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Summary 25 

The molecular basis underlying Glioblastoma (GBM) heterogeneity and plasticity are not 26 

fully understood. Using transcriptomic data of patient-derived brain tumor stem cell lines 27 

(BTSCs), classified based on GBM-intrinsic signatures, we identify the AP-1 28 

transcription factor FOSL1 as a master regulator of the mesenchymal (MES) subtype. We 29 

provide a mechanistic basis to the role of the Neurofibromatosis type 1 gene (NF1), a 30 

negative regulator of the RAS/MAPK pathway, in GBM mesenchymal transformation 31 

through the modulation of FOSL1 expression. Depletion of FOSL1 in NF1-mutant human 32 

BTSCs and Kras-mutant mouse neural stem cells results in loss of the mesenchymal gene 33 

signature, reduction in stem cell properties and in vivo tumorigenic potential. Our data 34 

demonstrate that FOSL1 controls GBM plasticity and aggressiveness in response to NF1 35 

alterations. 36 

 37 

Keywords 38 
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 40 

Significance 41 

Glioblastoma (GBM) is a very heterogenous disease for which multiple transcriptional 42 

subtypes have been described. Among these subtypes, the Mesenchymal (MES) GBMs 43 

have the worst prognosis. Here we provide the first causal evidence linking 44 

Neurofibromatosis type 1 gene (NF1) signalling and the acquisition of a MES gene 45 

expression program through the regulation of the AP-1 transcription factor FOSL1. Using 46 

patient expression datasets, combined with in vitro and in vivo gain- and loss- of function 47 

mouse models, we show that FOSL1 is an important modulator of GBM that is required 48 

and sufficient for the activation of a MES program. Our work sheds light on the 49 

mechanisms that control the tumorigenicity of the most aggressive adult brain tumor type.   50 
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Introduction 51 

Glioblastoma (GBM), the most common and aggressive primary brain tumor in 52 

adults, is characterized by high molecular and cellular inter- and intra-tumoral 53 

heterogeneity. Large-scale sequencing approaches have evidenced how concurrent 54 

perturbations of cell cycle regulators, growth and survival pathways, mediated by 55 

RAS/MAPK and PI3K/AKT signaling, play a significant role in driving adult GBMs 56 

(Brennan et al., 2013; The Cancer Genome Atlas Research Network, 2008; Verhaak et 57 

al., 2010). Moreover, various studies have classified GBM in different subtypes, using 58 

transcriptional profiling, being now the Proneural (PN), Classical (CL) and Mesenchymal 59 

(MES) the most widely accepted (Phillips et al., 2006; Verhaak et al., 2010; Wang et al., 60 

2017). 61 

Patients with the MES subtype tend to have worse survival rates compared to other 62 

subtypes, both in the primary and recurrent tumor settings (Wang et al., 2017). The main 63 

driver genetic alteration – Neurofibromatosis type 1 gene (NF1) copy number loss or 64 

mutation – and important regulators of the MES subtype, such as STAT3, CEBPB and 65 

TAZ, have been identified (Bhat et al., 2011; Carro et al., 2010; Verhaak et al., 2010). 66 

Nevertheless, the mechanisms of regulation of MES GBMs are still not fully understood. 67 

For example, whether the MES transcriptional signature is controlled through tumor cell-68 

intrinsic mechanisms or influenced by the tumor microenvironment (TME) is still an 69 

unsolved question. In fact, the critical contribution of the TME adds another layer of 70 

complexity to MES GBMs. Tumors from this subtype are highly infiltrated by non-71 

neoplastic cells, as compared to PN and CL subtypes (Wang et al., 2017). Additionally, 72 

MES tumors express high levels of angiogenic markers and exhibit high levels of necrosis 73 

(Cooper et al., 2012). 74 

Even though each subtype is associated with specific genetic alterations, there is 75 

a considerable plasticity among them: different subtypes co-exist in the same tumors and 76 

shifts in subtypes can occur over time (Patel et al., 2014; Sottoriva et al., 2013). This 77 

plasticity may be explained by acquisition of new genetic and epigenetic abnormalities, 78 

by stem-like reprogramming or by clonal variation (Fedele et al., 2019). It is also not fully 79 

understood whether the distinct subtypes evolve from a common glioma precursor 80 

(Ozawa et al., 2014). For instance, PN tumors often switch phenotype to MES upon 81 

recurrence, and treatment also increases the mesenchymal gene signature, suggesting that 82 

MES transition, or epithelial to mesenchymal (EMT)-like, in GBM is associated with 83 

tumor progression and therapy resistance (Bhat et al., 2013; Halliday et al., 2014; Phillips 84 
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et al., 2006). Yet, the frequency and relevance of this EMT-like phenomenon in glioma 85 

progression remains unclear. EMT has also been associated with stemness in other 86 

cancers (Mani et al., 2008; Tam and Weinberg, 2013; Ye et al., 2015). Glioma stem cells 87 

(GSCs) share features with normal neural stem cells (NSCs) such as self-renewal and 88 

ability to differentiate into distinct cellular lineages (astrocytes, oligodendrocytes and 89 

neurons) but are thought to be the responsible for tumor relapse, given their ability to 90 

repopulate tumors and their resistance to treatment (Bao et al., 2006; Chen et al., 2012). 91 

FOSL1, that encodes FRA-1, is an AP-1 transcription factor with prognostic value 92 

in different epithelial tumors, where its overexpression correlates with tumor progression 93 

or worse patient survival (Chiappetta et al., 2007; Gao et al., 2017; Usui et al., 2012; 94 

Vallejo et al., 2017; Wu et al., 2015; Xu et al., 2017). Moreover, the role of FOSL1 in 95 

EMT has been documented in breast and colorectal cancers (Andreolas et al., 2008; Bakiri 96 

et al., 2015; Diesch et al., 2014; Tam et al., 2013). In GBM, it has been shown that FOSL1 97 

modulates in vitro glioma cell malignancy (Debinski and Gibo, 2005). 98 

Here we report that NF1 loss, by increasing RAS/MAPK activity, modulates 99 

FOSL1 expression which in turn plays a central function in the regulation of MES GBM. 100 

Using a surrogate mouse model of MES GBM and patient-derived MES brain tumor stem 101 

cells (BTSCs), we show that FOSL1 is responsible for sustaining cell growth in vitro and 102 

in vivo, and for the maintenance of stem-like properties. We propose that FOSL1 is an 103 

important regulator of GBM stemness, MES features and plasticity, controlling an EMT-104 

like process with therapeutically relevant implications. 105 

 106 

Results 107 

FOSL1 is a master regulator of the MES subtype 108 

To study the tumor cell-intrinsic signaling pathways that modulate the GBM 109 

expression subtypes we assembled a collection of transcriptomic data (both expression 110 

arrays and RNA-sequencing) of 115 samples derived from 87 independent BTSC lines: 111 

24 newly generated at Freiburg Medical Center, 44 from GSE119834 (Mack et al., 2019), 112 

10 from GSE67089 (Mao et al., 2013) and 9 from GSE8049 (Günther et al., 2008). 113 

Samples were then classified according to the previously reported 50-gene glioma-114 

intrinsic transcriptional subtype signatures and the single sample gene set enrichment 115 

analysis (ssGSEA)-based equivalent distribution resampling classification strategy 116 

(Wang et al., 2017). Overall, 39% of the samples were identified as CL, 41% as MES and 117 

20% as PN (Table S1). Principal component analysis showed a large overlap of the 118 
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transcription profile among CL and PN BTSCs while most of the MES BTSCs appeared 119 

as a separate group (Figure 1A). Differential gene expression analysis comparing MES 120 

versus Non-MES (PN and CL) BTSCs confirmed a clear separation among the two 121 

groups, with the exception of a small number of cell lines that showed a mixed expression 122 

profile (Figure 1B and Table S2). 123 

To reveal the signaling pathways underlying the differences among MES versus 124 

Non-MES BTSCs we then applied a network-based approach based on ARACNe 125 

(Algorithm for the Reconstruction of Accurate Cellular Networks) (Basso et al., 2005; 126 

Carro et al., 2010), which identifies a list of transcription factors (TFs) with their predicted 127 

targets, defined as regulons. The regulon for each TF is constituted by all the genes whose 128 

expression data exhibit significant mutual information with that of a given TF and are 129 

thus expected to be regulated by that TF (Castro et al., 2016; Fletcher et al., 2013). 130 

Enrichment of a relevant gene signature in each of the regulons can point to the TFs acting 131 

as master regulators (MRs) of the response or phenotype (Carro et al., 2010; Fletcher et 132 

al., 2013). Master regulator analysis (MRA), identified a series of TFs, among which 133 

FOSL1, SOX11, OLIG2, CTCF and IRF1 were the top 5 most statistically significant 134 

(Benjamini-Hochberg P < 0.0001) (Table S3 and Figure 1C). FOSL1 and IRF1 were 135 

significantly upregulated in the MES BTSCs, while SOX11, OLIG2, CTCF were 136 

upregulated in the Non-MES BTSCs (Figure S1A and 1D). Gene set enrichment analysis 137 

(GSEA) evidenced how the regulons for the top 5 TFs are enriched for genes that are 138 

differentially expressed among the two classes (MES and Non-MES) with FOSL1 having 139 

the highest enrichment score (Figure 1C and Figure S1B).  140 

We then analyzed the TCGA pan-glioma dataset (Ceccarelli et al., 2016) and 141 

observed that FOSL1 expression is elevated in the IDH-wt glioma molecular subtype 142 

(Figure 1E and Table S4) and that high expression levels are associated with worse 143 

prognosis in IDH-wt GBM (Figure 1F), thus suggesting that FOSL1 could represent not 144 

only a master regulator of the glioma-intrinsic MES signature, but also a putative key 145 

player in MES GBM pathogenesis. 146 

 147 

NF1 modulates the MES signature and FOSL1 expression 148 

NF1 alterations and activation of the RAS/MAPK signaling have been previously 149 

associated with the MES GBM subtype (Brennan et al., 2013; Verhaak et al., 2010; Wang 150 

et al., 2016; Wang et al., 2017). However, whether NF1 plays a functional role in the 151 

regulation of the MES gene signature (MGS) still remains to be established. 152 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/834531doi: bioRxiv preprint first posted online Nov. 7, 2019; 

http://dx.doi.org/10.1101/834531
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

We initially grouped, according to the previously described subtype-specific gene 153 

signatures, a subset of IDH-wt GBM samples of the TCGA dataset for which RNA-seq 154 

data were available (n = 152) (see methods for details). By analyzing the frequency of 155 

NF1 alterations (either point mutations or biallelic gene loss) in the different subtypes 156 

(Figure 2A), we confirmed a significant enrichment of NF1 alterations in MES versus 157 

Non-MES tumors (Fisher’s Exact test P value = 0.03) (Figure 2B). Importantly, we 158 

detected higher level of FOSL1 mRNA in the cohort of patient tumors with NF1 159 

alterations, both low-grade gliomas (LGGs) and GBMs (Figures 2C and Table S4), with 160 

the NF1-altered MES GBMs showing the highest expression levels (Figures 2D and Table 161 

S4). 162 

 To test whether NF1 signaling is directly involved in the regulation of FOSL1 and 163 

the MES subtype, we manipulated NF1 expression in patient derived tumorspheres of 164 

either the MES or PN subtype (Figure S3A-B). To recapitulate the activity of the full-165 

length NF1 protein we transduced the cells with the NF1 GTPase-activating domain 166 

(NF1-GRD), spanning the whole predicted Ras GTPase-activating (GAP) domain 167 

(McCormick, 1990). NF1-GRD expression in the MES cell line BTSC 233 led to 168 

inhibition of RAS activity as confirmed by analysis of pERK expression upon EGF or 169 

serum stimulation (Figure S2A-B) as well as by RAS pull down assay (Figure S2C). 170 

Furthermore, analysis of a RAS-induced oncogenic signature expression by GSEA 171 

showed a strong reduction in NF1-GRD expressing cells (NES = -1.7; FDR q-value < 172 

0.001) (Figure S2D). Most importantly, NF1-GRD expression led to a significant 173 

reduction of the MGSs (Wang signature: NES = -1.3; FDR q-value = 0.05; Phillips 174 

signature: NES = -1.7; FDR q-value < 0.001) (Figure 2E, left panels). On the contrary, 175 

Proneural gene signatures (PNGSs) were upregulated (Wang signature: NES = 1.2; FDR 176 

q-value = 0.12; Phillips signature: NES = 1.3; FDR q-value = 0.1) (Figure 2E, right 177 

panels). Western blot analysis also revealed a significant decrease of CHI3L1 expression, 178 

a well characterized mesenchymal marker, upon NF1-GRD overexpression (Figure 2F).  179 

Mesenchymal glioblastoma cells are able to differentiate into osteocytes, a feature 180 

they share with mesenchymal stem cells (Ricci-Vitiani et al., 2008; Tso et al., 2006). 181 

Consistent with the loss of the MGS, the ability to differentiate into osteocytes was lost 182 

in the BTSC 233 MES cells transduced with the NF1-GRD, as documented by Alizarin 183 

Red staining (Figure 2G). 184 

To further confirm whether NF1 deletion could be sufficient to induce changes in 185 

the MGS, we then knocked down NF1 in the NF1-expressing PN cell line BTSC 3021 186 
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(Figure 2H) and performed microarray gene expression analysis followed by GSEA. Both 187 

Wang and Phillips MGSs were enriched upon NF1 silencing (Wang: NES = 1.61; FDR 188 

q-value = 0.005; Phillips: NES = 1.9; FDR q-value < 0.001) (Figure 2I). The PNGSs 189 

instead were not significantly lost (data not shown). 190 

Taken together, our data indicate that NF1 modulation is able to alter the MGS 191 

expression in GBM. NF1-led gene expression changes might be driven by an effect on 192 

MGS master regulators. Alternatively, other TFs might be involved. We therefore 193 

analyzed the expression of FOSL1 and other previously described mesenchymal TFs 194 

(Bhat et al., 2011; Carro et al., 2010) upon NF1-GRD overexpression or NF1 loss in two 195 

independent MES (BTSC 233 and BTSC 232) or PN (BTSC 3021 and BTSC 3047) cell 196 

lines. Interestingly, only CEBPB and FOSL1 were consistently downregulated upon NF1-197 

GRD expression (Figure 2J and S3C) and upregulated following NF1 knockdown 198 

(Figures 2K and S3D). Moreover, a FOSL1 targets signature was enriched in the NF1 199 

altered versus NF1 wt GBM samples of the TCGA dataset as well as in the BTSC 3021 200 

shNF1 versus shCtrl (NF1 altered: NES = 1.38; FDR q-value = 0.16; shNF1: NES = 1.9; 201 

FDR q-value < 0.001) (Figure S3E, top and middle panels). Conversely, FOSL1 targets 202 

were downregulated upon NF1-GRD (NF1-GRD: NES = -1.38; FDR q-value = 0.037) 203 

(Figure S3E, bottom panel). These data were further confirmed by the analysis of the 204 

expression of some FOSL1 targets (ITGA3, PLAU, ITGA5, TNC and SERPINE1): we 205 

observed that ITGA3 and SERPINE1 were consistently either downregulated upon NF1-206 

GRD overexpression (Figure S3F, NF1-GRD in BTSC 233 and BTSC 232) or 207 

upregulated upon NF1 knockdown (Figure S3G, shNF1 in BTSC 3021 and BTSC 3047). 208 

Overall these evidences suggest that NF1 is directly involved in the regulation of 209 

the MGS, possibly through the modulation of FOSL1 expression. 210 

 211 

Fosl1 deletion induces a shift from a MES to a PN gene signature  212 

 To further explore the NF1-FOSL1 axis in MES GBM we used a combination of 213 

the RCAS-Tva system with the CRISPR/Cas9 technology, recently developed in our 214 

laboratory (Oldrini et al., 2018) to induce Nf1 loss or Kras mutation. Mouse neural stem 215 

cells (NSCs) from hGFAP-Tva; hGFAP-Cre; Trp53lox; ROSA26-LSL-Cas9 pups were 216 

isolated and infected with viruses produced by DF1 packaging cells transduced with 217 

RCAS vectors targeting the expression of Nf1 through shRNA and sgRNA (shNf1 and 218 

sgNf1) or overexpressing a mutant form of Kras (KrasG12V). Loss of NF1 expression was 219 

confirmed by western blot and FRA-1 was upregulated in the two models of Nf1 loss 220 
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compared to parental cells, and further upregulated in cells infected with KrasG12V (Figure 221 

3A). Consistent with activation of the Ras signaling, as result of both Nf1 loss and Kras 222 

mutation, the MEK/ERK pathway was more active in infected cells compared to parental 223 

cells (Figure 3A). Higher levels of activation of the MEK/ERK pathway were associated 224 

with the induction of mesenchymal genes such as Plau, Plaur, Timp1 and Cd44 (Figure 225 

3B). These data indicated that KrasG12V–transduced cells are a suitable model to 226 

functionally study the role of Fosl1 in MES GBM. 227 

Taking advantage of the Cas9 expression in the generated cell p53-null KrasG12V 228 

NSCs model, Fosl1 expression was knocked out through sgRNAs. Efficient 229 

downregulation of FRA-1 was achieved with 2 different sgRNAs (Figure 3C). Cells 230 

transduced with sgFosl1_1 and sgFosl1_3 were then subjected to further studies.  231 

As suggested by the data presented here on the human BTSCs datasets (Figures 232 

1C-D and 2K), FOSL1 appears to be a key regulator the MES subtype. Consistently, 233 

RNA-seq analysis followed by GSEA of p53-null KrasG12V sgFosl1_1 versus sgCtrl 234 

revealed a significant loss of Wang and Phillips MGSs (Wang: NES = -1.85; FDR q-value 235 

< 0.001; Phillips: NES = -1.91; FDR q-value < 0.001) (Figure 3D, left panels). 236 

Oppositely, Wang and Phillips PNGSs were increased in sgFosl1_1 cells (Wang: NES = 237 

1.42; FDR q-value = 0.029; Phillips: NES = 2.10; FDR q-value < 0.001) (Figure 3D, right 238 

panels). These findings were validated by qRT-PCR with a significant decrease in 239 

expression of a panel of MES genes (Plau, Itga7, Timp1, Plaur, Fn1, Cyr61, Actn1, 240 

S100a4, Vim, Cd44) (Figure 3E) and increased expression of PN genes (Olig2, Ncam1, 241 

Bcan, Lgr5) in the Fosl1 knock-out (KO) KrasG12V NSCs (Figure 3F).  242 

 243 

Fosl1 deletion reduces stemness and tumor growth 244 

Ras activating mutations have been widely used to study gliomagenesis, in 245 

combination with other alterations as Akt mutation (Holland et al., 2000), loss of 246 

Ink4a/Arf (Uhrbom et al., 2002) or p53 (Friedmann-Morvinski et al., 2012; Koschmann 247 

et al., 2016; Muñoz et al., 2013). Thus, we then explored the possibility that Fosl1 could 248 

modulate the tumorigenic potential of the p53-null Kras mutant cells. 249 

Cell viability was significantly decreased in Fosl1 KO cell lines, as compared to 250 

sgCtrl (Figure 4A). Concomitantly, we observed a significant decreased percentage of 251 

cells in S-phase (mean values: sgCtrl = 42.6%; sgFosl1_1 = 21.6%, P ≤ 0.001; sgFosl1_3 252 

= 20.4%, P = 0.003) and an increase in percentage of cells in G2/M (mean values: sgCtrl 253 

= 11.7%, sgFosl1_1 = 28.4%, P ≤ 0.001; sgFosl1_3 = 23.4%, P = 0.012) (Figure 4B). 254 
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Another aspect that contributes to GBM aggressiveness is its heterogeneity, 255 

attributable in part to the presence of glioma stem cells. By using limiting dilution assays, 256 

we found that Fosl1 is required for the maintenance of stem cell capacity (Figure 4C). 257 

Moreover, RNA-seq analysis showed that sgFosl1_1 cells downregulated the expression 258 

of stem genes (Elf4, Klf4, Itgb1, Nes, Sall4, L1cam, Melk, Cd44, Myc, Fut4, Cxcr4, 259 

Prom1) while upregulating the expression of lineage-specific genes: neuronal (Map2, 260 

Ncam1, Tubb3, Slc1a2, Rbfox3, Dcx), astrocytic (Aldh1l1, Gfap, S100b, Slc1a3) and 261 

oligodendrocytic (Olig2, Sox10, Cnp, Mbp, Cspg4) (Figure 4D). The different expression 262 

of some of the stem/differentiation markers was confirmed also by immunofluorescence 263 

analysis. While Fosl1 KO cells presented low expression of the stem cell marker CD44, 264 

differentiation markers as GFAP and OLIG2 were significantly higher when compared to 265 

sgCtrl cells (Figure 4E, Figure S4). 266 

 We then sought to test whether: i) p53-null KrasG12V NSCs were tumorigenic and 267 

ii) Fosl1 played any role in their tumorigenic potential. Intracranial injections of p53-null 268 

KrasG12V NSCs in nu/nu mice led to the development of high-grade tumors with a median 269 

survival of 37 days in control cells (n=9). However, the sgFosl1_1 injected mice (n=6) 270 

had a significant increase in median survival (54.5 days, Log-rank P = 0.0263) (Figure 271 

4F). Consistent with what we detected in vitro (Figure 3D-F) we observed a switch from 272 

a MGS to a PNGS in the tumors (Figure 4G-I). By western blot and immunohistochemical 273 

analysis, we observed a reduction on expression of MES markers (VIM, CD44 and 274 

S100A4) as compared to sgCtrl tumors (Figure 4G-H), while the PN marker OLIG2 was 275 

only found expressed in sgFosl1 tumors (Figure 4G). Similarly, when we compared 276 

mRNA expression of a sgCtrl tumor with high FRA-1 expression (T4, Figure 4G) with 277 

sgFosl1 tumors with no detectable FRA-1 expression by western blot (T3 and T4, Figure 278 

4G), we found downregulated expression of MES markers and upregulated expression of 279 

PN markers in the sgFosl1 tumors (Figure 4I-J). 280 

Altogether, our data support the conclusion that, besides controlling cell 281 

proliferation, Fosl1 plays a critical role in the maintenance of the stem cell properties and 282 

tumorigenicity of p53-null Kras mutant NSCs. 283 

 284 

Fosl1 amplifies MES gene expression  285 

To further assess the role of Fosl1 as a key player in the control of the MGS, we 286 

used a mouse model of inducible Fosl1 overexpression containing the alleles KrasLSLG12V; 287 

Trp53lox; ROSA26LSLrtTA-IRES-EGFP; Col1a1TetO-Fosl1 (here referred as Fosl1tetON). Similar to 288 
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the loss-of-function approach here used, this allelic combination allows the expression of 289 

KrasG12V and deletion of p53 after Cre recombination. Moreover, the expression of the 290 

reverse tetracycline transactivator (rtTA) allows, upon induction with doxycycline (Dox), 291 

the ectopic expression of Fosl1 (Flag tagged), under the control of the Col1a1 locus and 292 

a tetracycline-responsive element (TRE or Tet-O) (Belteki et al., 2005; Hasenfuss et al., 293 

2014). 294 

NSCs derived from Fosl1WT and Fosl1tetON mice were infected in vitro with a 295 

lentiviral vector expressing the Cre recombinase and efficient infection was confirmed by 296 

fluorescence microscopy, as the cells expressing the rtTA should express GFP (data not 297 

shown). FRA-1 overexpression, as well as Flag-tag expression was then tested by western 298 

blot after 72h of Dox induction (Figure 5A). When Fosl1tetON NSCs were analyzed by 299 

qRT-PCR for the expression of MES/PN markers, a significant upregulation of most MES 300 

genes and downregulation of PN genes was found in the cells overexpressing Fosl1 upon 301 

Dox induction (Figure 5B-C), the inverse image of our findings with Fosl1 knock-out 302 

cells. 303 

In order to investigate if the MES phenotype induced with Fosl1 overexpression 304 

would have any effect in vivo, p53-null KrasG12V Fosl1tetON NSCs were intracranially 305 

injected into syngeneic C57BL/6J wildtype mice. Injected mice were randomized and 306 

subjected to Dox diet (food pellets and drinking water) or kept as controls with regular 307 

food and drinking water with 1% sucrose. No differences in mice survival were observed 308 

(Figure S5B). However, tumors developed from Fosl1 overexpressing mice (+Dox) were 309 

larger (Figure 5D), more infiltrative and with a more aggressive appearance than controls 310 

(–Dox), that mostly grew as superficial tumor masses, even if both –Dox and +Dox 311 

tumors seem to proliferate similarly (Figure S5C). 312 

Tumorspheres were derived from –Dox and +Dox tumor-bearing mice and Fosl1 313 

expression was manipulated in vitro through addition or withdrawal of Dox from the 314 

culture medium. In the case of tumorspheres derived from a –Dox tumor, when Dox was 315 

added for 19 days, high levels of FRA-1 expression were detected by western blot (Figure 316 

5E). At the mRNA level, Dox treatment also greatly increased Fosl1 expression, as well 317 

as some of the MES genes (Figure 5F), while the expression of PN genes was 318 

downregulated (Figure 5G). Conversely, when Dox was removed from +Dox derived 319 

tumorspheres for 19 days, the expression of FRA-1 decreased (Figure 5H-I), along with 320 

the expression of MES genes (Figure 5I), while PN genes were upregulated (Figure 5J). 321 

These results confirm the essential role of Fosl1 in the regulation of the MES gene 322 
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signature in p53-null KrasG12V tumor cells and the plasticity between the PN and MES 323 

subtypes. 324 

 325 

FOSL1 controls growth, stemness and MES gene expression in patient-derived 326 

tumor cells  327 

To prove the relevance of our findings in the context of human tumors, we 328 

analyzed BTSC lines characterized as Non-MES (BTSC 268 and 409) or MES (BTSC 329 

349 and 380) (Figure 1A). By western blot, we found that MES BTSC 380 did not express 330 

NF1 while BTSC 349 showed a different pattern of NF1 expression compared to the Non-331 

MES lines BTSC 268 and 409 (intact NF1), that might be due to a NF1 point mutation. 332 

Consistent with the observed upon NF1 silencing either in human BTSCs (Figure 2I) or 333 

mouse NSCs (Figure 3A), both MES cell lines expressed high levels of FRA-1 and 334 

activation of the MEK/ERK pathway (Figure 6A).  335 

To study the role of FOSL1 in the context of human BTSCs, its expression was 336 

silenced in the MES BTSC 349, the cell line with higher FRA-1 expression, using a Dox 337 

inducible shRNA. We confirmed by western blot FRA-1 downregulation after 3 days of 338 

Dox treatment (Figure 6B). Similar to what was observed in the mouse cells, FOSL1 339 

silencing in MES BTSC 349 resulted in reduced cell growth (Figure 6C) with a significant 340 

reduction of the percentage of BrdU positive cells, compared to Dox-untreated cells 341 

(Figure S6A). FOSL1 silencing through Dox treatment also decreased stem cell sphere 342 

forming capacity of MES BTSC 349 (Figure 6D). Moreover, FOSL1 silencing resulted 343 

also in the significant downregulation of the MES genes (Figure 6E), while no major 344 

differences in the expression of PN genes was observed (Figure S6B).  345 

Lastly, we tested whether FRA-1 modulates the MGS via direct target regulation. 346 

To this end, we first identified high-confidence FOSL1/FRA-1 binding sites in chromatin 347 

immunoprecipitation-seq (ChIP-seq) generated in non-mesenchymal cancer cells (see 348 

methods) and then we determined the counts per million reads (CPM) of the enhancer 349 

histone mark H3K27Ac in a set of MES and non-MES BTSCs (Mack et al., 2019). 350 

Differential enrichment analysis by DeSeq2 revealed 9262 regions statistically significant 351 

for H3K27Ac at FOSL1/FRA-1 binding sites in either MES or non-MES BTSCs (Figure 352 

6F). Gene set enrichment analysis revealed that a significant fraction of H3K27Ac-353 

decorated FOSL1/FRA-1 binding sites was enriched in MES BTSCs and PCA further 354 

revealed that H3K27Ac-decorated sites in MES BTSCs clustered closer to FOSL1/FRA-355 

1 direct binding to chromatin when compared to non-MES BTSCs (Figure 6G). Next, we 356 
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compared H3K27Ac distribution over FOSL1/FRA-1 binding sites to that of the Non-357 

MES master regulator OLIG2 (Figure 1C). This analysis showed that the 9262  358 

FOSL1/FRA-1 binding sites are systematically decorated with H3K27Ac in MES BTSCs, 359 

whereas only 3423 out of 9262 sites are acetylated to a similar extent in non-MES BTSCs. 360 

Importantly, the inverse trend was observed for H3K27Ac at OLIG2 binding sites (Figure 361 

6H). Validation in an independent MES BTSC line (BTSC 349) by ChIP-qPCR 362 

confirmed FRA-1 binding at promoters of some MES genes including PLAU, TNC, 363 

ITGA5 and CD44 (Figure 6J).  364 

Altogether, our data support that FOSL1/FRA-1 regulates MES gene expression 365 

and aggressiveness in human gliomas via direct transcriptional regulation, downstream 366 

of NF1. 367 

 368 

Discussion 369 

The most broadly accepted transcriptional classification of GBM was originally 370 

based on gene expression profiles of bulk tumors (Verhaak et al., 2010), which did not 371 

discriminate the contribution of tumor cells and TME to the transcriptional signatures. It 372 

is now becoming evident that both cell-intrinsic and extrinsic cues can contribute to the 373 

specification of the MES subtype (Bhat et al., 2013; Neftel et al., 2019; Wang et al., 2017). 374 

Bhat and colleagues had shown that while some of the MES GBMs maintained the 375 

mesenchymal characteristics when expanded in vitro as BTSCs, some others lost the 376 

MGS after few passages while exhibiting a higher PNGS (Bhat et al., 2013). These data, 377 

together with the evidence that xenografts into immunocompromised mice of BTSCs 378 

derived from MES GBMs were also unable to fully restore the MES phenotype, suggested 379 

that the presence of an intact TME potentially contributed to the maintenance of a MGS, 380 

either by directly influencing a cell-intrinsic MGS or by expression of the TME-specific 381 

signature. Recently, the transcriptional GBM subtypes were redefined based on the 382 

expression of glioma-intrinsic genes, thus excluding the genes expressed by cells of the 383 

TME (Wang et al., 2017). Our master regulator analysis on the BTSCs points to the AP-384 

1 family member FOSL1 as one of the top transcription factors contributing to the cell-385 

intrinsic MGS. Previous tumor bulk analysis identified a related AP-1 family member 386 

FOSL2, together with CEBPB, STAT3 and TAZ, as important regulators of the MES GBM 387 

subtype (Bhat et al., 2011; Carro et al., 2010). While FOSL1 was also listed as a putative 388 

MES master regulator (Carro et al., 2010), its function and mechanism of action have not 389 

been further characterized since then. Our experimental data show that FOSL1 is a key 390 
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regulator of GBM subtype plasticity and MES transition, and define the molecular 391 

mechanism through which FOSL1 is regulated.  392 

Although consistently defined, GBM subtypes do not represent static entities. The 393 

plasticity between subtypes happens at several levels. Besides the referred MES-to-PN 394 

change in cultured GSCs compared to the parental tumor (Bhat et al., 2013), a PN-to-395 

MES shift often occurs upon treatment and recurrence. Several independent studies 396 

comparing matched pairs of primary and recurrent tumors demonstrated a tendency to 397 

shift towards a MES phenotype, associated with a worse patient survival, likely as a result 398 

of treatment-induced changes in the tumor and/or the microenvironment (Phillips et al., 399 

2006; Wang et al., 2016; Wang et al., 2017). Moreover, distinct subtypes/cellular states, 400 

can coexist within the same tumor (Neftel et al., 2019; Patel et al., 2014; Sottoriva et al., 401 

2013; Wang et al., 2019) and targeting these multiple cellular components could result in 402 

more effective treatments (Wang et al., 2019).  403 

PN-to-MES transition is often considered an EMT-like phenomenon, associated 404 

with tumor progression (Fedele et al., 2019). The role of FOSL1 in EMT has been studied 405 

in other tumor types. In breast cancer cells FOSL1 expression correlates with 406 

mesenchymal features and drives cancer stem cells (Tam et al., 2013) and the regulation 407 

of EMT seems to happen through the direct binding of FRA-1 to promoters of EMT genes 408 

such as Tgfb1, Zeb1 and Zeb2 (Bakiri et al., 2015). In colorectal cancer cells, FOSL1 was 409 

also shown to promote cancer aggressiveness through EMT by direct transcription 410 

regulation of EMT-related genes (Diesch et al., 2014; Liu et al., 2015). 411 

It is well established that NF1 inactivation is a major genetic event associated with 412 

the MES subtype (Verhaak et al., 2010; Wang et al., 2017). However, this is probably a 413 

late event in MES gliomagenesis, as all tumors possibly arise from a PN precursor and 414 

just later in disease progression acquire NF1 alterations that are directly associated with 415 

a transition to a MES subtype (Ozawa et al., 2014). Moreover, NF1 deficiency has been 416 

recently linked to macrophage/microglia infiltration in the MES subtype (Wang et al., 417 

2017). The fact that the enriched macrophage/microglia microenvironment is also able to 418 

modulate a MES phenotype suggests that there might be a two-way interaction between 419 

tumor cells and TME. The mechanisms of NF1-regulated chemotaxis and whether this 420 

relationship between the TME and MGS in GBM is causal remain elusive.  421 

Here we provide evidence that manipulation of NF1 expression levels in patient-422 

derived BTSCs has a direct consequence on the tumor-intrinsic MGS activation and that 423 

such activation, can at least in part be mediated by the modulation of FOSL1. Among the 424 
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previously validated MRs, only CEBPB appears also to be finely modulated by NF1 425 

inactivation.  This suggests that among the TFs previously characterized (such as FOSL2, 426 

STAT3, BHLHB2 and RUNX1), FOSL1 and CEBPB might play a specific role in the NF1-427 

mediated MES transition that occurs in glioma cells with limited or possibly absent effect 428 

by the TME. However, whether FOSL1 contributes also to the putative cross-talk between 429 

the TME and the cell-intrinsic MGS, will still have to be established. 430 

 Furthermore we show that FOSL1 is a crucial player in glioma pathogenesis, 431 

particularly in a MAPK-driven MES GBM context. Our findings broaden its previously 432 

described role in KRAS-driven epithelial tumors, such as lung and pancreatic ductal 433 

adenocarcinoma (Vallejo et al., 2017). NF1 inactivation results in Ras activation, which 434 

stimulates downstream pathways as MAPK and PI3K/Akt /mTOR. RAS/MEK/ERK 435 

activation in turn regulates FOSL1 mRNA expression and FRA-1 protein stability 436 

(Casalino et al., 2003; Verde et al., 2007). FRA-1 can then directly bind and activate some 437 

of the MES genes, while possibly binding its own promoter to activate its own expression 438 

(Diesch et al., 2014; Lau et al., 2016). This generates a feedback loop that induces MGS, 439 

increases proliferation and stemness, sustaining tumor growth. FRA-1 requires, for its 440 

transcriptional activity, heterodimerization with the AP-1 transcription factors JUN, 441 

JUNB or JUND (Eferl and Wagner, 2003). Which of the JUN family members participate 442 

in the MES gene regulation and whether FRA-1 activates MES gene expression and 443 

simultaneously represses PN genes, requires further investigation. 444 

In conclusion, FOSL1 is a master regulator of the MES subtype of GBM, 445 

significantly contributing to its stem cell features, which could open new therapeutic 446 

options. Although FOSL1 pharmacological inhibition is difficult to achieve due to the 447 

lack of specific inhibitors, a gene therapy approach targeting FOSL1 expression through 448 

CRISPR, for instance, could constitute an attractive alternative to treat MES GBM 449 

patients. 450 
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 471 

Material and Methods 472 

Generation of the BTSCs dataset and Master regulator analysis (MRA) 473 

The brain tumor stem cell lines (BTSCs) dataset was assembled with new and previously 474 

generated transcriptomic data: 24 Illumina HumanHT-12v4 expression BeadChip 475 

microarrays newly generated at Freiburg University (GSE137310, this study); 44 RNA-476 

seq samples (Illumina HiSeq 2500) from GSE119834 (Mack et al., 2019), 30 Affymetrix 477 

Human Genome U219 microarrays from GSE67089 (Mao et al., 2013) and 17 Affymetrix 478 

HG-U133 Plus 2.0 microarrays from GSE8049 (Günther et al., 2008). For the previously 479 

published data, at exception of the GSE119834, for which pre-processed data were used, 480 

raw data were downloaded from the GEO repository 481 

(https://www.ncbi.nlm.nih.gov/geo/) and subsequently the ‘affy’ package (R 482 

programming language) was used for robust multi-array average normalization followed 483 

by quantile normalization. For genes with several probe sets, the median of all probes had 484 

been chosen and only common genes among all the datasets (n = 14821) were used for 485 

further analysis. To avoid issues with the use of different transcriptomic platforms each 486 

dataset was then scaled (mean = 0, sd = 1) before assembling the combined final dataset. 487 

Transcriptional subtypes were obtained using the ‘ssgsea.GBM.classification’ R package 488 

(Wang et al., 2017), through the SubtypeME tool of the GlioVis web portal 489 
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(http://gliovis.bioinfo.cnio.es) (Bowman et al., 2017). Differential gene expression (MES 490 

vs Non-MES BTSCs) was performed using the ‘limma’ R package.  491 

The master regulator analysis was performed using the ‘RTN’ R package (Castro 492 

et al., 2016). Normalized BTSC expression data were used as input to build a 493 

transcriptional network (TN) for 785 TFs present in the dataset. TF annotations were 494 

obtained from Gene Ontology (GO:0003700). P values for network edges were computed 495 

from a pooled null distribution using 1000 permutations. Edges with an adjusted-P value 496 

< 0.05 were kept for data processing inequality (DPI) filtering. In the TN, each target can 497 

be connected to multiple TFs and regulation can occur as a result of both direct and 498 

indirect interactions. DPI-filtering removes the weakest interaction in any triangle of two 499 

TFs and a target gene, therefore preserving the dominant TF-target pairs and resulting in 500 

a filtered TN that highlights the most significant interactions (Fletcher et al., 2013). Post-501 

DPI filtering, the MRA computes the overlap between the transcriptional regulatory 502 

unities (regulons) and the input signature genes using the hypergeometric distribution 503 

(with multiple hypothesis testing corrections). To identify master regulators, the 504 

differential gene expression between MES and Non-MES was used as a phenotype. 505 

 506 

TCGA pan-glioma data analysis 507 

RSEM normalized RNA-seq data for the TCGA GBMLGG dataset were 508 

downloaded from the Broad Institute Firebrowse (http://gdac.broadinstitute.org). NF1 509 

copy number alterations and point mutations were obtained at the cBioPortal 510 

(https://www.cbioportal.org). Transcriptional subtypes were inferred using the 511 

‘ssgsea.GBM.classification’ R package as indicated above. Glioma molecular subtypes 512 

information was downloaded from the GlioVis web portal (http://gliovis.bioinfo.cnio.es) 513 

(Bowman et al., 2017). Survival analysis was performed using the ‘survival’ R package. 514 

 515 

Gene Expression Array and gene set enrichment analysis (GSEA) 516 

For gene expression profiling of the BTSC lines of the Freiburg dataset, total RNA 517 

was prepared using the RNeasy kit (Qiagen #74104) or the AllPrep DNA/RNA/Protein 518 

mini kit (Qiagen #80004) and quantified using 2100 Bioanalyzer (Agilent). One-and-a-519 

half µg of total RNA for each sample was sent to the genomic facility of the German 520 

Cancer Research Center (DKFZ) in Heidelberg (Germany) where hybridization and data 521 

normalization were performed. Hybridization was carried out on Illumina HumanHT-522 
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12v4 expression BeadChip. Gene set enrichment analysis was performed using the GSEA 523 

software (http://www.broadinstitute.org/gsea/index.jsp). 524 

 525 

ChIP-seq analysis 526 

We downloaded FOSL1 ChIP-seq profiling from ENCODE tracks ENCFF000OZR and 527 

ENCFF000OZQ. OLIG2 binding sites and ChIP-seq profiles were downloaded from 528 

GEO: GSM1306365_MGG8TPC.OLIG2r1c and GSM1306367_MGG8TPC.OLIG2r2. 529 

H3K27Ac data were downloaded from GSE119755 (Mack et al., 2019) for 530 

GSM3382291_GSC17, GSM3382343_GSC40, GSM3382319_GSC3, 531 

GSM3382321_GSC30, GSM3382341_GSC4, GSM3382277_GSC10. Scatter plots were 532 

generated with Seqmonk v1.45 using FOSL1 binding sites in MES-BTSCs using a 533 

Kolmorogov-Smirnov test with a sample size of 297 when constructing the control 534 

distributions and filtering by maximum P value of 0.05 (multiple testing correction 535 

applied). Minimum absolute z-score was 0.5. A custom regression was calculated. 536 

Quantitation was Read Count Quantitation using all reads correcting for total count only 537 

in probes to largest store log transformed duplicates ignored. Heatmaps were generated 538 

using ChaSE, using either FOSL1 or OLIG2 binding sites with ±10,000 bp. 539 

 540 

Mouse strains and husbandry 541 

GFAP-tv-a; hGFAP-Cre; Rosa26-LSL-Cas9 mice were previously described 542 

(Oldrini et al., 2018). KrasLSLG12V; Trp53lox; Rosa26LSLrtTA-IRES-EGFP; Col1a1TetO-Fosl1 543 

mouse strain corresponds to the MGI Allele References 3582830, 1931011, 3583817 and 544 

5585716, respectively. Immunodeficient nu/nu mice (MGI: 1856108) were obtained at 545 

the Spanish National Cancer Research Centre Animal Facility. 546 

Mice were housed in the specific pathogen-free animal house of the Spanish 547 

National Cancer Research Centre under conditions in accordance with the 548 

recommendations of the Federation of European Laboratory Animal Science 549 

Associations (FELASA). All animal experiments were approved by the Ethical 550 

Committee (CEIyBA) and performed in accordance with the guidelines stated in the 551 

International Guiding Principles for Biomedical Research Involving Animals, developed 552 

by the Council for International Organizations of Medical Sciences (CIOMS). 553 

 554 

Cell lines and cell culture 555 
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Mouse neural stem cells (NSCs) were derived from the whole brain of newborn 556 

mice of Gtv-a; hGFAP-Cre; LSL-Cas9; Trp53lox (referred as p53-null NSCs) and 557 

KrasLSLG12V; Trp53lox; Rosa26LSLrtTA-IRES-EGFP; Col1a1TetO-Fosl1 (referred as Fosl1TetON 558 

NSCs). Tumorsphere lines were derived from tumors of C57BL/6J injected with 559 

Fosl1TetON NSCs, when mice were sacrificed after showing symptoms of brain tumor 560 

disease. For the derivation of mouse NSCs and tumorspheres, tissue was enzymatically 561 

digested with 5 mL of papain digestion solution (0.94 mg/mL papain (Worthington 562 

#LS003119), 0.48 mM EDTA, 0.18 mg/mL N-acetyl-L-cysteine (Sigma-Aldrich 563 

#A9165) in Earl’s Balanced Salt Solution (Gibco #14155-08)) and incubated at 37°C for 564 

8 min. After digestion, the enzyme was inactivated by the addition of 2 mL of 0.71 mg/mL 565 

ovomucoid (Worthington #LS003087) and 0.06 mg/mL DNaseI (Roche #10104159001) 566 

diluted in Mouse NeuroCult basal medium (Stem Cell Technologies #05700) without 567 

growth factors. Cell suspension was centrifuged at a low speed and then passed through 568 

a 40 µm mesh filter to remove undigested tissue, washed first with PBS and then with 569 

ACK lysing buffer (Gibco #A1049201) to remove red blood cells. NSCs and 570 

tumorspheres were grown in Mouse NeuroCult basal medium, supplemented with 571 

Proliferation supplement (Stem Cell Technologies #05701), 20 ng/mL recombinant 572 

human EGF (Gibco #PHG0313), 10 ng/mL basic-FGF (Millipore #GF003-AF), 2 µg/mL 573 

Heparin (Stem Cell Technologies #07980) and L-glutamine (2mM, Hyclone 574 

#SH3003401). Spheres were dissociated with Accumax (ThermoFisher Scientific #00-575 

4666-56) and re-plated every 4-5 days. 576 

Patient-derived glioblastoma stem cells (BTSCs) were prepared from tumor 577 

specimens under IRB-approved guidelines as described before (Fedele et al., 2017). 578 

BTSCs were grown as neurospheres in Neurobasal medium (Gibco #10888022) 579 

containing B27 supplement (Gibco #12587010), N2 supplement (Gibco #17502048), b-580 

FGF (20 ng/mL), EGF (20 ng/mL), LIF (10 ng/mL, CellGS #GFH200-20), 2 µg/mL 581 

Heparin and L-glutamine (2mM). JX6 were kindly provided by Y. Gillespie (UAB, 582 

Birmingham). 583 

 584 

Vectors, virus production and infection 585 

Flag-tagged NF1-GRD (aminoacids 1131-1534) was amplified by PCR from 586 

human cortical tissue (epilepsy patient) and first cloned in the pDRIVE vector. Primers 587 

are listed in Table S5. The NF1-GRD sequence was then excised by restriction digestion 588 

using PmeI and SpeI enzymes and subcloned in the modified pCHMWS lentiviral vector 589 
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(kind gift from V. Baekelandt, University of Leuven, Belgium) sites by removing the 590 

fLUC region. The correct sequence was verified by sequencing. For NF1 silencing, NF1 591 

short hairpin from pLKO (Sigma, TRCN0000238778) vector was subcloned in pGIPZ 592 

lentiviral vector (Open Biosystems). The corresponding short hairpin sequence was 593 

synthetized (GATC) and amplified by PCR using XhoI and EcoRI sites containing 594 

primers. The PCR product was digested using XhoI and EcoRI and subcloned into the 595 

pGIPZ vector previously digested with XhoI and PmeI following by digestion with 596 

EcoRI. The two vector fragments were ligated with NF1 short hairpin fragment. The 597 

correct insertion and sequence was validated by sequencing. In addition, experiments 598 

were performed using shNF1-pGIPZ clone V2LHS_76027 (clone 4) and V2LHS_260806 599 

(clone 5).  600 

RCAS viruses (RCAS-shNf1, RCAS-sgNf1 and RCAS-KrasG12V) used for 601 

infection of p53-null NSCs were obtained from previously transfected DF1 chicken 602 

fibroblasts (ATCC #CRL-12203) using FuGENE 6 Transfection reagent (Promega 603 

#E2691), according to manufacturer’s protocol. DF1 cells were grown at 39°C in DMEM 604 

containing GlutaMAXTM (Gibco #31966-021) and 10% FBS (Sigma-Aldrich #F7524). 605 

The pKLV-U6gRNA-PGKpuro2ABFP was a gift from Dr. Kosuke Yusa 606 

(Wellcome Sanger Insitute) (Addgene plasmid #50946). For cloning of single gRNAs, 607 

oligonucleotides containing the BbsI site and the specific gRNA sequences were 608 

annealed, phosphorylated and ligated into the pKLV-U6gRNA(BbsI)-PGKpuro2ABFP 609 

previously digested with BbsI. Single gRNAs to target Fosl1 were designed with Guide 610 

Scan (http://www.guidescan.com/) and the sequences cloned were sgFosl1_1: 611 

TACCGAGACTACGGGGAACC; sgFosl1_2: CCTAGGGCTCGTATGACTCC; 612 

sgFosl1_3: ACCGTACGGGCTGCCAGCCC. These vectors and a non-targeting sgRNA 613 

control were used to transduce p53-null KrasG12V NSCs. 614 

The pLVX-Cre and respective control vector were kindly provided by Dr. Maria 615 

Blasco (CNIO) and used to transduce Fosl1TetON NSCs; pLKO.1-TET-shFOSL1 and 616 

respective control vector were a gift from Dr. Silve Vicent (CIMA, Navarra University).  617 

Gp2-293 packaging cell line (Clontech #631458) was grown in DMEM (Sigma-618 

Aldrich #D5796) with 10% FBS. Lentiviruses generated in this cell line were produced 619 

using calcium-phosphate precipitate transfection and co-transfected with second-620 

generation packaging vectors (pMD2G and psPAX2). High-titer virus was collected at 621 

36 and 60 h following transfection. 622 
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All cells were infected with lenti- or retroviruses by four cycles of spin infection 623 

(200 × g for 2 h), in presence of 8 µg/mL polybrene (Sigma-Aldrich #H9268). Transduced 624 

cells were selected after 48 h from the last infection with 1 µg/mL Puromycin (Sigma-625 

Aldrich #P8833). 626 

 627 

Generation of murine gliomas 628 

p53-null KrasG12V NSCs (5×105 cells) were injected intracranially into 4 to 5 629 

weeks-old immunodeficient nu/nu mice. 630 

Fosl1TetON NSCs (5×105 cells) were intracranially injected into 4 to 5 weeks-old 631 

wildtype C57Bl/6J mice that were fed ad libitum with 2 g/kg doxycycline-containing 632 

pellets. Due to the limited penetration of the blood brain barrier and to insure enough Dox 633 

was reaching the brain, 2 mg/mL Dox (PanReac AppliChem #A29510025) was also 634 

added to drinking water with 1% sucrose (Sigma-Aldrich #S0389) (Annibali et al., 2014; 635 

Mansuy and Bujard, 2000). Control mice were kept with regular food and 1% sucrose 636 

drinking water. 637 

Mice were anaesthetized with 4% isofluorane and then injected with a stereotactic 638 

apparatus (Stoelting) as previously described (Hambardzumyan et al., 2009). After 639 

intracranial injection, all mice were routinely checked and sacrificed when developed 640 

symptoms of disease (lethargy, poor grooming, weight loss and macrocephaly). 641 

 642 

Immunohistochemistry 643 

Tissue samples were fixed in 10% formalin, paraffin-embedded and cut in 3 µm 644 

sections, which were mounted in Superfrost Plus microscope slides (Thermo Scientific 645 

#J1810AMNZ) and dried. Tissues were deparaffinized in xylene and re-hydrated through 646 

graded concentrations of ethanol in water, ending in a final rinse in water. 647 

For histopathological analysis, sections were stained with hematoxylin and eosin 648 

(H&E).  649 

For immunohistochemistry, deparaffinized sections underwent heat-induced 650 

antigen retrieval, endogenous peroxidase activity was blocked with 3% hydrogen 651 

peroxide (Sigma-Aldrich #H1009) for 15 min and slides were then incubated in blocking 652 

solution (2.5% BSA (Sigma-Aldrich #A7906) and 10% Goat serum (Sigma-Aldrich 653 

#G9023), diluted in PBS) for at least 1 h. Incubations with anti-FRA-1 (Santa Cruz #sc-654 

183, 1:100) and anti-CD44 (BD Biosciences #550538, 1:100) were carried out overnight 655 

at 4°C. Slides were then incubated with secondary anti-rabbit (Vector #BA-1000) or anti-656 
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rat (Vector #BA-9400) for 1 h at RT and with AB (avidin and biotinylated peroxidase) 657 

solution (Vectastain Elite ABC HRP Kit, Vector, PK-6100) for 30 min. Slides were 658 

developed by incubation with peroxidase substrate DAB (Vector SK-4100) until desired 659 

stain intensity. Finally, slides were counterstained with hematoxylin, cleared and 660 

mounted with a permanent mounting medium.  661 

Immunohistochemistry for S100A4 (Abcam #ab27957, 1:300) and Ki67 (Master 662 

Diagnostica #0003110QD, undiluted) was performed using an automated 663 

immunostaining platform (Ventana discovery XT, Roche). 664 

 665 

Immunoblotting 666 

Cell pellets or frozen tumor tissues were lysed with JS lysis buffer (50 mM 667 

HEPES, 150 mM NaCl, 1% Glycerol, 1% Triton X-100, 1.5 mM MgCl2, 5 mM EGTA) 668 

and protein concentrations were determined by DC protein assay kit II (Bio-Rad 669 

#5000112). Proteins were separated on house-made SDS-PAGE gels and transferred to 670 

nitrocellulose membranes (Amersham #10600003). Membranes were incubated in 671 

blocking buffer (5% milk in TBST) and then with primary antibody overnight at 4°C. The 672 

following primary antibodies and respective dilutions were used:  FLAG (Cell Signaling 673 

Technology #2368S, 1:2000), FRA-1 (Santa Cruz #sc-183, 1:1000; #sc-605, 1:1000), 674 

GFAP (Sigma-Aldrich #G3893, 1:5000), NF1 (Santa Cruz #sc-67, 1:500; Bethyl #A300-675 

140A, 1:1000), OLIG2 (Millipore #AB9610, 1:2000), VIMENTIN (Cell Signaling 676 

Technology #5741, 1:3000), p-ERK1/2 (T202/Y204) (Cell Signaling Technology, #9101, 677 

1:2000/3000; Assay Designs #ADI-905-651, 1:250), ERK1/2 (Cell Signaling 678 

Technology, #9102, 1:1000; Abcam #ab17942, 1:1000), p-MEK (S217/221) (Cell 679 

Signaling Technology, #9154, 1:500/1000), MEK (Cell Signaling Technology, #9122 680 

1:1000), CHI3L1 (Qidel #4815, 1:1000), p85 (Millipore #06-195, 1:10000), VINCULIN 681 

(Sigma-Aldrich #V9131, 1:10000) and α-TUBULIN (Abcam #ab7291, 1:10000). Anti-682 

mouse or rabbit-HRP-conjugated antibodies (Jackson ImmunoResearch, #115-035-003 683 

and #111-035-003) were used to detect desired protein by chemiluminescence with ECL 684 

Detection Reagent (Amersham, #RPN2106). 685 

 686 

Reverse transcription quantitative PCR 687 

RNA from NSCs and frozen tissue was isolated with TRIzol reagent (Invitrogen 688 

#15596-026) according to the manufacturer’s instructions. For reverse transcription PCR 689 

(RT-PCR), 500 ng of total RNA was reverse transcribed using the High Capacity cDNA 690 
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Reverse Transcription Kit (Applied Biosystems #4368814). Quantitative PCR was 691 

performed using the SYBR Select Master Mix (Applied Biosystems #4472908) according 692 

to the manufacturer’s instructions. qPCRs were run and the melting curves of the 693 

amplified products were used to determine the specificity of the amplification. The 694 

threshold cycle number for the genes analyzed was normalized to GAPDH. Mouse and 695 

human primer sequences are listed in Table S5. 696 

RNA from BTSC cells was prepared using the RNeasy kit or the AllPrep 697 

DNA/RNA Protein Mini Kit and used for first strand cDNA synthesis using random 698 

primers and SuperscriptIII reverse transcriptase (Life Technologies #18080-085). Primer 699 

sequences used in qRT-PCR with SYBR Green are listed in Table S5. Quantitative real-700 

time PCR (qRT-PCR) STAT3 and CEBPB were performed using pre-validated TaqMan 701 

assays (Applied Biosystems): STAT3: Hs01047580, CEBPB: Hs00270923 and 18s 702 

rRNA: Hs99999901. 703 

 704 

MTT assay 705 

Cells were seeded in 96-well culture plates (1000 cells per well, 10 wells per cell 706 

line) and grown for 7 days. At each timepoint (days 1, 3, 5 and 7), cell viability was 707 

determined by MTT assay. Briefly, 10 µL of 5 mg/mL MTT (Sigma-Aldrich #M5655) 708 

was added to each well and cells were incubated for 4 h before lysing with a formazan 709 

solubilization solution (10% SDS in 0.01 M HCl). Colorimetric intensity was quantified 710 

using a plate reader at 590 nm. Values were obtained after subtraction of matched blanks 711 

(medium only). 712 

 713 

Cell cycle analysis: Propidium iodide (PI) staining 714 

Cells were harvested and washed twice with PBS prior to fixation with 70% cold 715 

ethanol, added drop-wise to the cell pellet while vortexing. Fixed cells were then washed, 716 

first with 1% BSA in PBS, then with PBS only and stained overnight with 50 µg/mL PI 717 

(Sigma-Aldrich #P4170) and 100 µg/mL RNase A (Roche #10109142001) in PBS. 718 

Samples were acquired in a FACSCanto II cytometer (BD Biosciences) and data were 719 

analyzed using FlowJo software. 720 

 721 

BrdU incorporation 722 

Cells were pulse-labelled with 10 µM BrdU (Sigma-Aldrich #B9285) for 2 h, 723 

harvested and washed twice with PBS prior to fixation with 70% ethanol cold ethanol, 724 
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added drop-wise to the cell pellet while vortexing. DNA denaturation was performed by 725 

incubating samples for 10 min on ice with 0.1 M HCl with 0.5% Tween-20 and samples 726 

were then resuspended in water and boiled at 100°C for 10 min. Anti-BrdU-FITC 727 

antibody (BD Biosciences #556028) was incubated according to manufacturer’s protocol. 728 

After washing with PBSTB (PBS with 0.5% Tween-20 and 1% BSA), samples were 729 

resuspended in 25 µg/mL PI and 100 µg/mL RNase A diluted in PBS. Samples were 730 

acquired in a FACSCanto II cytometer (BD Biosciences) and data were analyzed using 731 

FlowJo software. 732 

 733 

Immunofluorescence 734 

Cells were plated in laminin-coated coverslips and fixed with 4% PFA for 15 min. 735 

Cells were then permeabilized with 0.1% Triton X-100 in 0.2% BSA and coverslips were 736 

washed and blocked with 10% donkey serum in 0.2% BSA for 1 h. The following primary 737 

antibodies were incubated overnight at 4°C: CD44 (BD Biosciences #550538, 1:100), 738 

GFAP (Millipore #MAB360, 1:400) and OLIG2 (Millipore #AB9610, 1:100). Secondary 739 

antibodies at 1:400 dilution (from Invitrogen, Alexa-Fluor anti-rabbit-488, anti-mouse-740 

488 and anti-rat 594) were incubated for 1 h at RT and after washing coverslips were 741 

incubated for 4 min with DAPI (1:4000, Sigma-Aldrich #D8417) and mounted with 742 

ProLong Gold Antifade reagent (Invitrogen #P10144).  743 

Fluorescence signal was quantified as the ratio of green/red pixel area relative to 744 

DAPI pixel area per field of view, in a total of 36 fields per condition analyzed. 745 

 746 

Neurosphere formation assay and limiting dilution analysis 747 

Neurospheres were dissociated and passed through a 40 µm mesh filter to 748 

eliminate non-single cells. Decreasing cell densities were plated in ultra-low attachment 749 

96-well plates (Corning #CLS3474) and fresh medium was added every 3-4 days. The 750 

number of positive wells for presence of spheres was counted 2 weeks after plating. 751 

Limiting dilution analysis was performed using ELDA R package 752 

(http://bioinf.wehi.edu.au/software/elda/). 753 

 754 

RNA-sequencing and analysis on mouse NSCs 755 

One microgram of total RNA from the samples was used. cDNA libraries were 756 

prepared using the "QuantSeq 3‘ mRNA-Seq Library Prep Kit (FWD) for Illumina" 757 

(Lexogen #015) by following manufacturer instructions. Library generation is initiated 758 
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by reverse transcription with oligo(dT) priming, and a second strand synthesis is 759 

performed from random primers by a DNA polymerase. Primers from both steps contain 760 

Illumina-compatible sequences. Adapter-ligated libraries were completed by PCR, 761 

applied to an Illumina flow cell for cluster generation and sequenced on an Illumina 762 

HiSeq 2500 by following manufacturer's protocols. Sequencing read alignment and 763 

quantification and differential gene expression analysis was performed in the Bluebee 764 

Genomics Platform, a cloud-based service provider (www.bluebee.com). Briefly, reads 765 

were first trimmed with bbduk from BBTools (BBMap – Bushnell B, 766 

https://sourceforge.net/projects/bbmap/) to remove adapter sequences and polyA tails. 767 

Trimmed reads were aligned to the GRCm38/mm10 genome assembly with STAR v 2.5 768 

(Dobin et al., 2013). Read counting was performed with HTSeq (Anders et al., 2015). 769 

Differential gene expression analysis was performed with DESeq2 (Love et al., 2014). 770 

The list of stem/differentiation markers was compiled  by combining a previously 771 

described gene list (Sandberg et al. 2013) with other markers (Bazzoli et al., 2012). 772 

GSEAPreranked (Subramanian et al., 2005) was used to perform gene set enrichment 773 

analysis of the described indicated signatures on a pre-ranked gene list, setting 1000 gene 774 

set permutations.  775 

 776 

Osteogenesis Differentiation Assay 777 

The osteogenesis differentiation assay was performed using the StemPro 778 

Osteogenesis Differentiation Kit (Life Technologies #A1007201) according to the 779 

manufacturer’s instructions. Briefly, 5´103 cells/cm2 were seeded on laminin-coated 780 

glass coverslips in a 24-well cell culture plate. Cells were incubated in MSC Growth 781 

Medium at 37°C, 5% CO2 for 21 days, replacing the medium every 4 days. Cells were 782 

then fixed with 4% formaldehyde, stained with Alizarin Red S solution (pH 4.2) and 783 

mounted on microscope slides. Pictures were acquired using an Axiovert Microscope 784 

(Zeiss). 785 

 786 

Active Ras pull down assay 787 

Active Ras pull down assay was performed using Active Ras pull down assay kit 788 

(ThermoFisher Scientific #16117) according to the manufacturer’s instructions. Briefly, 789 

cells were grown in 10 cm plates at 80-90% confluency in presence or absence of growth 790 

factors (EGF, FGF and LIF), and lysed with the provided buffer. Lysates were incubated 791 
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with either GDP or GTP for 30 min followed by precipitation with GST-Raf1-RBD. 792 

Western blot was performed with the provided anti-RAS antibody (1:250). 793 

 794 

Chromatin preparation and FRA-1 ChIP 795 

BTSC cells were collected at 2´106 cells confluency, washed in PBS and fixed by 796 

addition of 1% formaldehyde for 20 min at room temperature. The cells were resuspended 797 

in 2 mL Lysis Buffer (50 mM Tris pH 7.5; 1 mM EDTA pH 8.0; 1% Triton; 0.1% Na-798 

deoxycholate; 150 mM NaCl; protease inhibitors) on ice for 20 min. The suspension was 799 

sonicated in a cooled Bioruptor Pico (Diagenode), and cleared by centrifugation for 10 800 

min at 13000 rpm. The chromatin (DNA) concentration was quantified using NanoDrop 801 

(Thermo Scientific) and the sonication efficiency monitored on an agarose gel. Protein 802 

A/G plus-agarose beads (Santa Cruz #sc-2003) were blocked with sonicated salmon 803 

sperm (ThermoFisher #AM9680, 200 mg/mL beads) and BSA (NEB #B9000S, 250 804 

mg/mL beads) in dilution buffer (0.5% NP40; 200 mM NaCl; 50 mM Tris pH 8.0; 805 

protease inhibitors) for 2 h at room temperature. The chromatin was pre-cleared with 80 806 

µL of blocked beads for 1 h at 4°C. Pre-cleared chromatin was incubated with 5 µg of 807 

FRA-1 antibody (Santa Cruz #sc-605) overnight at 4°C, then with 40 µL of blocked beads 808 

for further 2 h at 4°C. Control mock immunoprecipitation was performed with blocked 809 

beads. The beads were washed 1´ with Wash1 (20 mM Tris pH 7.5; 2 mM EDTA pH 810 

8.0; 1% Triton; 0.1% SDS; 150 mM NaCl), 1´ with Wash2 (20 mM Tris pH 7.5; 2 mM 811 

EDTA pH 8.0; 1% Triton; 0.1% SDS; 500 mM NaCl), 1´ with LiCl Wash (20 mM Tris 812 

pH 7.5; 1 mM EDTA pH 8.0; 1% NP40; 1% deoxycholate; 250 mM LiCl) and 2´ in TE 813 

(10 mM Tris pH 7.5; 1 mM EDTA). The immuno-complexes were eluted by two 15 min 814 

incubations at 30°C with 100 µL Elution buffer (1% SDS, 100 mM NaHCO3), and de-815 

crosslinked overnight at 65°C in the presence of 10 U RNase A (Ambion #AM9780). The 816 

immune-precipitated DNA was then purified with the QIAquick PCR purification kit 817 

(Qiagen #28104) according to manufacturer’s protocol and analyzed by quantitative real-818 

time PCR.  819 

 820 

Statistical analysis 821 

All statistical analyses were performed using R programming language. Statistical 822 

differences between groups in the in vitro assays were assessed by unpaired two-tailed 823 

Student’s t tests, unless otherwise specified.  824 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/834531doi: bioRxiv preprint first posted online Nov. 7, 2019; 

http://dx.doi.org/10.1101/834531
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

Kaplan–Meier survival curves were produced with GraphPad Prism and P values 825 

were generated using the Log-Rank statistics. 826 

Results are presented as mean ± standard deviation (SD), and statistical 827 

significance was defined as P ≤ 0.05 for a 95% confidence interval. 828 

 829 

Data and code availability 830 

The accession numbers for data reported in this paper are GEO: GSE137310 831 

(Freiburg BTSCs) and GSE138010 (mouse NSCs). All the code used for data analysis 832 

and plots generation will be available at: https://github.com/squatrim/Marques2019. 833 

 834 

  835 
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Figure 1. FOSL1 is a master regulator of the glioma-intrinsic MES transcriptional signature. A) Principal 
Component (PC) analysis of the BTSCs expression dataset. B) Heatmap of the top 100 differentially expressed genes 
between MES and Non-MES BTSCs. C) One-tail GSEA of the top 5 scoring TFs in the MRA. D) FOSL1 mRNA 
expression in the BTSCs dataset. Student’s t test, *P ≤ 0.05, ***P ≤ 0.001. E) FOSL1 mRNA expression in the TCGA 
dataset. Tumors were separated according to their molecular subtype classification. Student’s t test, ***P ≤ 0.001. F) 
Kaplan-Meier survival curves of the IDH-wt GBM TCGA tumors stratified based on FOSL1 expression. See also 
Figure S1. 
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Figure 2. NF1 is a functional modulator of MES transcriptional signature and FOSL1 expression. A) Heatmap 
of the subtype ssGSEA scores and NF1 genetic alterations of the IDH-wt GBM TCGA tumors. B) Frequency of NF1 
alterations in MES and Non-MES GBMs. Colors are as in panel A. C) and D) FOSL1 mRNA expression in the TCGA 
dataset. Tumors were separated according to either NF1 alterations (C) or transcriptional subtypes (D). Colors are as 
in panel A. Student’s t test, **P ≤ 0.01, ***P ≤ 0.001. E) GSEA of BTSC 233 MES cells transduced with NF1-GRD 
expressing lentivirus versus Ctrl. Gene signatures from Wang and Phillips studies were analyzed (MES, left panels; 
PN, right panels). ES = Enrichment score. F) Western blot analysis of whole-cell-extract of BTSC 233 cells showing 
CHI3L1 mesenchymal marker expression upon NF1-GRD transduction. Tubulin was used as loading control. G) 
Osteogenesis differentiation assay of BTSC 233 transduced as indicated above. Alzarin Red staining indicates 
osteogenesis differentiation. Scale bar represents 200 µm. H) Western blot analysis of whole-cell-extract of proneural 
BTSC 3021 cells transduced with either NF1 (shNF1) or control (shCtrl) shRNAs. I) GSEA of BTSC 3021 transduced 
with shNF1 versus Ctrl. J) and K) qRT-PCR analysis of FOSL1 expression upon NF1-GRD overexpression in BTSC 
232 and BTSC 233 cells (J) or NF1 knockdown in 3021 and 3047 cells (K). Data are presented as mean ± SD (n=3), 
normalized to 18s rRNA expression; Student’s t test, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. See also Figure S2-S3. 
  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/834531doi: bioRxiv preprint first posted online Nov. 7, 2019; 

http://dx.doi.org/10.1101/834531
http://creativecommons.org/licenses/by-nc-nd/4.0/


37 
 

 

 
 

Figure 3. Fosl1 is induced by MAPK kinase activation and is required for MES gene expression. A) Western 
blot analysis using the specified antibodies of p53-null NSCs, parental and infected with sgNf1, shNf1 and KrasG12V; 
Vinculin used as loading control. B) mRNA expression of Fosl1 and MES genes (Plau, Plaur, Timp1 and Cd44), in 
infected p53-null NSCs, compared to parental cells (not infected). Data from a representative of two experiments are 
presented as mean ± SD (n=3), normalized to Gapdh expression. Student’s t test, relative to parental cells: ns = not 
significant, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. C) FRA-1 expression detected by Western blot in p53-null KrasG12V 
NSCs upon transduction with sgRNAs targeting Fosl1, after selection with 1 µg/mL puromycin; Vinculin used as 
loading control. D) GSEA of p53-null KrasG12V sgFosl1_1 versus sgCtrl NSCs. Gene signatures from Wang and 
Phillips studies were analyzed (MES, left panels; PN, right panels). E) and F) mRNA expression of MES and PN 
genes, respectively, in sgCtrl and sgFosl1_1 p53-null KrasG12V NSCs. Data from a representative of two experiments 
are presented as mean ± SD (n=3), normalized to Gapdh expression. Student’s t test, relative to sgCtrl: *P ≤ 0.05; 
**P ≤ 0.01; ***P ≤ 0.001. 
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Figure 4. Fosl1 knock-out impairs cell growth and stemness in vitro and increases survival in a xenograft 
model. A) Cell viability of control and Fosl1 KO p53-null KrasG12V NSCs measured by MTT assay; absorbance 
values were normalized to day 1. Data from a representative of three independent experiments are presented as mean 
± SD (n=10). Student’s t test on day 7, relative to sgCtrl: ***P ≤ 0.001. B) Quantification of cell cycle populations 
of control and Fosl1 KO p53-null KrasG12V NSCs by flow cytometry analysis of PI staining. Data from a 
representative of two independent experiments are presented as mean ± SD (n=3). Student’s t test, relative to sgCtrl: 
*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. C) A representative limiting dilution experiment on p53-null KrasG12V sgCtrl 
and sgFosl1_1 NSCs, calculated with extreme limiting dilution assay (ELDA) analysis; P < 0.0001. D) Heatmap of 
expression of stem cell (yellow) and lineage-specific (neuronal – purple, astrocytic – green and oligodendrocytic – 
orange) genes, comparing sgCtrl and sgFosl1_1 p53-null KrasG12V NSCs. E) Quantification of pixel area (fold change 
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relative to sgCtrl) of CD44, GFAP and OLIG2 relative to DAPI pixel area per field of view in control and Fosl1 KO 
p53-null KrasG12V NSCs. Data from a representative of two independent experiments; Student’s t test, relative to 
sgCtrl: ***P ≤ 0.001. F) Kaplan-Meier survival curves of nu/nu mice injected with p53-null KrasG12V sgCtrl (n=9) 
and sgFosl1_1 (n=6) NSCs. Log-rank P = 0.0263. G) Western blot analysis using the indicated antibodies of 4 sgCtrl 
and 4 sgFosl1_1 tumors (showing low or no detectable expression of FRA-1); Vinculin used as loading control. H) 
Representative images of IHCs using the indicated antibodies. Scale bars represent 100 µm. I) mRNA expression of 
MES genes in the samples sgCtrl–T4 (higher FRA-1 expression) and sgFosl1_1–T3 and –T4 (no detectable FRA-1 
expression). J) mRNA expression of PN genes in samples as in (H). Data from a representative of two experiments 
are presented as mean ± SD (n=3), normalized to Gapdh expression. Student’s t test for sgFosl1_1 tumors, relative 
to sgCtrl–T4: ns = not significant, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. See also Figure S4. 
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Figure 5. Fosl1 overexpression upregulates the MGS and induces larger tumors in vivo. A) Western blot analysis 
of FRA-1 and Flag expression on Fosl1tetON and Fosl1WT NSCs derived from KrasLSLG12V; Trp53lox; ROSA26LSLrtTA-

IRES-EGFP; Col1a1TetO-Fosl1 mice, upon in vitro infection with Cre and induction of Fosl1 overexpression with 1 µg/mL 
Dox for 72 h; Vinculin used as loading control. B) mRNA expression of Fosl1 and MES genes in Fosl1tetON p53-null 
KrasG12V cells upon 72 h induction with 1 µg/mL Dox. C) mRNA expression of PN genes in Fosl1tetON p53-null 
KrasG12V cells upon 72 h induction with 1 µg/mL Dox. D) Quantification of tumor area (µm2) of –Dox and +Dox 
tumors (n=8/8). For each mouse, the brain section on the H&E slide with a larger tumor was considered and quantified 
using the ZEN software (Zeiss). E) Western blot detection of FRA-1 expression in tumorspheres derived from a 
control (−Dox) tumor. Tumorspheres were isolated and kept without Dox until first passage, when 1 µg/mL Dox was 
added and kept for 19 days (+Dox in vitro). F) mRNA expression of Fosl1 and MES genes in tumorspheres in absence 
or presence of Dox for 19 days. G) mRNA expression of PN genes in tumorspheres in absence or presence of Dox 
for 19 days. H) Western blot detection of FRA-1 expression in tumorspheres derived from a Fosl1 overexpressing 
(+Dox) tumor. Tumorspheres were isolated and kept with 1 µg/mL Dox until first passage, when Dox was removed 
for 19 days (−Dox in vitro). I) mRNA expression of Fosl1 and MES genes in tumorspheres in presence or absence 
of Dox for 19 days. J) mRNA expression of PN genes in tumorspheres in presence or absence of Dox for 19 days. 
qPCR data from a representative of two experiments are presented as mean ± SD (n=3), normalized to Gapdh 
expression. Student’s t test, relative to the respective control (−Dox in B, C, F and G; +Dox in I and J): ns = not 
significant, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. See also Figure S5. 
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Figure 6. FOSL1 silencing in a patient-derived MES tumor stem cell line decreases cell growth, stemness and 
MGS in vitro. A) Western blot analysis using the specified antibodies of human brain tumor stem cell lines, 
characterized as Non-MES (left) and MES (right). B) Western blot detection of FRA-1 in MES BTSC 349 upon 
transduction with inducible shRNAs targeting GFP (control) and FOSL1, analyzed after 3 and 7 days of Dox 
treatment; Vinculin used as loading control. C) Cell growth of BTSC 349 shGFP and shFOSL1, in absence or 
presence of Dox, measured by MTT assay; absorbance values were normalized to day 1. Data from a representative 
of three independent experiments are presented as mean ± SD (n=15). Student’s t test on day 7, relative to shFOSL1 
–Dox: ***P ≤ 0.001. D) Representative limiting dilution analysis on BTSC 349 shFOSL1, in presence or absence of 
Dox, calculated with extreme limiting dilution assay (ELDA) analysis; P < 0.0001. E) mRNA expression of FOSL1 
and MES genes in BTSC 349 shFOSL1 in absence or presence of Dox for 3 days. Data from a representative of three 
experiments are presented as mean ± SD (n=3), normalized to GAPDH expression. Student’s t test, relative to –Dox: 
ns = not significant, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. F) Scatter plot of H3K27Ac signal for Non-Mes and MES 
BTSCs (from Mack et al., 2019) on FOSL1/FRA-1 peaks calculated using MACS on ENCODE samples (see 
methods). Blue probes represent statistically significant difference in H3K27Ac signal between Non-Mes and MES 
BTSCs. Violet trendline indicates a custom regression calculated by a Kolmorogov-Smirnov test, adj-P < 0.05, z > 
0.5. G) Principal component analysis of H3K27Ac of FOSL1/FRA-1 enrichment over FOSL1/FRA-1 binding sites 
for the indicated samples. H) Heatmap of ChIP-seq enrichment of FOSL1/FRA-1 or OLIG2 binding sites for the 
indicated profiles. I) IGV browser view of the PLAU, CD44 and OLIG2 loci of selected profiles. J) Representative 
ChIP experiment in BTSC 349 cells. The panel shows FRA-1 binding to the promoter of a subset of mesenchymal 
targets (n=3 PCR replicates) expressed as percentage of the initial DNA amount in the immune-precipitated fraction. 
NANOG gene was used as a negative control. Student’s t test, relative to IgG: ns = not significant, **P ≤ 0.01, ***P 
≤ 0.001. See also Figure S6. 
  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/834531doi: bioRxiv preprint first posted online Nov. 7, 2019; 

http://dx.doi.org/10.1101/834531
http://creativecommons.org/licenses/by-nc-nd/4.0/


43 
 

 
Figure S1. Related to Figure 1. A) mRNA expression of the top 5 scoring TFs in the MRA of the BTSCs dataset, 
comparing MES versus Non-MES. Student’s t test, ***P ≤ 0.001. B) Two-tailed GSEA showing positive or negative 
targets for the top 5 TFs in the MRA ranked by their differential expression (MES vs Non-MES).  
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Figure S2. Related to Figure 2. A) Western blot analysis of ERK and pERK expression in BTSC 233 cells 
transduced with NF1-GRD expressing lentivirus and stimulated with 10% FBS or 100 ng/ml EGF. α-Tubulin is 
included as loading control. B) Densitometric analysis of western blot in A). C) Western blot analysis of active Ras 
pull down assay in BTSC 233 expressing NF1-GRD or control, in presence or absence of growth factors. D) GSEA 
of Ras-induced oncogenic signature in BTSC 233 MES cells transduced with NF1-GRD expressing lentivirus versus 
Ctrl. 
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Figure S3. Related to Figure 2. A) Western blot analysis of FLAG-NF1-GRD expression in MES cells (BTSC 233 
and 232). B) Western blot analysis of NF1 expression upon NF1 knockdown in PN cells (BTSC 3021 and 3047). C) 
and D) qRT-PCR analysis of mesenchymal genes master regulators expression (BHLHB2, CEBPB, FOSL2, RUNX1, 
STAT3 and TAZ) upon NF1-GRD overexpression in BTSC 233 (C) or NF1 knockdown in 3021 cells (D). Data are 
presented as mean ± SD (n=3), normalized to GAPDH or 18s rRNA expression; Student’s t test, ns = not significant, 
*P ≤ 0.05. E) GSEA of FOSL1 targets signature in GBMs with NF1 alteration or wt status (top panel), BTSC 3021 
cells transduced with shNF1 or shCtrl (middle panel), and BTSC 233 cells transduced with NF1-GRD or Ctrl vector 
(bottom panel). F) and G) qRT-PCR analysis of known mesenchymal FOSL1 targets (ITGA3, ITGA5, PLAU, 
SERPINE1 and TNC) in BTSC 233 and 232 cells transduced with NF1-GRD expressing lentivirus (F) and BTSC 
3021 and 3047 cells transduced with shNF1 expressing lentivirus. Data are presented as mean ± SD (n=3), normalized 
to 18s rRNA expression; Student’s t test, ns = not significant, *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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Figure S4. Related to Figure 4. Representative images of immunofluorescence staining of the indicated markers in 
sgCtrl and sgFosl1_1 p53-null KrasG12V NSCs plated on laminin-coated coverslips. Scale bars represent 50 µm. 
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Figure S5. Related to Figure 5. A) Kaplan-Meier survival curves of C57BL/6J wildtype mice injected with p53-
null KrasG12V Fosl1tetON NSCs subjected to Dox diet (n=8) or kept as controls (n=8); Log-rank P value = 0.814. B) 
Hematoxylin and eosin (H&E) and immunohistochemical staining, using the indicated antibodies, of representative 
–Dox and +Dox tumors. Scale bars represent 100 µm. 
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Figure S6. Related to Figure 6. A) BrdU incorporation of BTSC 349 shGFP and shFOSL1, in absence or presence 
of Dox, analyzed by flow cytometry. Data from a representative of two independent experiments are presented as 
mean ± SD (n=3). Student’s t test, relative to the respective control (–Dox): ns = not significant, **P ≤ 0.01. B) 
mRNA expression of PN genes in BTSC 349 shFOSL1 in absence or presence of Dox for 3 days. Data from a 
representative of three experiments are presented as mean ± SD (n=3), normalized to GAPDH expression. Student’s 
t test, relative to –Dox: ns = not significant, *P ≤ 0.05. 
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