02. - 07.09.2017, Göttingen # **Tagungsnummer** Deutsche Bodenkundliche Gesellschaf P53 ### **Thema** AG Bodengase Neue Entwicklungen bei Methoden zur Messung und bei der Modellierung von Spurengasflüssen #### Autoren S. Wirth¹, M. Hoffmann², H. Beßler³, C. Engels³, H. Jochheim⁴, M. Sommer⁵, J. Augustin¹ ¹Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Landschaftsbiogeochemie, Müncheberg; ² Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Forschungs-Informationssysteme, Müncheberg; ³Humboldt University Berlin, Albrecht-Daniel-Thaer Institut, Berlin; ⁴Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Landschaftssystemanalyse, Müncheberg; ⁵Leibniz-Zentrum für Agrarlandschaftsforschung (ZALF) e.V., Institut für Bodenlandschaftsforschung, Müncheberg ## **Titel** Combining a root exclusion technique with continuous measurements of CO₂ by chambers and inside soil for a pin-point separation of ecosystem respiration in croplands ## **Abstract** To better assess ecosystem C budgets of croplands and understand their potential response to climate and management changes, detailed information on the mechanisms and environmental controls driving the individual C flux components are needed. This accounts in particular for the ecosystem respiration ($R_{\rm eco}$) and its components, the autotrophic ($R_{\rm a}$) and heterotrophic respiration ($R_{\rm h}$) which vary tremendously in time and space. Therefore, we developed and tested a method to separate $R_{\rm eco}$ into $R_{\rm a}$ (as the sum of $R_{\rm a\,(shoot)}$ and $R_{\rm a\,(root)}$) and $R_{\rm h}$ in order to detect temporal and small-scale spatial dynamics within their relative contribution to overall $R_{\rm eco}$. <ins datetime="2017-01-08T10:49"><</ins>Investigations were carried out for winter wheat (Triticum aestivum) during the crop season 2015 at an experimental plot (CarboZALF-D) located in the hummocky ground moraine landscape of NE Germany. $R_{\rm eco}$ was derived from CO_2 flux measurements from plant stand and soil during nighttime using automatic chambers. $R_{\rm h}$ was derived from CO_2 efflux measurements from fallow next to the automatic chambers using CO_2 sampling tubes in 10 cm soil depth. $R_{\rm a\,(root)}$ was calculated as the difference between CO_2 efflux measurements in planted soil and $R_{\rm h}$. $R_{\rm a\,(shoot)}$ was calculated as $R_{\rm eco}$ - $R_{\rm a\,(root)}$ - $R_{\rm h}$. $R_{\rm eco}$ varied seasonally from <1 to 9.5 g C m⁻² d⁻¹, and was higher in adult (a) and reproductive (r) than juvenile (j) stands (g C m⁻² d⁻¹: j 1.2, a 4.6, r 5.3). Observed $R_{\rm a}$