Tagungsbeitrag zu: DBG-Jahrestagung Titel der Tagung: "Böden - eine endliche Ressource" DBG, 5.-13. September 2009, Bonn Berichte der DBG (nicht begutachtete online Publikation) http://www.dbges.de

Böden und gentechnisch veränderter Mais (*Bt*-Mais) - *Teil II* -Effekt der physico-chemischen Parameter der Böden auf die Retardation von *Cry3Bb1*

Mariana-Christin Albers¹, Sibylle Pagel-Wieder^{1*}, Christian Ahl², Frank Gessler¹, Heinz Hunfeld¹, Jürgen Niemeyer¹

1 Zusammenfassung

Während der Vegetationsperiode gelangen Bt-Proteine. die in gentechnisch verändertem Mais (Bt-Mais) exprimiert werden, sowohl über Erntereste als auch über Polleneintrag und Wurzelexsudate in und die Böden werden dort an Bodenpartikeln sorbiert. Vor dem Hintergrund, dass Bt-Mais zunehmend angebaut wird, erfolgten Untersuchungen zur Sorption des Proteins Cry3Bb1 unter anderem an Proben der Tonfraktionen einer Freisetzungsfläche, auf der Bt-Mais angebaut wurde (siehe "Böden und gentechnisch veränderter Mais (Bt-Mais) -Teil I"). Der Mechanismus der Cry3Bb1-Sorption muss zudem näher erfasst werden, um letztendlich Informationen über die Verfügbarkeit der *Bt*-Proteine zu erhalten. Daher wurden die Böden der Freisetzungsfläche zusätzlich auf ihre oberflächenchemischen und chemischmineralogischen Eigenschaften hinreichend untersucht. In Zusammenarbeit mit dem Institut für Biostatistik der Leibniz Universität Hannover (Frank Schaarschmidt) wurden diese gewonnenen Daten mit den jeweiligen Verteilungskoeffizienten (k), die mathematisch aus der

¹Institut für angewandte Biotechnologie der Tropen an der Georg-August-Universität Göttingen, 37079 Göttingen ²Abteilung Agrarpedologie, DPNW, Georg-August-Universität Göttingen

*E-Mail: spagel@gwdg.de

linearen Sorptionsisotherme berechnet wurden, in Beziehung gebracht und statistisch ausgewertet.

Anhand eines Scatterplots wurde der Zusammenhang zwischen k und den jeweiligen bodenkundlichen Parametern der Tonfraktion dargestellt. Zwischen k und dem C_{org}-Gehalt der Tonfraktion des Oberbodens wurde ein positiver Zusammenhang festgestellt. Dahingegen zeigte die Tonfraktion des Unterbodens mit abnehmendem C_{org}-Gehalt eine höhere Affinität zu Cry3Bb1, was den Ergebnissen zur Cry1Ab-Sorption entspricht (*Pagel-Wieder et al., 2004*,

Schlüsselworte: *Bacillus thuringiensis*, *Bt*-Mais, *Cry3Bb1*-Protein, Retardation

2 Problemdarstellung

2007).

Abb 1: Schematische Darstellung des Übergangs der Bt-Proteine in den Boden

Das Protein *Cry3Bb1* aus *Bt*-Mais gelangt über Wurzelexsudate und Ernterückstände in den Boden und wird dort an Bodenpartikeln sorbiert (*Abb. 1*). Durch die Sorption wird der mikrobiologische Abbau der *Bt*-Proteine gehemmt, so dass die insektizide Wirkung erhalten bleibt. Um die Verfügbarkeit der *Bt*-Proteine zu erfassen, muss der Mechanismus der Sorption näher charakterisiert werden.

3 Standort

Der Standort des Versuchsfeldes befand sich im Maintal bei Würzburg (Hanglage). Das Felddesign (*Abb. 2*) bestand aus 32 Parzellen (Parzelle: 31 m x 40 m).

Abb. 2: Parzellenplan mit Lage der Profilgruben (Legende: Bt → Bt-Mais (MON88017); Iso →Isogene Linie (DKC 51439); Kon1 → Konventionelle Sorte (Benicia); Kon2→ Konventionelle Sorte (DK 315))

Die in *Tabelle 1* aufgeführten Bodentypen konnten durch die Profilaufnahmen für das Versuchsfeld festgestellt werden.

Tab.	1:	Bodentvpen	der	Freisetzungsfläche
				J

Profil 1		
Bodentyp: Ausgangsm	aterial:	Braunerde Rest der Mittelterrassen
		schotter des Mains
Tiefe [cm]	Horizont	Beschreibung
0-33	Ар	Pflughorizont, homogenisiert
33-40	IIBv	Graue Steinlage
40-60	IICv	Rostbraunes, dichtgelagertes
		Grobsandmaterial

Profil 2		
Bodentyp: Ausgangsma	aterial:	Parabraunerde-Pseudogley Angewehter oder während der letzten 800-900 Jahre zusammengeschwemmter Löß
Tiefe [cm]	Horizont	Beschreibung
0-33	Ар	Pflughorizont, homogenisiert
36-60	Al/Sw	Tonauswaschungshorizont,
60-100	Bsg/Sd	stauwasserbeeinflusst Anreicherung von Fe/Mn- Oxiden, stauwasserbeeinflusst

Profil 3		
Bodentyp: Ausgangsma	aterial:	Hochflutlehm Tonige, vor dem Holozän abgelagerte Absetzungen
Tiefe [cm]	Horizont	Beschreibung
0-40 40-100	Ap II Cv	Pflughorizont, homogenisiert Tonlage, stark verdichtet

4 Sorption

Um die Sorption von Cry3Bb1 an der Tonfraktion (< 2 µm) zu messen, wurden die Proben der Tonfraktion mit 1 mL Proteinlösung versetzt und anschließend Gleichgewichtseinstellung 30 zur min geschüttelt. Nach einem Zentrifugationsschritt bei 15.000 rpm erfolgte die Messung der Proteinkonzentration in der Ausgangsund der Gleichgewichtslösung mittels *Immunosorbent* Enzyme-linked Assay (ELISA)).

Abb. 3: Versuchsaufbau (siehe auch "Böden und gentechnisch veränderter Mais (Bt-Mais) -Teil I")

Die Sorption von *Cry3Bb1* an der Fraktion < 2 μm wurde mathematisch mit einer linearen Isotherme (*Abb. 4*) angepasst:

$$X_{S} = k \cdot X_{L}$$

- X_S zeigt die Menge an Cry3Bb1, die an der jeweiligen Probe sorbiert wurde.
- X_L ist der Anteil an Cry3Bb1, der in der Lösung nach Sorption im Gleichgewicht mit der Festphase vorliegt.
- k Verteilung zwischen der Konzentration des freien und gebundenen Cry3Bb1-Proteins.

Abb. 4: Sorption von Cry3Bb1 an Tonfraktionen der Oberbodens der Parzellen A1 bis A8

4 chemisch-mineralogische Bodenparameter

Verschiedene physikalisch-chemische Parameter der Fraktion < 2 μ m wurden bestimmt.

Um den Einfluss der organischen Substanz auf die Sorption von *Cry3Bb1* zu erfassen, wurden die C_{org}-Gehalte der Tonfraktion (*siehe Abb. 5*) durch oxidative Verbrennung im Sauerstoffstrom bestimmt.

Abb. 5: Corg-Gehalt der Fraktion < 2 μm

In früheren Untersuchungen wurde ein enger Zusammenhang zwischen der Größe der spezifischen äußeren Oberfläche (BET) und der Sorption von *Cry1Ab* gefunden (*Pagel-Wieder et al., 2007*). Daher erfolgte die Bestimmung der spezifischen äußeren Oberfläche mittels BET.

Abb. 6: Spez. äußere Oberfläche der Fraktion < 2 μm

Die Bestimmung der spezifischen äußeren Oberflächenladung (*Abb. 7*) erfolgte durch Titration mit Poly-DADMAC in einer automatischen Titrationseinheit, die mit einem Particle Charge Detector zur Endpunkterkennung gekoppelt ist.

Abb. 7: Spez. äußere neg. Oberflächenladung der Fraktion < 2 μm

Die Gehalte an amorphen Eisen- und Manganoxiden/hydroxiden (*Abb. 8*) wurden durch Extraktion mit Oxalat erfasst. Die Bestimmungen der gesamten pedogenen Oxide und Hydroxide erfolgte durch Extraktion mit Na-Dithionit.

Abb. 8: Feo/Fed und Mno/Mnd der Fraktion < 2 µm

5 Zusammenhang zwischen Bodenparametern und Verteilungskoeffizient

Abb. 9: Scatterplot der Variablenpaare (Auswertung durch Frank Schaarschmidt, Institut für Biostatistik, Leibniz Universität Hannover)

Über einen Scatterplot (*Abb. 9*) wurden die Verteilungskoeffizienten k in Abhängigkeit von C_{org}, der negativen Oberflächenladung, der spez. äußeren Oberfläche und des Gehalts an amorphen Eisen- und Manganoxiden der Fraktion < 2 µm der Oberböden (i) und der Unterböden (l) dargestellt, ausgewertet und in einen statistischen Zusammenhang gebracht. Hiernach können folgende Aussagen getroffen werden:

$k \leftrightarrow C_{\text{org}}$:

- positiver Zusammenhang im Oberboden $(R^2 = 0.36)$
- negativer Zusammenhang im Unterboden $(R^2 = -0.42)$
- $k \leftrightarrow Mn_o$
- schwach positiver Zusammenhang im Oberboden ($R^2 = 0,26$)
- positiver Zusammenhang im Unterboden $(R^2 = 0.76)$

$k \leftrightarrow \text{Oberfläche}$:

- schwach negativer Zusammenhang im Oberboden ($R^2 = -0.27$)
- positiver Zusammenhang im Unterboden $(R^2 = 0.32)$

Bedingt durch die Streubereiche zwischen Ober- und Unterboden besteht Grund zu der Annahme, dass eine weitere latente Variable, die sich zwischen Ober- und Unterboden unterscheidet, einen wesentlichen Einfluss auf die anderen Variablen hat. Daher können bei gemeinsamer Betrachtung von Ober- und Unterboden Scheinkorrelationen auftreten.

Danksagung

Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für Bildung und Forschung unter dem Förderkennzeichen FKZ 0313279G gefördert. Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.

Literatur

Pagel-Wieder, S., F. Gessler, J. Niemeyer, D. Schröder (2004): Adsorption of the Bacillus thuringiensis toxin (Cry1Ab) on Na montmorillonite and on the clay fractions of different soils. Journal of Plant Nutrition and Soil Science 167, 1-5.

Pagel-Wieder, S., J. Niemeyer, W. R. Fischer, F. Gessler (2007): Effects of physical and chemical properties of soils of the insecticidal protein (Cry1Ab) from Bacillus thuringiensis at Cry1Ab protein concentrations relevant for experimental field sites. Soil Biology & Biochemistry 39, 3034-3042.