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Abstract 24	

Antibiotics are used for fighting pathogens, but also target our commensal bacteria as a side 25	

effect, disturbing the gut microbiota composition and causing dysbiosis and disease1-3. 26	

Despite this well-known collateral damage, the activity spectrum of the different antibiotic 27	

classes on gut bacteria remains poorly characterized. Having monitored the activities of 28	

>1,000 marketed drugs on 38 representative species of the healthy human gut microbiome4, 29	

we here characterize further the 144 antibiotics therein, representing all major classes. We 30	

determined >800 Minimal Inhibitory Concentrations (MICs) and extended the antibiotic 31	

profiling to 10 additional species to validate these results and link to available data on 32	

antibiotic breakpoints for gut microbes. Antibiotic classes exhibited distinct inhibition spectra, 33	

including generation-dependent effects by quinolones and phylogeny-independence by β-34	

lactams. Macrolides and tetracyclines, two prototypic classes of bacteriostatic protein 35	

synthesis inhibitors, inhibited almost all commensals tested. We established that both kill 36	

different subsets of prevalent commensal bacteria, and cause cell lysis in specific cases. 37	

This species-specific activity challenges the long-standing divide of antibiotics into 38	

bactericidal and bacteriostatic, and provides a possible explanation for the strong impact of 39	

macrolides on the gut microbiota composition in animals5-8 and humans9-11. To mitigate the 40	

collateral damage of macrolides and tetracyclines on gut commensals, we exploited the fact 41	

that drug combinations have species-specific outcomes in bacteria12 and sought marketed 42	

drugs, which could antagonize the activity of these antibiotics in abundant gut commensal 43	

species. By screening >1,000 drugs, we identified several such antidotes capable of 44	

protecting gut species from these antibiotics without compromising their activity against 45	

relevant pathogens. Altogether, this study broadens our understanding of antibiotic action on 46	

gut commensals, uncovers a previously unappreciated and broad bactericidal effect of 47	

prototypical bacteriostatic antibiotics on gut bacteria, and opens avenues for preventing the 48	

collateral damage caused by antibiotics on human gut commensals.   49	
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MAIN TEXT 50	

Medication is emerging as major contributor for changes in the composition of the human gut 51	

microbiota4,13-15. Such severe and long-lasting changes are associated, and in some cases 52	

causatively linked, to dysbiosis and a wide range of diseases16. Although several non-53	

antibiotic drugs may also have a previously unappreciated impact on the gut microbiome 54	

composition4,16,17, antibiotics, developed to have broad spectra and thereby target very 55	

diverse pathogens, are long known to take a heavy toll on our gut flora, causing a variety of 56	

gastrointestinal side-effects18, including Clostridioides (former Clostridium) difficile infections. 57	

Recently more attention has been given to this collateral damage of antibiotics on the gut 58	

microbiota and thereby on the host’s wellbeing. In vivo studies highlight links between the 59	

long-term microbiota compositional changes and host dysbiosis, including the development 60	

of allergic, metabolic, immunological and inflammatory diseases5-8,10,11,19-21. While uncovering 61	

the direct effects of different antibiotics on our gut flora is critical to improve general health, 62	

technical difficulties hamper routine testing of antibiotic susceptibility in anaerobes22,23. 63	

Currently available data on bacterial susceptibility to antibiotics is focused on invasive 64	

pathogens and offers little to no resolution in the diversity of the human gut microbiota24. 65	

Information is missing even for the most prevalent and abundant gut species, or ones 66	

recently associated with dysbiosis and disease25,26. In addition, existing animal or cohort 67	

studies have used a handful of antibiotics or merge data from different antibiotic classes, 68	

precluding systematic and general conclusions on the matter.  69	

We recently assessed the direct effect of ~1200 FDA-approved drugs on the growth 70	

of 38 prevalent and abundant or disease-associated human gut species under anaerobic 71	

conditions at a fixed concentration of 20 µM4. This initial screen (referred to hereafter as 72	

“screen”) included 144 antibiotics (Fig. 1a, Extended Data Fig. 1, Suppl. Table 1), with 73	

different classes having discernible effects on gut microbes (Fig. 1b). We validated these 74	

results by measuring 815 MICs (33 antibiotics and 2 antifungals for 17 species, 22 antibiotics 75	

for 10 additional species), using MIC gradient test strips (Fig. 1a, Extended Data Fig. 2, 76	

Suppl. Table 2 + 3). Despite differences in the experimental procedure, concordance 77	
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between data from the initial screen and MICs is very high: Specificity and sensitivity of 0.97 78	

(Extended Data Fig. 3a). The newly established MICs also correlate well with available data 79	

on antimicrobial susceptibility from databases such as EUCAST24 or ChEMBL27 (rs=0.69 and 80	

rs=0.64, respectively), despite differences in strains and media used (Extended Data Fig. 3b). 81	

Importantly, this new dataset considerably expands the available MICs, as much as by 80% 82	

for non-pathogenic bacteria (Fig. 1c, Extended Data Fig. 3c). Altogether, the initial screen 83	

and the new MIC dataset provide high-resolution information on the target spectrum of 84	

antibiotics on commensal gut microbes, which we explored further.  85	

The antibiotics tested exhibited strong class-dependent effects (Fig. 1b, d). 86	

Consistent with literature, aminoglycosides hardly affected gut microbes under anaerobic 87	

conditions28 and sulfonamides were inactive in the medium used for the screen4. Quinolones 88	

acted in a generation-dependent manner. First-generation variants were effective only on a 89	

narrow spectrum of microbes that included both commensal E. coli tested. Second- and 90	

third- generation quinolones increased the spectrum. Fourth-generation variants (developed 91	

to increase activity against anaerobes) inhibited all tested species, except for Akkermansia 92	

muciniphila (Fig. 1e, Extended Data Fig. 1, red box), a species associated with protection 93	

against different diseases and dysbiotic states29, and even positive responses to 94	

immunotherapy30. For β-lactams, resistance was patchy but distinct for different members 95	

and subclasses (Extended Data Fig. 2, 4a). For Bacteroidetes, we tested additional species 96	

and strains (in total 12 and 19, respectively) (Extended Data Fig. 4b, c), confirming that β-97	

lactam sensitivity and phylogenetic relatedness are uncoupled (Extended Data Fig. 4d). This 98	

argues for resistance mechanisms being strain-specific and horizontally transferred. 99	

Macrolides showed a strong impact on gut commensals and inhibited all tested microbes 100	

(Fig. 1d), except for the opportunistic pathogen C. difficile, which was resistant to all tested 101	

macrolides and clindamycin (Extended data Fig. 2, red box). This is in line with the 102	

associated risk of C. difficile infection after macrolide/clindamycin treatment31. Finally, 8 of 103	

the 9 tested tetracyclines inhibited nearly all tested microbes, which is surprising in the light 104	

of the gut microbiota being considered as reservoir for tetracycline resistance genes32.  105	
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Concentration-resolved MICs confirmed the same drug class-dependent trends observed in 106	

the screen (Fig. 1d, f). In addition, MICs allow for comparisons with clinical breakpoints, i.e. 107	

MICs at which a species should be considered resistant or susceptible (Fig. 1f). Overall, the 108	

gut microbes in our assays (anaerobic growth, gut mimetic growth medium33) were slightly 109	

more resistant to most antibiotic classes than previously reported for pathogens (aerobic 110	

growth, Mueller-Hinton agar). Tetracyclines were the exception, inhibiting commensals at 111	

significantly lower concentrations than what is reported for pathogens (Fig. 1f). Thus, 112	

commensals might be considerably less resistant to tetracyclines than previously anticipated 113	

and suggested by the detection of tetracycline resistance elements in fecal metagenomes.  114	

Recent in-vivo studies have shown that β-lactams and macrolides have a strong and 115	

long-lasting collateral impact on the gut microbiota composition and thereby on host health5-8. 116	

As β-lactams exhibited strain-specific effects (Extended Data Fig. 1, 2, 4) and are known to 117	

kill bacteria (bactericidal), they could irrevocably deplete specific members of the gut 118	

microbiota, thereby explaining their differential and long-lasting effects on the community 119	

composition. On the other hand, macrolides uniformly targeted all tested gut commensals 120	

(Fig. 1d) and are textbook bacteriostatic antibiotics, i.e. inhibit bacterial growth, but do not kill 121	

(at least at high numbers). In this case, the long-term community composition change is 122	

more difficult to rationalize, as all community members are inhibited, but should be able to 123	

regrow once drug is removed. Similarly, tetracyclines, another class of bacteriostatic 124	

antibiotics that acted on nearly all gut microbes we tested, have known gastro-intestinal side-125	

effects18, which are indicative of gut microbiome dysbiosis. We thus wondered at which level 126	

macrolides and tetracyclines exert a differential effect on gut microbes. Although traditionally 127	

both clinical use34-37 and basic research38,39 heavily rely on this distinction between 128	

bactericidal and bacteriostatic antibiotics, there are reports of drugs changing their killing 129	

capacity depending on the organism, drug concentration or medium tested40,41 (and 130	

increased evidence from meta-analyses that the distinction may have little relevance to 131	

clinical practice42,43). We therefore hypothesized that this bacteriostatic/bactericidal divide 132	

may be less rigid for gut commensals, which are more phylogenetically diverse than the few 133	
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pathogens usually tested, and hence provide a level where the effect of these drug classes 134	

on gut microbes becomes differential.  135	

The standard way to determine whether an antibiotic has bactericidal or bacteriostatic 136	

activity is to calculate time-kill curves, where the bacterial survivors are counted on agar at 137	

various time-points after drug treatment. If, over a significant period of antibiotic treatment 138	

(ranging from 5 to 24 hours), the number of colony forming units (CFU)/ml of culture 139	

decreases by more than 99.9%, the antibiotic is considered bactericidal40. We assessed the 140	

survival of 12 abundant gut microbes over a 5-hour treatment of either a macrolide 141	

(erythromycin or azithromycin) or a tetracycline (doxycycline) at 5 x MIC (Fig 2a + b, 142	

Extended Data Fig. 5). About half of the tested species decreased in survival by >99.9%, 143	

pointing to these drugs being bactericidal to several abundant gut microbes. To confirm this 144	

further, we tested the viability of B. vulgatus and E. coli ED1a upon erythromycin, 145	

azithromycin or doxycycline treatments using live/dead staining. Microscopy and flow 146	

cytometry assessment of live/dead bacteria corroborated the initial observations (Fig. 2c, 147	

Extended Data Fig. 6). As tetracyclines are considered bona-fide bacteriostatic drugs in E. 148	

coli, we were surprised to see that doxycycline effectively killed the commensal E. coli ED1a 149	

(Fig. 2a). We verified that these effects held also in the presence of oxygen (Extended Data 150	

Fig. 7a) and confirmed that doxycycline has a stronger bactericidal action on this natural 151	

isolate than on the domesticated E. coli K-12 lab strain, BW25113 (Extended Data Fig. 7b). 152	

In parallel, we excluded that the differences in killing capacity were confounded by growth 153	

rate, growth phase or MIC of the bacterial species tested (Extended Data Fig. 8). We also 154	

noticed that B. vulgatus and B. uniformis cultures decreased density in the presence of 155	

erythromycin (Fig. 2d). We confirmed by time-lapse microscopy that this was due to lysis. 156	

Erythromycin caused cell shape defects, including blebbing, cytoplasmic shrinkage, and 157	

ultimately cell lysis in both B. vulgatus and B. uniformis (Figure 2e, Movies 1-4). Altogether, 158	

this selective bactericidal activity of macrolides and tetracyclines on specific gut commensals 159	

could provide an explanation for the strong effects these drug classes have on the gut 160	

microbiota composition of human individuals. The gut microbes killed from the drug would be 161	
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inadvertently removed from community, whereas the ones being only inhibited could recover 162	

when the therapy stops.   163	

Knowing that drug combinations often have species-specific outcomes12, we 164	

reasoned that we could identify drugs that selectively antagonize the effect of antibiotics on 165	

gut microbes, while retaining activity against pathogens. Therefore, we screened the 166	

Prestwick library to identify antagonizing compounds to erythromycin or doxycycline on two 167	

abundant and prevalent gut microbes, B. vulgatus and B. uniformis (Fig. 3a, Extended Data 168	

Fig. 9). Of the 19 identified hits (Fig. 3b, Suppl. Table 4), we tested the 14 candidates with 169	

the strongest activity in a concentration-dependent manner (Extended Data Fig. 10a). Nine 170	

retained antagonistic activity over a broader concentration range, which we confirmed by 171	

checkerboard assays (Fig. 3c). The antidotes that showed the strongest antagonisms were 172	

the anticoagulant drug dicumarol, and two non-steroidal anti-inflammatory drugs, tolfenamic 173	

acid and diflunisal. While dicumarol rescued B. vulgatus from erythromycin and diflunisal 174	

from doxycycline, tolfenamic acid was able to protect B. vulgatus from both drugs. In 175	

addition, these interactions were able to at least partially rescue the killing of B. vulgatus by 176	

erythromycin and doxycycline (Extended Data Fig. 10b). We then probed two of these drugs 177	

for their ability to protect other abundant gut commensals and confirmed that both dicumarol 178	

and tolfenamic acid were able to counteract erythromycin on several species (Fig. 3d, 179	

Extended Data Fig. 11). In contrast, both drugs did not affect the potency of erythromycin on 180	

Staphylococcus aureus, Streptococcus pneumoniae and Enterococcus faecium, pathogens 181	

against which erythromycin is active/prescribed (Fig. 3e, Extended Data Fig. 12a). For 182	

example, tolfenamic acid and dicumarol at concentration ranges of 5-40 µM could rescue the 183	

growth of five out of seven tested abundant gut commensal species at clinically relevant 184	

erythromycin concentrations (Fig. 3f, Extended Data Fig. 12b). Altogether, our data provides 185	

a proof-of-principle for identifying antidotes that specifically mask the collateral damage of 186	

antibiotics on commensals. This concept would need to be further validated in the future in 187	

animal models. Antidotes may also need to be modified to late (colon)-release or non-188	
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absorbable formulations to ensure they reach the gut and to minimize adverse effects from 189	

their primary action. 190	

In summary, our study provides a high-resolution map of the collateral damage of 191	

antibiotics on 50 different resident gut microbes down to the level of individual drugs, species 192	

and partially even strains. We challenge the universal divide of antibiotics into bacteriostatic 193	

and bactericidal across bacteria, as this breaks down when tested beyond model organisms. 194	

Antibiotics with preferential killing of some species may be the most detrimental to our gut 195	

flora, although the first studies in a few healthy individuals point to the gut microbiota having 196	

some resilience against specific antibiotic regimens44. Understanding the underlying 197	

mechanisms for this selective killing might open up ways for the development of new 198	

antimicrobials, but also strategies for controlled microbiome modulation15. Finally, we provide 199	

a proof-of-concept that species-specificity of drug combinations12 can be exploited to identify 200	

antidotes that selectively protect the gut microbiota from the adverse effects of systemic 201	

antibiotic therapy. This new approach adds to proposed and existing strategies of gut 202	

microbiota protection against antibiotics, such as co-administration of activated charcoal45, β-203	

lactamases46, probiotics or (autologous) fecal transplants47. Overall, our results suggest that 204	

interactions of antibiotics and commensals merit deeper exploration, as our current 205	

knowledge of the mode(s) of action of antibiotics in model pathogens is not necessarily 206	

transferable to commensals.  207	
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METHODS 208	

Growth conditions 209	

All experiments from this study were performed in an anaerobic chamber (Coy Laboratory 210	

Products Inc) (2% H2, 12% CO2, 86% N2) and all materials and solutions used for these 211	

experiments were pre-reduced for at least 24 h before use unless specified otherwise. 212	

Bacteria used in this study were typically pre-cultured for two overnights: Cells were cultured 213	

in 5 ml modified Gifu Anaerobic Medium broth (MGAM) (HyServe GmbH & Co.KG, Germany, 214	

produced by Nissui Pharmaceuticals) and grown at 37°C overnight. The next day, cells were 215	

diluted 1/100 in 5 ml MGAM medium and grown at 37°C for a second overnight before 216	

starting the experiments.  217	

 218	

Quantitative assay for minimum inhibitory concentration determination with MICs test 219	

strips 220	

MICs test strips were purchased from Liofilchem or Oxoid (Suppl. Table 2). All MICs were 221	

measured under anaerobic growth conditions inside a Coy anaerobic chamber. Bacteria 222	

were precultured in MGAM for two overnights and cultures were diluted to OD578 = 0.5. 50 µl 223	

of the diluted culture were spread on a MGAM agar plate and allowed to dry for 15 min. The 224	

MIC test strip was placed on the agar with sterile tweezers, allowing the part with the lowest 225	

concentration touch the agar first. Plates were incubated at 37°C inside the anaerobic 226	

chamber, at least overnight and longer depending on the species-specific growth 227	

requirements. After formation of a symmetrical inhibition ellipse, plates were taken out of the 228	

chamber and imaged under controlled lighting conditions (spImager S&P Robotics Inc.) using 229	

an 18 megapixel Canon Rebel T3i (Canon Inc. USA). MICs were directly determined from 230	

the strip scale at the point where the edge of the inhibition ellipse intersects the MIC test 231	

strip. All MICs were determined in duplicates. In cases of an eight-fold difference between 232	

the two values, a third replicate was done. In all cases, this resulted in a clear outlier (> 8-fold 233	

different from other two MICs) that was removed from the dataset.  234	

 235	
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MIC comparison to ChEMBL and EUCAST databases 236	

Previously known MICs were extracted from the ChEMBL database (version 24)27 and 237	

EUCAST (obtained on May 14, 2018)24. Antibiotics from these two datasets were mapped to 238	

our dataset by name. Species were mapped using NCBI Taxonomy Identifiers and species 239	

names. For MICs from ChEMBL, a keyword-based approach was used to exclude 240	

experiments on species with mutations, deletions, insertions, etc. The EUCAST database 241	

contains a large number of reported MICs for each compound–species pair. We collapsed 242	

these to a single value by calculating the median MIC.  243	

Estimates on the abundance and prevalence of species in the healthy human gut 244	

microbiome were calculated using mOTUs v248 as follows: Relative species abundances 245	

were determined in 727 shotgun metagenomic samples from donors in the control groups of 246	

multiple studies from various countries and continents49-53. Prior to taxonomic profiling, 247	

metagenomes were quality controlled using the MOCAT2 -rtf procedure54, which removed 248	

reads with ≥95% sequence identity and an alignment length of ≥45bp to the human genome 249	

hg19. Taxonomic profiles were then created using mOTUs version 2.1.048 with parameters -l 250	

75 ; -g 2; and -c. Afterwards relative abundances below 10-4 were set to zero and species 251	

with nonzero abundance in <5 samples discarded. For the retained 1,350 species, 252	

prevalence was defined as the percentage of samples with nonzero abundance; a 253	

prevalence cut-off of 1% was chosen to classify species into “rare” and “common” species. 254	

For all species in the MIC dataset, we manually assessed their status as pathogenic or non-255	

pathogenic species using encyclopaedic and literature knowledge. Pathogenic species that 256	

occur in more than 1% of healthy people (i.e. are designated as “common”) were classified 257	

as “potentially pathogenic species” that can, for example, cause diseases in 258	

immunocompromised patients.  259	

 260	

Killing curves and survival assay 261	

Cells were precultured as described in the growth conditions section before being diluted to 262	

an OD578=0.01 and grown for 2 h at 37°C (unless specified otherwise). Next, cells were 263	

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.09.893560doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.09.893560
http://creativecommons.org/licenses/by/4.0/


	 11	

diluted 1/2 in MGAM containing a 10-fold MIC of erythromycin, azithromycin or doxycycline 264	

(final antibiotic concentration is 5-fold MIC) and incubated in the presence of the antibiotic for 265	

5 h at 37°C. At several time-points (0, 1h, 2h, 3h, 4h, 5h), 100 µl of cells were serial-diluted in 266	

PBS (10-1 to 10-8 dilutions) and plated on MGAM-Agar plates for CFU counting. When no 267	

cells were detected using this method, a bigger volume of culture (up to 2 ml) was plated to 268	

be able to detect CFUs. Agar plates were incubated overnight at 37°C and colonies were 269	

counted the next day, either manually, for low CFU numbers, or using the Analyze Particles 270	

tool from ImageJ55.  271	

 272	

Live/dead staining 273	

Cells were precultured as described in the growth conditions section before being diluted to 274	

an OD578=0.01 and grown for 2 h at 37°C. Cells were next diluted 1/2 in MGAM containing 275	

10-fold MIC of erythromycin, azithromycin or doxycycline (final concentration is 5-fold the 276	

MIC) and incubated in the presence of the antibiotic for 5 h at 37°C. Then, cells were 277	

live/dead stained using the LIVE/DEAD BacLight Bacterial viability and counting kit (#L34856 278	

Molecular Probes, ThermoFisher) according to the manufacturer's protocol before and after 279	

antibiotic treatment.  280	

 281	

Flow cytometry 282	

Stained cells were counted using a BD LSRFortessaTM flow cytometer. The forward and side 283	

scatter signals (488 nm) as well as the green and red fluorescent signals (488-530/30A filter 284	

and 561-610/20A filter, respectively) were acquired. The FSC/SSC detectors were set to 285	

logarithmic scale. The flow rate varied between 12 µl/min and 60 µl/min depending on the 286	

concentration of each sample, and the analysis was stopped when 10,000 target events 287	

were measured. Graphs were generated using the FlowJo V10.3 software (Treestar). 288	

 289	

Microscopy 290	
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For live/dead imaging, stained cells were washed twice in 0.85% NaCl before being spotted 291	

on 0.85% NaCl +1% agarose pads between a glass slide and a coverslip. For time-lapse 292	

imaging, cells were precultured as described in the growth conditions section. Cells were 293	

then diluted to an OD578=0.01 and grown for 3 h at 37°C before being spotted on MGAM 294	

+1% agarose pads, supplemented or not with 15 µg/ml erythromycin (5-fold MIC) between a 295	

glass slide and a coverslip. Slides were sealed with valap (to avoid/delay oxygen 296	

permeation) and taken outside of the anaerobic chamber for imaging. In these conditions, 297	

untreated bacteria kept growing rapidly (Movie 1 + 3). The imaging was performed using a 298	

Nikon Eclipse Ti inverted microscope, equipped with a Nikon DS-Qi2 camera, a Nikon Plan 299	

Apo Lambda 60X oil Ph3 DM phase contrast objective and a Nikon HC mCherry filter set (Ex 300	

562/40; DM 593; BA 641/75) to detect propidium iodide fluorescence. Images were acquired 301	

with the NIS-Elements AR4.50.00 software and processed with Fiji v.2.0.0-rc-68/1.52h56.  302	

 303	

Growth curves 304	

Cells were precultured as described in the growth conditions section. Then, cells were diluted 305	

to an OD578=0.01 in a 96-well plate sealed with a breathable membrane (Breathe-Easy®) 306	

and grown for 2 h. Next, erythromycin was added to the culture to a final concentration of 15 307	

µg/ml (5-fold MIC) and growth curves were acquired for 20 h using a microplate 308	

spectrophotometer (EON, Biotek) by measuring the OD578 every hour after 30 sec of linear 309	

shaking.  310	

 311	

Screen for microbiome-protective antibiotic antagonism 312	

Preparation of screening plates. The Prestwick Chemical Library was purchased from 313	

Prestwick Chemical Inc. and drugs were re-arrayed, diluted and stored in 96 well format as 314	

described before4. We prepared drug plates (2 x drug concentration) in MGAM medium and 315	

stored them at -30°C. For each experiment, drug plates were thawed, supplemented with the 316	

respective antibiotic solution (freshly prepared in MGAM) and pre-reduced in the anaerobic 317	
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chamber overnight. All rearranging and aliquoting steps were done using the Biomek FXP 318	

(Beckman Coulter) system.  319	

Inoculation and screening conditions. Strains were grown twice overnight, the second 320	

overnight culture was diluted in MGAM to reach OD578 nm 0.04 (4 x the desired starting OD). 321	

25 µl of the diluted cultures were used to inoculate wells containing 50 µl of 2x concentrated 322	

Prestwick drug and 25 µl of the 4x concentrated antibiotic using the semi-automated, 96-well 323	

multi-channel pipette epMotion96 (Eppendorf). Each well contained 1% DMSO, 20 µM of the 324	

Prestwick drug and a species-specific antibiotic concentration that was just inhibitory for the 325	

respective strain (0.625 µM for erythromycin, 0.04 µM doxycycline for B. uniformis and 0.08 326	

µM doxycycline for B. vulgatus). Plates were sealed with breathable membranes (Breathe-327	

Easy®) and OD578 was measured hourly after 30 sec of linear shaking with a microplate 328	

spectrophotometer (EON, Biotek) and an automated microplate stacker (Biostack 4, Biotek) 329	

fitted inside a custom-made incubator (EMBL Mechanical Workshop). Growth curves were 330	

collected up to 24 h. For each antibiotic, each species was screen in biological duplicates. All 331	

experiments included control wells of unperturbed growth (32 wells per run) and control wells 332	

for growth in the presence of the antibiotic only (8 wells per plate).  333	

Analysis pipeline and hit calling. All growth curves within a plate were truncated at the 334	

transition time from exponential to stationary phase and converted to normalized AUCs using 335	

in-run control wells (no drug) as described before4 .We then calculated z-scores based on 336	

these normalized AUCs, removed replicates with 8-fold differences in z-scores to eliminate 337	

noise effects, computed mean z- scores across the two replicates and selected combinations 338	

with mean z-scores > 3. This selection included 19 potential antibiotic antagonists and we 339	

followed up on 14 of them (7 potential erythromycin and 7 potential doxycycline antagonists 340	

in either B. vulgatus or B. uniformis – see Extended Data Fig. 9) in independent experiments.  341	

Validation of microbiome-protective antagonists. First, we kept the erythromycin/doxycycline 342	

concentration constant (0.625 µM for erythromycin, 0.078 µM (B. vulgatus)/ 0.039 µM (B. 343	

uniformis) for doxycycline) and tested concentration gradients of the potential antagonists 344	

with ranges depending on the antagonist’s solubility. Compounds were purchased from 345	
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independent vendors (Suppl. Table 5) and dissolved at 100x starting concentration in DMSO. 346	

Eight 2-fold serial dilutions were prepared in 96-well plates with each row containing a 347	

different antagonist, sufficient control DMSO wells and wells with just the respective antibiotic 348	

(‘antibiotic-only’ control). These master plates were diluted in MGAM medium (50 µl) to 2 x 349	

assay concentration and 25 µl freshly prepared antibiotic solution (4x test concentration) was 350	

added. Plates were pre-reduced overnight in an anaerobic chamber and inoculated with 25 351	

µl of overnight cultures (prepared as described under Growth conditions) to reach a starting 352	

OD578 of 0.01 and 1% DMSO concentration. Growth was monitored hourly for 24 h after 30 353	

sec of linear shaking (as described for the screen4). Experiments were performed in 354	

biological triplicates. For analysis, growth curves were converted into normalized AUCs (see 355	

above). We accounted for residual growth in the presence of the antibiotic by subtracting the 356	

median normalized AUCs of the ‘antibiotic-only’ control per plate. We computed medians 357	

across triplicates and considered a normalized AUC > 0.25 as concentration-dependent 358	

growth rescue by the antagonist.  359	

Checkerboard assays for anaerobic commensals. Validated antagonists were further 360	

investigated in 8x8 checkerboard assays, where both antibiotics and antagonists were 361	

titrated against each other. Such assays were first performed for the commensals that were 362	

originally screened (i. e. B. vulgatus and B. uniformis – 4 replicates) and later expanded 363	

towards six further gut microbes (B. caccae, B. fragilis NT, B. ovatus, B. thetaiotaomicron, P. 364	

copri, P. distasonis – 2 replicates). For vertical gradients, 2-fold serial dilutions of the 365	

antagonists were prepared first in 100x in DMSO and diluted in MGAM as described above 366	

(section ‘Validation of microbiome-protective antagonists’). Horizontal antibiotic dilution 367	

series were freshly prepared in MGAM at 4x final concentration in equidistant concentration 368	

steps. Both, vertical and horizontal dilution series were combined (50 µl of the antagonist 369	

gradients (2x) and 25 µl of the antibiotic gradients (4x)) in 96 well plates. Plates were pre-370	

reduced under anaerobic conditions overnight, inoculated with 25 µl of diluted overnight 371	

culture (at 4x starting OD) and sealed with breathable membrane (Breathe-Easy®). Bacterial 372	

growth was monitored once per hour for 24 h after 30 sec linear shaking (Eon + Biostack 4, 373	
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Biotek) under anaerobic conditions. Growth curves were converted into normalized AUCs as 374	

described using in-plate controls to define unperturbed growth.  375	

Checkerboard assays for pathogens under aerobic conditions. For three pathogens (S. 376	

aureus DSM20231 ATCC 12600 and E. faecium ATCC19434) 8x8 checkerboard assays 377	

were performed in transparent 384 well plates (Greiner BioOne GmbH), with each well 378	

containing a total volume of 30 µl in total for S. aureus and 55 µl for E. faecium. S. aureus 379	

strains were grown in tryptic soy broth (TSB, Sigma Aldrich), E. faecium in BHI medium 380	

(Sigma Aldrich). Drugs were arrayed in 2-fold serial dilutions for the checkerboards. Cell 381	

were inoculated at initial OD595nm ~0.01 from an overnight culture. Plates were sealed with 382	

breathable membranes (Breathe-Easy), incubated at 37°C (Cytomat 2, Thermo Scientific) 383	

with continuous shaking and OD595nm was measured every 30 min for 16 h in a Filtermax F5 384	

multimode plate reader (Molecular Devices).  For S. pneumoniae D39, we only tested 385	

concentration gradients of the potential antagonists in a constant antibiotic concentration (0.2 386	

µM erythromycin) in BHI medium. All experiments were done at least in 2 biological 387	

replicates and 2 technical replicates. Wells in which there was significant condensation were 388	

removed and background due to medium was subtracted. Growth curves were trimmed at 389	

the transition to stationary phase (9 h for S. aureus, 12 h for E. faecium). AUCs were 390	

calculated and normalised by the median of the internal no-drug control wells (n = 6). 391	

Interactions were quantified according to the Bliss interaction model57. Interactions were 392	

called antagonistic if the median of all the interaction scores for a given checkerboard was 393	

above 0.05, synergistic if the value was below -0.05 and neutral if lying between these two 394	

cut-offs.  395	

 396	

Phylogenetic analysis/phylogenetic tree construction 397	

In order to generate a phylogenetic tree for the different isolates, the nucleotide sequences 398	

for a set of universally occurring, protein coding, single copy phylogenetic marker genes48,58 399	

were extracted from reference genomes or genome assemblies using fetchMG58 400	

(https://motu-tool.org/fetchMG.html). Within the framework of the ete3 toolkit59, 401	
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ClustalOmega60 was used to create sequence alignments for each marker gene 402	

independently and all columns with more than 10% gaps were removed. The individual 403	

alignments were concatenated and finally, a phylogenetic tree was inferred from the 404	

combined alignment using IQTree61. 405	

 406	

Data availability 407	

Data is available upon request.  408	

 409	

Code availability 410	

Code is available upon request. 411	

 412	

  413	
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 Figure 1 –Activity spectrum of antibiotic classes on human gut commensals.  
a. Overview of antibiotics tested in initial screen at 20 µM concentration4 and validated by MIC determination in this study. b. Principal 
component analysis based on AUCs from the initial screen on the effects of antibiotics on gut commensals. Antibiotic classes drive some 
separation at the phylum level, e.g. beta-lactams separate Bacteroidetes and macrolides/lincosamides/streptogramins separate Proteobacteria. 
c. Comparison of MICs from this study to MICs available from public databases. Species are classified as “common” or “rare” if they are present 
in the gut microbiome of more or less than 1% of 727 healthy individuals, respectively (see Methods). d. For the main antibiotic classes from the 
screen, the numbers of inhibited strains are shown (N as in a). 40 strains tested in total at a 20 µM antibiotic concentration. Boxes span the IQR 
and whiskers extend to the most extreme data points up to a max of 1.5 times the IQR. e. Number of inhibited strains per (fluoro-)quinolone drug 
generation. Number of tested drugs per generation is indicated in brackets on x-axis labeling. Boxplots as in panel d. f. MICs of drug-species 
pairs for the main antibiotic classes measured in this study are depicted next to EUCAST clinical (susceptibility) breakpoints for pathogens. 
Numbers of drug-species pairs (MICs; colored) and of antibiotic per class (EUCAST clinical breakpoints; grey) are shown in brackets. Boxplots 
as in panel, d, y-axis is log2 scale. 
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Figure 2 - Macrolides and tetracyclines kill human gut commensal species 
a. The survival of 12 abundant gut microbe species was measured after a 5-hour treatment with a 5-fold MIC of erythromycin (ERY), 
azithromycin (AZI) or doxycycline (DOX). The survival was assessed by counting CFUs/ml before and after antibiotic treatment. The number of 
CFUs/ml before treatment was set as 100%. The detection limit for each experiment (gray bar) and the bactericidal threshold (shaded area) are 
indicated. Species are plotted according to phylogeny (IQTree, Methods) and in bold are noted the species that are used in later panels. The 
graph shows the mean+SD of 3 independent experiments. b. Time-kill curves of B. vulgatus, R. intestinalis and F. nucleatum after antibiotic 
treatments. Survival was assessed by CFU counting over a 5 hour-treatment of ERY, AZI or DOX. This graph shows the mean±SD of 3 
independent experiments. Nd: non-detectable. Time-kill curves for the other tested gut microbes can be found in Extended Data Fig. 5. c.  
Live/dead staining of macrolide or tetracycline-treated B. vulgatus. The left panel shows an overlay of phase contrast and fluorescence 
microscopy images of propidium iodide (PI)-stained B. vulgatus before and 5 hours after ERY, AZI or DOX treatment. Cultures were 
concentrated before imaging; the scale bar is 10 µm. The right panel shows the corresponding quantification of live/dead-stained cells by flow 
cytometry with Syto9 on the x-axis (live cells) and PI on the y-axis (dead cells). Both the total number of measured events (n) and the 
percentage of cells found in each quadrant are indicated. d. Erythromycin induces lysis of B. vulgatus and B. uniformis. B. vulgatus and B. 
uniformis were grown for 3 hours before addition (yellow) or not (black) of 15 µg/ml ERY treatment (5-fold MIC; yellow) as indicated by the 
arrow. Growth curves were acquired for 20 hours. This graph shows the mean±SD (dotted line) of 3 independent experiments. e. Erythromycin 
induces blebbing, cytoplasmic shrinkage and lysis in B. vulgatus and B. uniformis. Phase contrast movies of B. vulgatus and B. uniformis were 
acquired after ERY treatment (5-fold MIC). Here shown 3 frames of 3 images per strain (time indicated in the upper left corner; t=0 when drug 
added). White arrows indicate blebs, cytoplasmic shrinkage and bacterial lysis; the scale bar is 5 µm. Movies are available in Supplementary 
Material (Movies 1-4). 
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Figure 3 – Antidotes for selective protection of prevalent and abundant gut commensal species from macrolides and tetracyclines. 
a. Schematic illustration of the screen concept: searching for antidote compounds that antagonize the antibacterial effect of erythromycin or 
doxycycline on commensal but not on pathogenic bacteria. b. Z-scores on bacterial growth (based on areas under the curve (AUCs)) for 
combinatorial drug exposure with antibiotic (ERY or DOX) and FDA-approved drug. Compounds that successfully rescued B. vulgatus and/or B. 
uniformis growth in the presence of the antibiotic (z-score > 3) are indicated in gray. The strongest hits (circles) were validated further in 
concentration-dependent assays (Extended Data Fig. 10a). For each antibiotic and each strain, ~1200 drugs were tested in two replicates. 
Boxplots are defined as in Figure 1d. c. For 9 of the validated antagonists, 8 x 8 checkerboard assays were performed to determine 
concentration ranges of the antagonistic interaction. Heat maps depict bacterial growth based on normalized median of AUCs of 4 replicates. All 
interactions were antagonistic, and pairs tested further in other commensal species are framed in bold. d. Checkerboard assays confirm the 
ability of tolfenamic acid to protect further gut commensals from growth inhibition by erythromycin. Heat map as in c, but for 2 replicates. 
Antagonistic interactions are framed in red. e. Checkerboard of tolfenamic acid with erythromycin reveal neutral interactions in S. aureus and E. 
faecium (aerobic conditions). Heat maps as in c, based on at least two independent experiments with two technical replicates each. f. 
Tolfenamic acid concentration-dependent rescue of commensal growth at clinical relevant erythromycin concentrations based on AUCs 
(anaerobic conditions). Erythromycin still retains its activity against pertinent pathogens such as S. aureus, E. faecium and S. pneumoniae 
(aerobic conditions). 0.625 µM correspond to ~0.5 µg/ml erythromycin, which is in the range of the MIC breakpoints for Staphylococcus (1 
µg/ml), S. pneumoniae (0.25 µg/ml) and Streptococci groups A, B, C & G (0.25 µg/ml). Error bars depict standard deviation. 
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Extended Data Figure 1 – Effects of 144 antibiotics on 40 human gut commensals 
Heat map according to sensitivity or resistance of each strain to the respective antibiotic at a concentration of 20 µM. Antibiotics are grouped 
according to drug classes and species are clustered according to their responses across the 144 antibiotics tested. Data is replotted from4. 
Akkermansia muciniphila (Muc, DSM22959, type strain) is resistant to nearly all quinolone antibiotics (red box). We consolidated this finding by 
MIC determination for Ciprofloxacin (>32 µg/ml), Gatifloxacin (>32 µg/ml), Moxifloxacin (>32 µg/ml), Norfloxacin (>256 µg/ml) and Ofloxacin 
(>32 µg/ml).  
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Extended Data Figure 2 – MICs for 17 species on 35 antimicrobials 
Heat map depicts MICs for each drug-strain pair in µg/ml. Heat map color gradient is adjusted to the MICs concentration range tested on the 
respective MIC test strip. Black depicts sensitivity and light grey indicates resistance. Mean values across two biological replicates are shown 
(Suppl. Table 3). C. difficile is particularly resistant to all tested macrolides and clindamycin (red box).  
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Extended Data Figure 3 – MIC dataset validates antibiotic sensitivity profiles from the screen dataset and is consistent with publically 
available MICs.  
a. Receiver operating characteristic (ROC) curve analysis was performed to evaluate sensitivity and specificity of the screen4 using the MIC 
dataset. Results from the screen were considered as validated if MICs were below/above the 20 µM antibiotic concentration that was tested in 
the screen (allowing a two-fold error margin). N is the number of antibiotics that we tested both in the screen and determined MICs for, AUROC 
is the area under the characteristic ROC. TN denotes true negatives, FP false positives, TP true positives, FN false negatives.  
b. Comparison including Spearman correlation coefficients of the MICs from this study to MICs from the ChEMBL 27 and EUCAST 24 databases. 
Panels in the upper row: comparison between all MICs that are shared between the two indicated datasets. Panels in the lower row: comparison 
of the 69 MICs that are shared across all three datasets. Despite experimental differences, our MICs correlate well with available EUCAST/ 
ChEMBL data.  
c. Number of the sum of new (this study) and already available MICs (EUCAST/ ChEMBL) per drug according to antibiotic class and 
prevalence/virulence of the bacterial species. The new dataset expands MICs across the board and specifically fills the knowledge gap on non-
pathogenic species. 
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Extended Data Figure 4 – β-lactam antibiotic resistance profiles do not recapitulate phylogenetic relationship between Bacteroides 
spp.  
a. Number of inhibited Bacteroides spp. (out of 8 tested) at 20 µM per β-lactam subclass, based on the initial screen4. Number of drugs per class 
tested are shown in parenthesis. Boxes plotted as in Figure 1d.   
b.  Overview of the number of drugs tested per β-lactam subclasses on Bacteroides spp.; compared to ED Figure 2, 10 additional strains were 
tested: B. eggerthii, B. clarus, B. coprocola, B. vulgatus HM-720, B. xylanisolvens, B. fragilis HM-709, B. fragilis HM-710, B. uniformis HM-716, 
B. dorei and B. stercoris. 
c. MIC heat map for 8 β-lactam antibiotics on 19 Bacteroides spp. Strains are clustered according to resistance profiles across all β-lactam 
antibiotics, drugs are clustered according their effects on Bacteroides spp. MICs values are based on two biological replicates and are partially 
replotted from Extended Data Fig. 2. Heat map gradients are adjusted to the antibiotic concentration ranges tested with lighter color depicting 
resistance and darker color depicting sensitivity.  
d. Heat map of phylogenetic relationship between Bacteroides spp (upper triangular matrix) ordered by phylogeny and their resistance profiles 
across β-lactam antibiotics (lower triangular matrix). Colors represent the pairwise phylogenetic distance and the Euclidean distance on the log2 
transformed MICs for β-lactams (panel c). Examples of strains from the same species (B. fragilis / B. uniformis) that respond differently to β-
lactam antibiotics, are highlighted.  
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Extended Data Figure 5 - Time-kill curves of 12 abundant gut microbes after treatment with macrolides and tetracyclines.  
Survival of 12 abundant gut microbes was assessed by CFU counting over a 5 hour-treatment of either ERY, AZI or DOX. This graph shows the 
mean±SD of 3 independent experiments. 
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Extended Data Figure 6 - Live/dead staining of macrolide or tetracycline-treated E. coli ED1a.  
The left panel shows an overlay of phase contrast and fluorescence microscopy images of propidium iodide (PI)-stained E. coli ED1a before and 
5 hours after ERY, AZI or DOX treatments. The number of cells on each frame has no meaning, as cultures were concentrated before imaging; 
the scale bar is 10 µM. The right panel shows the corresponding quantification of live/dead-stained cells by flow cytometry with Syto9 on the x-
axis (live cells) and PI on the y-axis (dead cells). Both the total number of measured events (n) and the percentage of cells found in each 
quadrant are indicated on the graphs. 
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Extended Data Figure 7 - Effect of oxygen and strain specificity on survival after doxycycline treatment 
a. The survival of E. coli ED1a was assessed after a 5-hour treatment with 5-fold MIC of DOX in the presence or absence of oxygen. Killing was 
similarly effective in both conditions. 
b. The survival of E. coli ED1a and E. coli BW25113 were assessed after a 5-hour treatment with 1, 2 and 5-fold MIC of DOX in MGAM medium 
in anaerobic conditions. The lab strain is more resistant to killing with doxycycline becoming boarder-line bactericidal at higher MICs. 
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Extended Data Figure 8 – Assessing potential confounding factors for the killing capacities of erythromycin, azithromycin and 
doxycycline   
a. Scatter plot of individual bacterial growth rates and percentage survival after a 5-hour treatment with 5-fold MIC of ERY, AZI or DOX 
treatments. r indicates the Spearman correlation coefficient. Tested species are color-coded here and in all panel thereafter as indicated in the 
bottom of this figure. Positive correlations for macrolides were tested further in b to check if changing growth rate in same species affects 
percentage killed. 
b. The survival of B. fragilis (blue) and F. nucleatum (beige) were assessed after a 5-hour macrolide treatment (5-fold MIC of ERY and AZI) at 
either 30°C (slow growth) or 37°C (fast growth) to test the effect of slowing down growth on survival. No significant change observed. This graph 
shows the mean±SD of three independent experiments.  
c. Scatter plot of MICs and percentage survival after a 5-hour treatment with 5-fold MIC of ERY, AZI or DOX treatments. r indicates the 
Spearman correlation coefficient. Doxycycline exhibited a strong and significant anti-correlation, that is that species which were more sensitive 
to doxycycline (lower MIC) were not killed when they were treated with 5-fold MIC concentrations. Thus, we tested further whether increasing 
the drug concentration in some of those sensitive strains decreased the % of survival (panel d). 
d. The survival of B. fragilis (blue) and F. nucleatum (beige) were assessed after a 5-hour treatment with increasing concentrations of DOX (5, 
10 or 20- fold of MIC) to test whether higher concentrations of DOX induced more killing. This seemed not be the case. This graph shows the 
mean±SD of three independent experiments.  
e. To evaluate whether outgrowth of stationary phase and homogeneity of population affected our results, we selected two slow-growing strains, 
E. rectale and R. intestinalis and grew for 2 or 3 hours after being diluted from an overnight culture to an of OD578 0.01. Both strains were then 
treated for 5 hours with 5-fold MIC of ERY, AZI or DOX and their survival was assessed to test the impact of the growth phase on the 
percentage survival. Although slight differences were observed and 3h grown cultures were killed more effectively (presumably because more 
cells had exited stationary phase and were growing exponentially by then), the general trends remained the same. If anything, this means that 
we are underestimating the killing for slow-growers, since we performed all other experiments with 2 hours outgrowth. This graph shows the 
mean±SD of three independent experiments.  
f. The survival of 8 selected gut microbes was measured after treating cells in exponential phase (E – 2 hours after dilution from an overnight 
culture) or in stationary phase (S – overnight growth) with 5-fold MIC of ERY for 5 hours to test the impact of the growth phase on the 
percentage survival. As expected, survival is higher in stationary phase for half of the strains, but in some cases stationary phase cells were as 
or more sensitive than exponentially growing cells – this is the case for B. caccae and F. nucleatum. This graph shows the mean±SD of three 
independent experiments. 
g. Same as in f but with DOX. Similar effects observed as in f, with more than half of strains becoming more resistant in stationary phase. 
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Extended Data Figure 9 – Schematic overview of screen for microbiome-protective antibiotic antagonisms 
Workflow with decision process on which antagonist to move on to next evaluation step. 
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Extended Data Figure 10 – Validation of potential microbiome-protective antagonists 
a. Validation of the strongest antagonists in independent experiments. Erythromycin and doxycycline concentrations were kept constant 
([ERY]=0.625 µM, [DOX] = 0.039 / 0.078 µM) and concentration ranges were tested for antagonist. Asterisks indicate that at least 25% of the 
bacterial growth (compared to no drug controls) could be rescued by the antagonist at a given concentration. Heat map depicts median AUCs 
across triplicates.  
b. Percentage of surviving B. vulgatus cells were determined after 5 h incubation with either erythromycin (3.25µM) or doxycycline (0.4 µM) 
alone or in presence of the antagonist dicumarol (20 µM), tolfenamic acid (40 µM) or diflunisal (80 µM). Data is based on 3 independent 
experiments. Boxplots are plotted as in Figure 1d.  
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Extended Data Figure 11 – Effect of antidotes on further gut commensals 
8 x 8 checkerboard assays to investigate if antidote is also protective for additional gut commensals for the following combinations: erythromycin 
and dicumarol (a), doxycycline and diflunisal (b) and doxycycline and tolfenamic acid (c). Heat map depicts bacterial growth based on median 
AUCs from two independent replicates. Red contours indicate antagonistic drug interactions.  
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Extended Data Figure 12– Effect of the antidote dicumarol on pathogens, relatively to commensal species. 
a. Checkerboard assays for the drug combinations erythromycin-tolfenamic acid and erythromycin-dicumarol on the pathogens S. aureus (two 
different strains) and E. faecium. Heat map depict median normalized AUCs of checkerboard assays (at least three independent replicates).  
b. Dicumarol rescues commensal growth (based on median AUCs, N=2) at clinical relevant erythromycin concentrations in a concentration-
dependent manner. Erythromycin still retains its activity against pertinent pathogens such as S. aureus, E. faecium and S. pneumoniae and is 
even slightly more active (synergy) for E. faecium (based on median AUCs, N=3). Error bars depict standard deviation. 
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