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Abstract 

Objective: The biological interpretation of gene expression measurements is a challenging task. While ordination 
methods are routinely used to identify clusters of samples or co-expressed genes, these methods do not take sample 
or gene annotations into account. We aim to provide a tool that allows users of all backgrounds to assess and visualize 
the intrinsic correlation structure of complex annotated gene expression data and discover the covariates that jointly 
affect expression patterns.

Results: The Bioconductor package covRNA provides a convenient and fast interface for testing and visualizing com-
plex relationships between sample and gene covariates mediated by gene expression data in an entirely unsuper-
vised setting. The relationships between sample and gene covariates are tested by statistical permutation tests and 
visualized by ordination. The methods are inspired by the fourthcorner and RLQ analyses used in ecological research 
for the analysis of species abundance data, that we modified to make them suitable for the distributional charac-
teristics of both, RNA-Seq read counts and microarray intensities, and to provide a high-performance parallelized 
implementation for the analysis of large-scale gene expression data on multi-core computational systems. CovRNA 
provides additional modules for unsupervised gene filtering and plotting functions to ensure a smooth and coherent 
analysis workflow.
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Introduction
The biological interpretation of gene expression measure-
ments and related multivariate datasets is a fundamental 
yet challenging task in computational biology. Ordina-
tion methods like Principal Component Analysis or Cor-
respondence Analysis are routinely used for dimension 
reduction and visualization to identify clusters of sam-
ples or co-expressed genes [1]. These methods do not 
generally take sample or gene annotations into account. 
Knowledge-driven approaches such as Gene Ontology 
Analysis [2] and Gene Set Enrichment Analysis [3] look 

for differentially regulated sets of genes based on prior 
information. These methods are powerful but special-
ized hypothesis-based tools. In functional genomics, it 
is often desirable to test for associations between exten-
sive categorical and numerical sample and gene covari-
ates. Sample covariates may comprise demographic and 
clinical data or complex phenotype data derived from 
imaging. Gene-level covariates often include functional 
ontology, epigenetic modifications, protein phospho-
rylation or copy-number state. Methods for the efficient 
and systematic analysis of the relationship between sam-
ple and gene covariates mediated by gene expression are 
lacking.
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Main text
Here we present covRNA (‘covariates of RNA’), a Bio-
conductor package [4, 5] providing a convenient and 
fast interface for testing and visualizing the relationship 
between sample and gene covariates mediated by gene 
expression in an entirely unsupervised setting. The meth-
ods are inspired by the fourthcorner and RLQ analyses 
used in ecological research for the analysis of species 
abundance data [6, 7]. While the scope of these analyses is 
comparable to knowledge-based approaches like GSEA, 
their inherently unsupervised and hypothesis-free nature 
provides a huge advantage if no prior knowledge is avail-
able. In addition, while approaches like GSEA are based 
on parametric distributions like the hypergeometric dis-
tribution, the here presented analyses are based on simu-
lated distributions to capture and account for respective 
dataset-specific data structures and modalities.

The RLQ analysis of the ade4 package [7] has previously 
been applied for the analysis of microarray data describ-
ing the time-course effect of steroids on the growth of 
human lung fibroblasts [8]. Within the covRNA package, 
we have modified the fourthcorner and RLQ algorithms 
to make the methods inherently suitable for the distri-
butional characteristics of both RNA-Sequencing (RNA-
Seq) read counts and microarray intensities. We provide 
a parallelized high-performance implementation to make 
the method suitable for the analysis of large-scale multi-
variate gene expression data on multi-core computational 
systems, with additional modules for unsupervised gene 
filtering and plotting functions to ensure a smooth and 
coherent analysis workflow. Here, we demonstrate the 
analysis of a microarray dataset of the immune response 
of human dendritic cells to fungal infection [9]. In addi-
tion, in order to show the applicability of our approach to 
a more complex RNA-Seq data, a detailed vignette inte-
grated in our Bioconductor package [4] demonstrates the 
analysis of a well-established RNA-Seq dataset of Bacillus 
anthracis [10].

Methods
covRNA takes as input three data frames: (i) a n times 
m gene expression data frame L of n genes for m sam-
ples, (ii) a m times p sample annotation data frame Q 
of p sample covariates for m samples and (iii) a n times 
s gene annotation data frame R of s gene covariates for 
n genes. covRNA then performs a test for association 
between each sample and gene covariate pair follow-
ing the fourthcorner procedure. Data frames R, L and 
Q are multiplied to yield the s times p test data frame 
T = R’LQ, where  Ti,j reduces to a pairwise Pearson cor-
relation coefficients weighted by the gene expression 
values of L. If both variables of a covariate pair (i,j) 

are categorical, the entry  Ti,j is normalized by the sum 
over L to yield a  Chi2-statistic. covRNA does not rely 
on any distributional assumptions as it uses a permu-
tation test to calculate two-sided empirical p-values 
and makes use of Fisher’s assumption of doubling the 
one-sided p-value, in non-symmetric distributions [11]. 
Therefore, any normalization methods for microar-
ray or RNASeq data can be used for data preprocess-
ing. We then use permutation of the data frames to test 
for significant association between the covariates of R 
and Q. Specifically, we adopt the permutation scheme 
according to Ter Braak et al. [12] to ensure that all asso-
ciations between gene and samples covariates are per-
turbed: First, the rows of L are permuted and p-values 
 p1 between all covariates of R and Q are calculated. 
Then, the columns of L are permuted and p-values  p2 
between all covariates of R and Q are calculated. After 
false discovery rate correction according to Benjamini 
and Hochberg [13] of  p1 and  p2, respectively, the actual 
p-values are obtained by p = max(p1,  p2) [12]. Taking 
the most conservative p-values hereby assures to model 
dependencies between samples and genes correctly.

The high-performance implementation of this sta-
tistical analysis in covRNA allows for straightforward 
parallelization on multiple available cores and signifi-
cant speed-up of the analysis of large-scale datasets 
(Table 1).

To visualize the relationship within and between 
sample and gene covariates we perform singular value 
decomposition on T, following the standard RLQ 
approach. This creates two-dimensional ordinations 
for both, sample and gene covariates, which are then 
combined into a joint ordination plot. In this plot, the 
covariates that are significantly associated with each 
other according to the statistical tests are connected by 
lines, whose colors reflect the type of the association 
(positive or negative).

Table 1 Speed-up of  the  fourthcorner analysis 
implemented in  covRNA due to  parallelization 
across multiple cores

The fourthcorner analysis is performed on the Bacillus anthracis example dataset 
on 1 and 10 cores for different numbers of permutations as indicated in the first 
row. The following rows indicate the required user time in seconds while the 
last row indicates the relative speed-up of the multi-threading approach. The 
run time was profiled on a server with 72 Cores (Intel Xeon CPU E5-2699 v3 @ 
2.30 GHz) with 512 GB RAM

Permutations 103 104 105 106 107

1 Core (time in sec) 9.1 52.9 5.3 × 102 6.8 × 103 6.9 × 104

10 Cores (time in sec) 8.5 15.7 84.7 7.8 × 102 7.7 × 103

Speed-up 1.1 3.4 6.3 8.2 9.0
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Results
We applied our method to a microarray dataset of the 
immune response of human dendritic cells to Aspergil-
lus fumigatus (A. fumigatus) infection (Gene Expression 
Omnibus accession numbers: GSE69723, GSE77969) [9]. 
The ExpressionSet Expr contains gene expression data 
under different stimuli (‘control’, ‘LPS’ for lipopolysac-
charide, ‘A. fumigatus’) and at different time points (‘6 h’, 
‘12 h’). The genes are annotated by immune-related hall-
mark gene sets (n = 7 gene sets) of the MSigDB collection 
[3].

We firstly tested if our statistical analyses were cali-
brated. We therefore chose an association between sam-
ple and gene annotations, and randomly permuted the 
gene annotation labels n = 1000 times. The resulting 
p-values were uniformly distributed, affirming calibra-
tion of the statistical tests (Fig. 1 for one sample annota-
tion-gene annotation association).

Having established the calibration of covRNA’s statisti-
cal tests, we applied the covRNA methods to the micro-
array dataset of A. fumigatus infections. The following 
R code applied to the ExpressionSet Expr produces the 
results shown in Fig. 2.

statobj < - stat(Expr) # statistical tests
ordobj < - ord(Expr) # ordination parameters
vis(statobj, ordobj) # visualization (Fig. 2a)
plot(statobj) # visualization of tests (Fig. 2b)

Figure  2 illustrates the concordance of both analy-
sis approaches. Non-associated covariates, here the 
two time points (6 h, 12 h) cluster around the origin of 
the ordination while positively/negatively associated 
covariates are situated at different angles from the ori-
gin (at a significance level α = 0.05; Fig. 2a). The signifi-
cant associations are also summarized in a table (here 

n = 14 significant associations; Fig. 2b). This combined 
statistical and visualization analysis allows research-
ers to obtain a quick overview of regulatory patterns in 
their gene expression experiment: Here, the overview 
plot shows that the LPS infection of dendritic cells elic-
its typical bacterial infection responses like interferon 
activation, while a fungal infection by A. fumigatus 

Fig. 1 covRNA’s statistical test is shown to control the type I error rate correctly. A p-value distribution under the null hypothesis of covRNA’s 
statistical test between sample and gene annotations for n = 1000 permutations is generated. The results of the permutation of one random 
sample annotation-gene annotation association are shown here. a Histogram of the resulting p-values. b Q–Q plot of the p-values

a

b

Fig. 2 Visualization of covRNA analysis of microarray data of human 
dendritic cells infected with A. fumigatus based on the MSigDB 
hallmark gene set. a Ordination of sample and gene covariates. The 
lines between the covariates denote significant negative (red) and 
positive (blue) associations (at a significance level α = 0.05, each 
condition tested in turn versus the others). Gray covariates are not 
involved in any significant association. b Results of the association 
test. Consistently, red, blue and gray colors denote significant 
negative, positive or no significant associations (at a significance level 
α = 0.05)
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leads to hypoxia in the cells. This overview confirms the 
successful infection of the dendritic cells in the experi-
ment, and allows for building first hypotheses about the 
different molecular responses between bacterial and 
fungal infections.

Discussion
The Bioconductor package covRNA provides a coherent 
workflow to systematically test for and visualize associa-
tions between sample and gene covariates mediated by 
gene expression. With only a few lines of R code, users 
can assess and visualize the intrinsic correlation structure 
of complex annotation data and discover the covariates 
that jointly affect the gene expression patterns. Further, 
experimental biologists are provided with a quick tool to 
validate their experiments, e.g. to assess if their stimula-
tion assays have been successful.

The adaptation of the fourthcorner and RLQ meth-
ods, which are frequently applied in ecological landscape 
analyses, to the distributional characteristics of gene 
expression data makes the analyses accessible to a wider 
community. The efficient implementation and paralleliza-
tion on multiple cores further allows for the analysis and 
visualization of large-scale multivariate gene expression 
datasets.

Limitations
While one of the benefits of the covRNA package is the 
efficient implementation that allows scaling analyses up 
to thousands of genes, the analysis of too many gene and 
sample annotations will lead to an unclear ordination vis-
ualization with too many annotations overlapping each 
other. In such a case, we recommend to firstly consider 
the data frame visualization, to then select interesting 
annotations for visualization.

While covRNA tests the statistical association of anno-
tations, it does not include a test of causality of associa-
tions. Instead, it provides a first insight into the internal 
structure of gene expression data.
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