1) and v(2). The output can be seen
as a sequence of vectors (v

(1)
i , v

(2)
i ) of length n = 2, which

are called blocks of the convolutional code, i = 1, 2, .... The
rate of code is R = k/n = 1/2.

An equivalent description of the code is shown in Fig. 2
by Forney trellis. Every codeword is represented by a path
in the trellis that starts from the zero state 00 and goes to
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Fig. 1: Encoder of rate 1/2 convolutional code C1/2

the right. The branch labels give n-blocks of the code. The
number of states in one level is qν = 4, which is called the
trellis complexity. The shown trellis consists of sequentially
connected identical trellis sections, hence the code is constant
in time. If the trellis consist of different sections then the
code is called time-varying. Such a code can be obtained
by changing connections in the encoder for every block. In
general, one can arbitrarily draw a trellis and prescribe n-
blocks of q-ary symbols to the branches. The obtained code
is not linear in general and is called trellis code. If sections
of time-varying trellis code are periodically repeated then the
code is called periodically time-varying code.
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Fig. 2: Forney [3] trellis of the code C1/2

The Viterbi decoder (see e.g. [6]) performs one addition for
every q-ary symbol on trellis and makes one binary selection
when two edges merge together. Complexity of Viterbi de-
coder per trellis section in Fig. 2 is 16 additions and 4 binary
selections.
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C. Example of high rate R = 2/3 convolutional code C2/3

An encoder of rate R = 2/3 convolutional code C2/3 is
shown in Fig. 3.
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Fig. 3: Encoder of rate 2/3 convolutional code C2/3

This encoder has ν = 2 binary memory elements as well.
The Forney trellis section is shown in Fig. 4 and has qν = 4
states s0, s1, ..., s3.
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Fig. 4: Forney trellis section S

Complexity of Viterbi decoder of the Forney trellis section
S for rate 2/3 convolutional code includes:
• nqνqk = 48 additions and
• qν(qk − 1) = 12 binary selections.

Observe that decoding complexity of convolutional code in-
creases with k by factor qk. Can we instead have factor
qmin{k,n−k} in complexity like for block codes [7]? In this
paper, we give an answer “yes” to this question.

D. Our contribution

1) We show that Viterbi decoding complexity of convo-
lutional and trellis codes can be reduced by applying
suggested merging algorithm to the Forney code trellis.

2) Most of classical theoretical results [6] are obtained for
time-varying convolutional codes, which in general are
better than constant codes [8], [9]. Proposed method can
be used to obtain the minimal trellis for time-varying
codes as well, since it minimizes each trellis section
separately.

3) In case of convolutional codes, the same minimal trellis
of every section can be obtained algebraically from the
syndrome trellis of proposed split code.

II. MERGING ALGORITHM

In Fig. 5a we show a detailed fragment of the trellis section
S from Fig. 4. Detailed trellis means that every edge is labeled
by one symbol from Fq . We assume that solid edges are
labeled by 0 and dashed edges by 1. Let us merge together
two shown vertexes since the decoder will come to them from
the initial state 00 with edges labeled by the same symbol.
The result of merging is shown in Fig. 5b.
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Fig. 5: Merging fragment of the detailed section S

Such mergable from left or right vertexes as shown in Fig. 6
we call twins.

α v1

α v2

(a) Left twins v1, v2

v3 β

v4 β

(b) Right twins v3, v4

Fig. 6: Twin vertexes

Algorithm 1 (Merging algorithm). Merge twin vertexes until
no twin vertexes exist.

If we apply Merging algorithm to the trellis section S we
will get the merged section shown in Fig. 7.
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Fig. 7: Section S after detalization and merging

For this trellis section the Viterbi algorithm requires:
• 32 additions (edges) and
• 12 selections.
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As a result, we decrease the number of additions in comparison
with Forney section. We see that Viterbi decoding complexity
was decreased despite trellis complexity increased from 4 to
8.

Can we apply Merging algorithm to any trellis code? Fig. 8
shows that the answer is “no” in general.

3 codewords

merging →

4 codewords

Fig. 8: Illegal merging

Theorem 1. Megring is legal if and only if it does not increase
the number of codewords.

Which codes have mergable trellises? For block codes this
question was answered in [10], [11]. We will consider the case
of slightly more general codes and will give an answer in the
next section.

III. RECTANGULAR SPLIT CODES

In a trellis section S, see Fig. 4, every edge starts from a root
state sroot, is labeled by a codeword v = (v(1), v(2), . . . , v(n)),
and ends at the state sgoal.

Definition 1. Split code S is the set {(sroot, v, sgoal)} of all
words in the trellis section.

This means that every word of a split code includes a
starting and ending states in addition to the block v. Blocks v
can repeat in a split code.

Example 1. For the trellis section S in Fig. 4 the split code
is

S = {(s0, 0, 0, 0, s0), (s0, 1, 1, 0, s1), . . . , (s3, 1, 0, 1, s3)}

or

S = { (0, 0, 0, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 1), . . . ,

(1, 1, 1, 0, 1, 1, 1) }.

Hence, we represented a split code as usual block code, which
can be shown by a usual trellis like in Fig. 9.

Given t, we represent a codeword of S as s = (a, b), where
a is the t-beginning of s and b is the ending.

Definition 2. Split code S is rectangular if for every t:
from (a, c), (a, d), (b, c) ∈ S follows (b, d) ∈ S.

c d
a ? ?
b ? ?

Rectangular codes were introduced and investigated in [10]
and [11] from where we obtain the following corollaries.
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Fig. 9: A trellis for the split code S

A. Properties of split codes

Given a detailed trellis of a split code with the set V of
vertexes, set Vt of vertexes for level t, set E of edges, and the
set R of root states, the Viterbi algorithm requires:
• |E| additions
• ρ = |E| − |V |+ |R| binary selections (cycle rank of the

graph).

A trellis without twin vertexes is called piproper.

Theorem 2. A split code has unique biproper trellis if and
only if the code is rectangular.

Theorem 3. The biproper trellis of a rectangular split code:
• can be obtained from any trellis of the split code using

merging algorithm
• minimizes |Vt| for any t, i.e., it minimizes trellis complex-

ity and is called the minimal trellis
• minimizes |V |
• minimizes |E|, the number of additions
• minimizes ρ = |E| − |V | + |R|, the number of binary

selections

Theorem 4. Every linear split code is rectangular.

Proof: From

(a, c), (a, d), (b, c) ∈ S

follows

−(a, c) + (a, d) + (b, c) = (b, d) ∈ S.

Theorem 5 ([12]). Split code of a trellis section of a convo-
lutional code is linear.

Hence for a convolutional code we can apply merging
algorithm to obtain a biproper trellis, which is minimal de-
tailed trellis that minimizes decoding complexity. The class
of rectangular split codes is much wider than the class of
linear split codes. For arbitrary trellis code one can check
its rectangularity using Theorem 1, since from Theorem 2 a
trellis is mergeable iff the code is rectangular. If the code is
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rectangular then the following theorem shows that we reached
our goal.

Lemma 1. Let the Forney trellis section of q-ary rectangular
trellis code of rate R = k/n > 1/2 has qν states then the
following bounds hold for the minimal detailed trellis section

|V | ≤
[
2(qn−k+1 − 1)

q − 1
+ (2k − n− 1)qn−k

]
qν (1)

|E| ≤
[
2q(qn−k − 1)

q − 1
+ (2k − n)qn−k+1

]
qν (2)

ρ ≤
[
(2k − n)(q − 1)qn−k + qn−k − 1

]
qν (3)

Proof: (Sketch). Minimal trellis of a rectangular split code
is biproper, hence the number of vertexes |Vt| and |Vt+1| can
differ by the factor q at maximum. Let us first explain the idea
of the proof using an example of the code C2/3. To maximize
|V |, |E|, ρ the first k subsections should be of the fork type
”<” or fork and merge type ”x”. The first subsection in Fig. 7
where the number of vertexes was increased q = 2 times from
4 to 8 is of type ”<”. The second subsection in Fig. 7 is of the
fork and merge type ”x” and it keeps the number of vertexes 8.
If it would be of type ”<”, then the number of vertexes would
increase to 16 and in the last subsection it can not decrease to
4 since the trellis is biproper. Totally we should have k = 2
subsections of diverging types ”<” or ”x” to have rate k/n.
The last subsection can be of the merging type ”>” only.

In general, for k > n/2 it should be n− k first subsections
of type ”<” to maximally increase the number of vertexes
and edges, then 2k − n subsections of type ”x”, and n − k
last subsections of type ”>”. The statement of the lemma was
obtained by direct computations.

Theorem 6. Complexity (the number of additions+selections)
of the Viterbi algorithm on a section of q-ary rectangular trellis
code with the minimal trellis has an order of

nqmin{k,n−k}qν .

Proof: For low rate codes, k ≤ n/2, the decoding com-
plexity with detailed Forney trellis consists of |E| = nqkqν

additions and ρ = (qk − 1)qν selections and with minimal
trellis it can not be larger. For high rate codes the statement
follows from Lemma 1.

IV. MINIMAL TRELLIS SECTIONS FOR CONVOLUTIONAL
CODES

The minimal trellis of a (linear) convolutional code can be
obtained using a parity check matrix of the complete code
using [13]. If the code is time-varying, then it may be not
easy to find a parity check matrix of the complete code. We
will show that for any convolutional code one can minimize
trellis sections one by one. This is convenient for time-varying
codes.

We will show it using an example of the constant convo-
lutional code C2/3. The same method can be applied for a
time-varying convolutional code since we process every trellis
section separately.

From the encoder of C2/3 on Fig. 3 we obtain its generator
matrix

G =

 G0 G1

G0 G1

. . .

 , (4)

where G0 =

(
1 0 1
1 1 0

)
and G1 =

(
1 1 1
0 0 1

)
.

Hence the split code S in Fig. 9 for i-th block, i ≥ 2, of
the convolutional code can be generated by the matrix GS

GS =

(
I2 G1

G0 I2

)
=


1 0 1 1 1
0 1 0 0 1

1 0 1 1 0
1 1 0 0 1

 ,

where I2 is 2× 2 identity matrix. The split code S is a block

binary [2ν + n, ν + k] = [7, 4] code with a generator matrix
GS in a systematic form. For the information vector u =(
u
(1)
i−1, u

(2)
i−1, u

(1)
i , u

(2)
i

)
, a codeword of the split code S

c =
(
u
(1)
i−1, u

(2)
i−1, u

(1)
i , u

(2)
i

)
GS

=
(
u
(1)
i−1, u

(2)
i−1, v

(1)
i , v

(2)
i , v

(3)
i , u

(1)
i , u

(2)
i

)
= (sroot, v, sgoal)

consists of the initial (root) state of the encoder

sroot =
(
u
(1)
i−1, u

(2)
i−1

)
,

the i-th block of the convolutional code

v =
(
v
(1)
i , v

(2)
i , v

(3)
i

)
,

and the final (goal) state

sgoal =
(
u
(1)
i , u

(2)
i

)
.

Since matrix GS is in a systematic form, it is a trivial task
to get a parity check matrix of the code S

HS =

 1 0 1 0 0 1 1
1 0 0 1 0 0 1
1 1 0 0 1 1 0


using column permutations and the following rule for an [n, k]
linear code: if G = (P |Ik) is a generator matrix then H =
(In−k| − PT ) is a parity check matrix for the code.

The minimal code trellis of the [n, k] = [7, 4] split code
S can be obtained from a parity check matrix HS =
(h1, h2, . . . , h7) using the Wolf method [7] as follows. The
states in the trellis we will numerate by vectors a of length
n − k = 3 over F2. Each codeword c = (c1, c2, . . . , c7) ∈ S
starts in the trellis from zero state at level 0, goes to state a1 =
c1h1 at level 1, then goes to state a2 = c1h1+c2h2 = a1+c2h2
at level 2, and so on. After the last symbol, the codeword
arrives to the state an = c1h1 + ... + cnhn = cHT

S = 0.
The obtained “syndrome” trellis in shown in Fig. 10, where
each path has form (sroot, v, sgoal). This allows us to extract
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Fig. 10: The minimal syndrome trellis for the split code S

the minimal trellis for section S shown in Fig. 7, hence it
coincides with the result of the merging algorithm.

Theorem 7. Obtained syndrome trellis of the section S is
minimal. Decoding complexity of the Viterbi decoder with this
trellis has order of

nqmin{k,n−k}qν .

Proof: The code is linear and hence rectangular. The
trellis minimality follows from Theorem 3 since the syndrome
trellis is biproper by construction. To estimate complexity one
can use the general statements of Lemma 1 or Theorem 6
to estimate the order of complexity. However, in this case it
is easy to estimate the order of the complexity as follows.
The split code is a linear [N,K] = [2ν + n, ν + k] code
with redundancy r = N − K = ν + (n − k). The trellis
complexity of the syndrome trellis can not be more than the
number qr = qn−kqν of q-ary vectors of length r and can not
be more than the number qK = qkqν of codewords of the split
code. From here we get the statement of the theorem.

V. DECODING WITH PRECOMPUTATION FOR FORNEY
TRELLIS

Despite minimization of code trellises has independent
interest, to be fare we will compare decoding complexity using
a minimal trellis and the following method of precomputation,
see also [14].

In the Forney trellis section S, every vector v of length
n = 3 is repeated twice and for each branch we spend n
additions to update the metric in the Viterbi decoder. Let us
instead precompute the length of each vector in Fnq , then each
precomputed length will be used twice and will decrease the
number of additions.

For our example with q = 2, n = 3, k = 2, ν = 2 the
direct length precomputation requires (n−1)qn additions and
qk+ν additions to sum the lengths of edges with initial metrics.
Totally we have (n− 1)qn + qk+ν = 16 + 16 = 32 additions
like in the case of using the minimal trellis.

The split trellis (tree) of Fnq shown in Fig. 11 allows to
decrease the number of additions to (qn+1 − q2)/(q − 1) and
get totally (qn+1 − q2)/(q − 1) + qk+ν = 12 + 16 = 28
additions.

0

1

Fig. 11: Split trellis for F 3
2

VI. COMPLEXITY OF DIFFERENT DECODING METHODS

Denote the complexity of Viterbi decoder for a trellis
section, i.e., the number of additions and binary selections,
by κ with index:
• M for merged or minimal trellis,
• F for Forney trellis,
• P - using precomputation.

Then we have:

κF ∼ nqkqν
κP ∼ qkqν + qn

κM ∼ nqmin{k,n−k}qν

We see that only minimal trellis decoding gives decrease
of complexity order for high rate codes. However, for small n
precomputation can be simpler as we can see in the following
table, which shows: number of additions E and selections ρ
for rate (n− 1)/n binary convolutional codes with ν = 2.

n 3 4 5
EM 32 48 64
EP 28 60 124
EF 48 128 320
ρM 12 20 28

ρF = ρP 12 28 60

TABLE I: Number of additions E and selections ρ for rate (n−1)/n
binary convolutional codes with ν = 2.
M - merged, F - Forney trellis, P - using precomputations

VII. DISCUSSION

The minimal trellis with complexity ∼ nqmin{k,n−k}qν can
also be obtained using a parity check matrix of complete
convolutional code [13].

Advantages of merging (M) and precomputation (P) ap-
proaches:
• they do not require linearity or any algebraic structure of

the code
• rectangularity can be checked by the proposed test in

Theorem 1
• “merging” and “precomputation” approaches can be ap-

plied for terminated, truncated, and tail-biting codes
• every trellis section can be processed separately, which

is good for time-varying codes.
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CONCLUSIONS

• We proposed a merging algorithm to construct minimal
trellis sections for a wide class of time-varying convolu-
tional or trellis codes.

• The complexity of Viterbi decoder with the merged trellis
section has order

∼ nqmin{k,n−k}qν ,

which depends on the code rate k/n similar to block
codes.

• For small code length decoding with precomputation can
be simpler than the one with merged trellis.

• For time-varying or constant convolutional codes we
propose an algebraic approach to obtain the minimal
trellis section using the syndrome trellis of correspondent
split code.
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