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2019 has been a very good year for our journal. N2 was included in MEDLINE and in June
received its first impact factor, a competitive 7.353. We have been fortunate to recruit Dr.
Marinos Dalakas to our team of International Associate Editors. Dr. Dalakas is Professor of
Neurology at the University of Athens (Greece) and JeffersonUniversity (Philadelphia, PA). His
remarkable knowledge on inflammatory and autoimmune neuromuscular diseases will be a great
asset to the journal. These accomplishments and successes would not have been possible without
the growing number of readers, the increasing number of manuscript submissions, and the
generosity of our reviewers who freely give their time to the journal. To all, we send our
appreciation.

In the 2018N2 Year in Review,1 I wrote some comments related to how the immune checkpoint
inhibitors (ICIs) had revolutionized the treatment of cancer. I noted the concern of several
investigators about the immune-related adverse effects (irAEs) of these drugs, potentially
leading to an increase in patients with autoimmune or paraneoplastic neurologic syn-
dromes. This concern still exists, although a recent review indicated a relatively low number
of irAEs that fulfilled criteria of paraneoplastic syndromes, including the presence of im-
mune responses specifically directed against antigens expressed by the tumor and the
nervous system (onconeuronal antigens).2 Indeed, the authors identified only 14 reported
cases (2 with Ma2 antibody–associated syndromes) that fulfilled these criteria. Much more
frequent, however, were neurologic irAEs unrelated to these mechanisms (e.g., without onco-
neuronal antibodies) and mediated by other inflammatory or autoimmune responses, including
polyneuropathy, Guillain-Barré syndrome, myasthenia gravis, aseptic meningitis, myelitis, or
myositis.2,3

During this past year, several studies on ICIs have shown “adverse effects” (e.g., facilitating the
occurrence of paraneoplastic syndromes), whereas other studies have shown “beneficial effects”
such as the use of ICIs as potential treatments for progressive multifocal leukoencephalopathy
(PML). In the November issue of N2, Vogrig et al.4 retrospectively reviewed a cohort of 50
patients with Ma2 antibody–associated paraneoplastic syndromes and identified 6 who de-
veloped the syndrome after treatment with ICIs. None of these 6 patients had seminoma or
testicular germ cell tumors, which were found in 25% of the rest of the cohort. The authors did
not find differences between the neurologic features of the ICI-associated cases compared with
the other anti-Ma2 cases. All 6 patients were treated with steroids and removal of the ICI, and
some received plasmapheresis or rituximab. Four of the patients died (3 from the neurologic
disease and associated complications), and the other 2 had moderate to severe disability. During
the 12-month period in which the 6 patients with ICI-associated anti-Ma2 syndromes were
identified, a total of 17 patients were diagnosed with anti-Ma2 syndrome. Before this, the annual
number of patients with anti-Ma2 syndromes diagnosed in this reference center was relatively
stable with a median of 4 cases per year. Although the reason for the overall increase in the
number of patients with anti-Ma2 syndrome is unclear, it is remarkable that almost 1/3 had
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received ICIs. Overall, the finding suggested that we should
remain vigilant for an increase of other paraneoplastic neuro-
logic syndromes as ICIs are increasingly available for a wide
variety of cancers. Given that low titers of paraneoplastic
antibodies (e.g., Hu, Ri, or Yo, among others) occur in some
patients with cancer without paraneoplastic syndromes,5–7

several investigators have suggested that testing for these
antibodies before treating patients with ICIs may help to
identify those that are at risk of developing paraneoplastic
syndromes. This can be particularly useful for patients with
tumors that have propensity to associate with paraneoplastic
syndromes, such as small-cell lung cancer.2

PML is a severe disease of the brain that usually affects
immunosuppressed patients and results from reactivation of
the polyomavirus JC (JCV) and infection of oligodendrocytes
and, to a lesser extent, astrocytes. Because there are no specific
anti-JCV drugs, the only treatment strategy is to restore the
function of the immunologic system. Although ICIs were ini-
tially designed to enhance tumor cell–specific responses,
anti–program cell death-1 monoclonal antibodies (PD1-abs)
have recently been used to treat PML. In the first group of
publications that included a total of 10 patients treated with
a PD1-ab, 7 showed mild to substantial improvement, 1 who
was stable before initiating the treatment remained stable, and
2 deteriorated.8–10 Two additional patients were recently
reported in N2, and both showed no improvement with PD1-
ab. One was considered to be a good candidate for the drug
(young age, with a primary immunodeficiency syndrome, not
previously treated with immunosuppression, limited MRI
lesions, and low CSF viral load), was treated with PD1-ab at
very early stage of the PML, and received more doses than
those reported in patients who improved, but had relentless
progression to death.11 The second case had several immu-
nosuppressive disorders, a very high viral load, and died after 2
infusions of the PD1-ab. An interesting observation was that
this patient had fewer progenitor-exhausted T cells and more
terminally exhausted T cells compared with a previously
reported patient who had a favorable outcome.12 Thus, the
authors postulated that patients with PML deprived of
progenitor-exhausted T cells (which have the ability to revert
from exhausted to active) may be those who do not respond to
PD1-ab. In addition, preliminary data from both patients
suggested that JCV-specific CD4+ T cells may be more im-
portant than CD8+ T cells in keeping JCV on check.12

Moving to a different topic, a study of a series of 17 patients
with serum glycine receptor (GlyR) antibodies was published
this year in N2. Thirteen of these patients developed stiff-
person syndrome accompanied by parkinsonism or cerebellar
signs. In addition, 10 patients had various visual symptoms
(spider web-like images, palinopsia, photophobia, hallucina-
tions, and synesthesia, among others), and another 3 presented
with primarily autoimmune epilepsy with psychiatric symp-
toms.13 These findings are in contrast with a series of 14
patients in which the most prevalent symptoms were seizures
and epilepsy in 8 cases and progressive encephalomyelitis with

rigidity and myoclonus (PERM) in only 3. Among the
remaining 3 patients, 1 had global fatigable weakness with
sustained clonus, another had laryngeal dystonia, and the other
had hemiballismus with tics.14 Of interest, the frequency of the
symptoms in this study is actually different from that reported
in a review by the same authors of 187 previously reported
patients, in which 48% had PERM, 22% epilepsy, and the
remaining 30% mixed phenotypes (cerebellar ataxia, move-
ment disorders, demyelination, encephalitis, and cognitive
dysfunction).14 To understand the discrepancies of these 2
studies,13,14 we need to examine the features they have in
common. For example, neither of them examined systemati-
cally patients’CSF; in one study, the CSF was not examined,13

and in the other, only 3 of 14 patients had the CSF examined (2
of them without antibodies).14 Moreover, as soon as the GlyR
antibodies were identified in the patients, both studies took at
face value that the symptoms were linked to the antibodies.
There was little consideration for the fact that GlyR antibodies
can be detected in serum of patients with many different dis-
orders (e.g., AQP4 or MOG autoimmunity, MS, patients with
cancer without neurologic diseases, opsoclonus-myoclonus, or
cerebellar ataxia).15–17 Thus, it is not surprising that if enough
patients with the same disorder are investigated, a small per-
centage of seropositive cases will be identified. For example, in
another series of 238 patients with epilepsy, 13 (5%) had GlyR
antibodies in serum.18

These considerations are applicable to most autoimmune en-
cephalitides associated with neuronal surface antibodies. In-
deed, bearing in mind that (1) antibodies against neuronal
cell-surface antigens associate with autoimmune encephalitis
or myelitis, (2) patients may harbor antibodies only in CSF,
and (3) CSF neuronal antibodies are more disease specific
than serum antibodies, it is remarkable that in 2019, there are
still studies on autoimmune encephalitis in which CSF testing
is not considered. The lack of comprehensive studies (e.g.,
study of serum and CSF and use of appropriate controls)
interferes with the assessment of true associations between
antibodies and diseases, promotes uncertainty (any antibody
can cause any symptom), and may have important con-
sequences in the diagnosis and treatment of patients. These
may include not treating patients who should be treated (e.g.,
patients in whom antibodies are present in CSF but missed
with serum only testing19) or using immunotherapy in patients
who may not have an autoimmune disease (e.g., patients with
antibodies only in serum and unrelated neurologic symptoms).
This is reminiscent of the history of VGKC complex antibodies
and its ever increasing “expansion of the phenotype” due to
resistance to accept that their utility was more than question-
able, leading to frequent misdiagnosis and exposure of patients
to unwarranted therapies.

In recent years, several autoimmune, multisystemic, or
fibroinflammatory disorders have been identified based on the
presence of antigen-specific autoantibodies of the IgG4 sub-
class.20 In Neurology, IgG4 antibodies are largely represented
by 2 immunologically distinct neuromuscular diseases, MuSK
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antibody–positive myasthenia gravis (MuSK-MG) and
antinodal/paranodal antibody-mediated CIDP. These dis-
orders are clinically important because they exhibit poor
response to IVIg or plasmapheresis, and they are immuno-
logically unique because IgG4 antibodies cannot bind com-
plement or many Fc receptors on immune cells, and they are
able to exchange Fab-arms with other IgG4 molecules. As
a result, IgG4 antibodies are viewed as functionally bispecific
and monovalent, unable to engage in antigen cross-linking and
internalization. Although their immunopathogenicity is not
completely understood, there is convincing evidence, mostly
from autoimmune neuromuscular diseases studies, that IgG4
antibodies function by blocking enzymatic activity or protein-
protein interactions of their target antigens. The past year, the
field has further advanced with new information regarding the
association of Ig4 antibodies with distinct neurologic pheno-
types and their effect on antigenic targets.

Huijbers et al.21 in the May issue provide new insights on the
function of IgG4 antibodies in MuSK-MG. They generated
monovalent Fab fragments from patient-derived recombinant
IgG4-MuSK antibodies and investigated the functional effects
of bispecificity and monovalency of Fab-arm–exchanged
antibodies in a tissue culture model. They report that
recombinant monovalent MuSK IgG4 engages in bivalent
monospecific antibody-antigen interactions. Although the
monovalent anti-MuSK blocks MuSK signaling and AChR
clustering, the bivalent anti-MuSK stimulates MuSK phos-
phorylation and partially induces AChR clustering. It seems
that the IgG4 MuSK antibodies require Fab-arm exchange of
IgG4 to be more functionally monovalent to become patho-
genic; in other words, depending on the number of MuSK
binding sites, MuSK antibodies can either act as MuSK agonist
or antagonist. The work has practical implications in antibody-
mediated autoimmunity because inhibition of Fab-arm ex-
change might have therapeutic potential not only in MuSK
MG but also in other IgG4-mediated autoimmune disorders.

A breakthrough in CIDP autoimmunity has been the remark-
able observation that some patients, especially with an atypical
CIDP phenotype highlighted by severe subacute neuropathy,
tremor, and sensory ataxia, do not respond to IVIg or plasma-
pheresis and have IgG4 antibodies to nodal/paranodal antigens
directed against neurofascin-155 (Nfasc155), neurofascin-140/
186 (Nfasc140/186), contactin-1 (CNTN1), and contactin-
associated protein-1 (Caspr1).22 These major observations
were now confirmed in a larger multicenter study providing
further data on the IgG4 phenotypes and their pathogenicity.
Cortese et al.23 in the January issue found the incidence of
these antibodies in 5.5% among 342 Italian patients with
CIDP; of those, 9 had antibodies against the paranodal
Nfasc155, 1 against both the nodal Nfasc140/186 and the
paranodal Nfasc155, 3 against CNTN1, and 6 against Caspr1.
Anti-Caspr1 IgG4 was shown to penetrate paranodal regions
and disrupt the integrity of the Nfasc155/CNTN1/Caspr1
complex, consistent with the effect of IgG4 in disrupting
protein-protein interactions of the targeted antigens.21–23 A

useful observation that emerged from this study is that IgG4
antinodal/paranodal antibodies were not only restricted to
patients with the originally described atypical CIDP
phenotype,24,25 but they are relevant to all patients with CIDP
fulfilling the EFNS/PNS criteria. The same message was re-
iterated in the September issue by Carrera-Garcia et al.26 who
reported the first child with relapsing CIDP and IgG-4 anti-
bodies against contactin-1, poorly responding to IVIg. Both
studies strengthen the view that testing for antibodies against
nodo-paranodal proteins is needed for all adults and pediatric
patients with CIDP refractory to conventional therapies.

The complexity of nodal/paranodal antibodies was further
highlighted in 2 patients with autoantibodies against 2 different
neurofascin (NF) isoforms.27 In contrast to the aforemen-
tioned characteristic phenotype associated with antibodies
against the paranodal NF-155–specific Fn3Fn4 domain, a dif-
ferent phenotype was identified in patients who had IgG3
antibodies against all the NF isoforms. The anti–pan-NF-
associated CIDP was characterized by a more aggressive
course, tetraplegia and cranial nerve involvement indicating
that IgG3 antibodies directed against both NF epitopes, the
paranodal NF-155 and the nodal NF-140/186, define a differ-
ent clinical phenotype. In contrast to IgG4, IgG3 autoantibodies
activate complement and have a strong proinflammatory effect,
hence their association with more severe disease. Although the
underlying mechanism of multiple epitopes remains unclear,
intramolecular epitope spreading could be an explanation, as
seen in other autoimmune diseases. Collectively, these studies
strengthen the clinical importance of antinodal/paranodal
proteins not only in defining phenotypes but also in highlight-
ing that these patients have a severe disease poorly responding
to IVIg and plasmapheresis necessitating early intervention with
more effective therapies aiming at downregulating the humoral
immune response. Rituximab is currently the preferred agent for
all IgG4-related diseases,20,28 and it is likely effective by de-
pleting the Nfasc155, Nfasc140/186, CNTN1, Caspr1, and
MuSK-reactive B cells.

At least 12 other autoimmune multisystemic or lymphoproli-
ferative diseases are hallmarked by the prototypic IgG4-related
syndrome (IgG4-RD).20 Neurologic manifestations can be
seen as part of the multiorgan fibroinflammatory involvement,
mostly represented by meningeal and spinal cord disease and
often presented as hypertrophic pachymeningitis and hypo-
physitis. In this context, Levraut et al.29 in the July issue report
on 2 cases of hypertrophic pachymeningitis and suggest that
PET imaging increased intrathecal IgG4 levels, and histo-
pathologic studies are essential in arriving at proper diagnosis
and early therapy initiation.

In persons living with HIV (PLWH), the persistence of the
virus within the CNS and in lymphoid tissues continues to be
a major challenge in the effort to “cure” HIV infection and to
prevent complications such as HIV-associated neurocognitive
disorders.30 Although suppressive antiretroviral therapy
(ART) effectively prevents the development of CNS
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opportunistic infections and fulminant HIV encephalitis, it
does not fully protect against the development of neuro-
cognitive dysfunction.31 Therefore, neuroprotective therapies
to use in conjunction with ART are being sought, as are plasma
andCSF biomarkers thatmight identify patients at risk ofHIV-
driven neurocognitive dysfunction.

In the May 2019 issue of N2, a review by Ambrosius et al.32

discusses the potential use for anti-neuroinflammatory drugs as
adjunctive agents for treatment and/or prevention of HIV-
associated neurocognitive disorders in PLWH. Evidence sug-
gests that even during effective ART suppression of HIV
infection (i.e., undetectable plasma and CSF HIV RNA), im-
mune activation, oxidative stress, and inflammation persist to
some degree within the CNS and also within peripheral tissue
compartments.33 In this sense, the neuropathogenic mecha-
nisms that characterize virally suppressed HIV infection of the
CNS resemble those of MS, and drugs that target these
pathways and that can be used in conjunction with ART are
being investigated. Furthermore, such drugsmight be expected
to have beneficial effects not only within the CNS but also
within other tissue compartments (e.g., cardiovascular system)
affected by immune activation, oxidative stress, and in-
flammation in PLWH. Among those MS drugs discussed by
Ambrosius et al. as potential candidates are several developed
for the treatment of MS, including dimethyl fumarate (anti-
inflammatory, antioxidant; use in PLWH also discussed in
reference 34), fingolimod (inhibitor of T-lymphocyte traf-
ficking), teriflunomide (inhibitor of T- and B-lymphocyte
proliferation), and natalizumab (inhibitor of T-lymphocyte
trafficking). Each of these drugs indeed targets critical points in
the HIV neuropathogenesis cycle, including the trafficking of
infected T lymphocytes out of lymph nodes and across the
blood-brain barrier, proinflammatory signaling (NF-kB and
others), and production of reactive oxygen species, among
others. The ability of fingolimod to retain antiviral
T lymphocytes in lymphoid tissues in the simian immunode-
ficiency virus (SIV) rhesus macaque model of HIV patho-
genesis has generated interest in its potential to limit SIV/HIV
persistence in situ.35 Additional studies are certain to follow.

However, resistance to the use of such immunomodulating
and/or immunosuppressive MS drugs associated with lym-
phocytopenia for treatment in PLWH appears to be common
among neurologists, and concerns about possible complica-
tions deserve robust discussion. It should be noted, however,
that PLWH who are virally suppressed by ART sustain CD4+

T-lymphocyte counts with long-standing immunosuppressive
therapy after kidney and liver transplantation, without in-
creased risk of opportunistic infections or premature death
(reviewed in Ref. 36). As chronic inflammation in PLWH and
associated end-organ effects become more aggressively tar-
geted, one may anticipate that immunomodulating MS drugs
will receive more and more attention for use in PLWH.

Attending to the need for identification of associative and
predictive biomarkers for the development of HIV-associated

neurocognitive disorders, Gisslen et al.37 (January 2019 N2
issue) have correlated CSF levels of soluble TREM2 (a specific
macrophage/microglia activation marker) with CSF levels of
NFL in PLWH. Archived CSF samples from 112 adult PLWH
and 11 HIV-negative controls (all collected between 1999 and
2014, irrespective of neurocognitive status and ART suppres-
sion) were analyzed for sTREM2, neopterin (a marker of ac-
tivation of macrophages, microglia, and astrocytes), and NFL.
CSF sTREM2 levels correlated strongly with neopterin and
evenmore strongly with NFL. The correlation of CSF sTREM
with severe neurocognitive dysfunction, seen typically in un-
controlled CNS HIV infection and not in ART-suppressed
infection, suggests that it will not be a sensitive biomarker for
neurocognitive dysfunction in ART-suppressed patients. Fur-
thermore, although 36% of patients on suppressive ART had
elevatedCSF neopterin comparedwith controls, none of those
patients had elevated sTREM2. Because TREM2 is considered
specific to cells of monocyte lineage, the investigators con-
cluded that a significant component of the residual CNS in-
flammation present in ART-suppressed PLWH may result
from activation of cells (astrocytes and lymphocytes) other
than macrophages and microglia. This study has specific value
in providing evidence for multiple cellular contributors to
chronic CNS inflammation in PLWH, and it suggests that
assessing multiple CSF biomarkers (sTREM2, neopterin,
NFL, and others) may be necessary for accurately profiling
disease progression, clinical risk, and response to neuro-
protective therapies.

Finally, in the March 2019 issue of N2, Kamtchum-Tatuene
et al.38 presented an interesting study of ischemic stroke risk in
PLWH in sub-Saharan Africa, which linked elevated plasma
levels of ICAM-1 (activation of endothelia) with HIV infection
independently of stroke and other risk factors (ART use, di-
abetes, and hypercholesterolemia). Because this study involved
only 61 stroke cases (19 PLWH) and 168 nonstroke controls
(32 PLWH), it might be underpowered to detect the expected
association between HIV and stroke risk, but the detection of
significantly elevated plasma ICAM-1 in individuals receiving
ART suggests persistent endothelial activation in ART-treated
PLWH. However, this study adds to growing evidence sup-
porting the potential pathogenic effects of chronic in-
flammation and activation of multiple CNS-relevant cell
lineages (endothelia, macrophages, microglia, and astrocytes)
in ART-suppressed PLWH, and it also supports the impor-
tance of studying of HIV-associated CNS disease risks as
a worldwide issue.

In 2019, several articles published in N2 have made relevant
contributions to the areas of pathogenesis, biomarkers, and
treatment of MS. Individual MS risk is influenced both by
genetic susceptibility and environmental factors, such as EBV
infection, low vitamin D, smoking, obesity, and others.39–42

Recently, alterations of the gut microbiome in MS through
dietary habits have received increasing attention as possible
link between potentially modifiable environmental factors and
the immune system.43–46 However, previous human studies
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were limited by small sample sizes, enrollment of patients with
longer disease duration, and confounding effects of immuno-
modulatory therapy, thus precluding conclusions regarding the
causal influence of the gut microbiome on the MS immune
system, or in other words, leaving the “chicken or egg di-
lemma” unresolved.47 Katz Sand et al.48 investigated in a cross-
sectional study the effects of 2 widely used disease-modifying
drugs, glatiramer acetate (GA) and dimethyl fumarate (DMF),
on gut microbial composition. Stool samples from 168 par-
ticipants with MS from 2 MS centers (75 treatment naive, 33
on DMF, and 60 on GA) were collected, and 16S rRNA
amplicon sequencing was performed in parallel with immu-
nophenotyping from patients’ whole blood (at 1 center only)
to validate the expected effects of DMF and GA. Both drugs
were associated with alterations of the fecal microbiota com-
position, namely a decreased relative abundance of the Lach-
nospiraceae and Veillonellaceae families. Moreover, in patients
treated with DMF, there was a decreased relative abundance of
the phyla Firmicutes and Fusobacteria and the order Clos-
tridiales and an increase in the phylum Bacteroidetes. Both
drugs differentially affected metabolic pathways with some
overlap. This study demonstrates that DMDs may have
a profound impact on the gut microbiome inMS, which has to
be taken into account for future studies.

Two other studies have dealt with therapeutic modulation of
environmental factors inMS.Modulation of diet was proposed
to have beneficial impact on tissue damage and disease severity
in animal models of MS.49,50 Brenton et al.51 have now con-
ducted a pilot study to assess the safety and tolerability of a type
of ketogenic diet in patients with relapsing-remitting MS
(RRMS). Of 20 patients enrolled into this single-arm, open-
label 6-month trial, 19 adhered to the dietary regimen for 3
months and 15 for 6 months. Body mass index, total fat mass,
fatigue, and depression scores were significantly improved at
the end of the study, and the proinflammatory adipokine leptin
was reduced after 3 months on diet. Although this study was
not designed to prove a beneficial effect of a dietary in-
tervention on MS disease course, it has shown that nutrition
interventions are feasible in MS with good adherence, thus
warranting subsequent larger, randomized trials.

The second study by Camu et al.52 adds to the contentious
issue as to whether vitamin D supplementation is able to
modify MS disease course.53–55 The CHOLINE trial was
a randomized, double-blind, placebo-controlled, parallel-group
study in 181 patients with RRMS on stable immunomodula-
tory treatment with interferon beta-1a 44 μg SC 3 times weekly
and at least 1 documented relapse during the previous 2
years.52 Patients with low serum vitamin D (<75 nmol/L 25-
hydroxy vitamin D) were eligible and were randomized 1:1 to
either 100,000 IU of high-dose oral cholecalciferol or placebo
every other week add-on to interferon beta over 96 weeks. The
primary end point (change in the annualized relapse rate
[ARR] at 96 weeks) was not met. However, in 90 patients (45
per group) who completed the 2-year follow-up, efficacy
parameters (ARR, new T1 hypointense lesions, volume of T1

hypointense lesions on brain MRI, and EDSS progression)
significantly favored the active intervention, whereas there was
no difference between both completer groupswith regard to new
T2 and gadolinium-enhancing lesions and brain gray and white
matter volumes. The rate of adverse events was similar between
groups. Although the studywas negative in respect to the primary
end point, presumably due to lack of statistical power, and is
therefore not able to provide an unambiguous answer to the
question whether high-dose vitamin D supplementation bene-
ficially modifies MS disease course, it backs current clinical
management now adopted by many MS neurologists who sup-
plement low vitamin D levels in their patients.

The year 2019 in N2 has also provided us with some new
insights into biomarkers to monitor disease course and im-
munotherapy inMS. Brain atrophy that is believed to reflect at
least in part also the neurodegenerative component of MS and
is detectable on a group level from earliest disease stages56 has
long been proposed as marker to measure progressive tissue
loss over the course of the disease. Azevedo et al.57 in a longi-
tudinal study have now investigated the effect of normal aging
on brain atrophy in MS. Brain MRIs from 520 patients with
relapse onset MS and from 130 healthy controls, most of them
with more than 1 measurement time point, were investigated.
The rate of whole-brain atrophy attributable to MS changed
significantly with age and decreased from −0.38% per year at
age 30 years to −0.12% per year at age 60 years, whereas the
slope of normal aging atrophy increased from 0.01% per year at
age 30 years to −0.31% per year at age 60 years. Of interest, the
rate of MS-specific thalamic atrophy decreased from −0.59%
per year at age 30 years to −0.05% per year at age 60 years,
whereas the rate of normal aging atrophy increased from
−0.15% per year at age 30 years to −0.62% at age 60 years. By
contrast, in the putamen and the caudate nucleus, the con-
tributions of MS-specific atrophy and normal age did not
change substantially over the age span. This study suggests that
the trajectories of tissue loss attributable to MS and normal
aging, respectively, may differ across brain regions, which has
implications for the interpretation of brain volume changes in
clinical trials and with immunotherapy.

Another emerging imaging technique to visualize and quantify
neuroaxonal degeneration in autoimmune neuroinflammation
is retinal optical coherence tomography that seems to be in
closer proximity to clinical use in individual patients than brain
atrophy measurements.58–60 Cordano et al.61 have now in-
vestigated the value of OCT-derived measures of retinal neu-
rodegeneration to predict disability worsening in patients with
MS. This retrospective study in 305 patients with various
subforms of MS and a median follow-up time of 7.9 years
between OCT scan and most recent EDSS grading evaluated
the association of the baseline peripapillary retinal nerve fiber
layer thickness (pRNFL) and the subsequent EDSS score. The
authors report an increase in the EDSS score of 0.024 points,
with each 1-μmdecrease in the baseline pRNFL. Similar results
were obtained when adjusting for the presence of previous
optic neuritis episodes. In line with a previous report,62 this
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study shows that a pRNFL measurement may be useful to
prognosticate disability as long as 6–9 years later. Despite some
obvious limitations such as the use of the older time-domain
OCT technology, the retrospective nature of the study, and the
lack of a baseline EDSS score in all study participants, this work
supports the use of OCT in clinical patient management as
long as acquisition procedures comply with established quality
criteria.63

Initial investigations leading to the development of the anti-
VLA4 monoclonal antibody natalizumab (Tysabri) in MS
therapy focused on its role in inhibiting CNS recruitment of
T cells through the blood-brain barrier (BBB).64 Because
VLA4 is also expressed on B cells and monocytes, natalizumab
treatment may affect function of those cells and possibly
contribute to its therapeutic benefit. It is known that natali-
zumab treatment of patients with MS reduces accumulation of
B cells in CSF.65 Selective genetic deficiency of B-cell VLA-4
expression reduces CNS accumulation of B cells, proin-
flammatory Th17 cells, and monocytes in experimental auto-
immune encephalomyelitis (EAE) induced by MOG protein,
a model that requires B cells and leads to antigen-specific B-cell
activation.66 In the July issue of N2, Hussain et al.67 reported
on selective B-cell VLA-4 deficiency in a model of EAE that is
dependent on T cells, but not B cells, and observed that al-
though the absence of VLA-4 on B cells reduced CNS B-cell
accumulation, it did not alter EAE susceptibility. Their exciting
findings are consistentwith previouswork indicating that VLA-
4 expression on B cells is important in regulatory B-cell (Breg)
control of EAE68,69 and collectively highlight howB-cell VLA-4
expression may promote pathogenic and regulatory roles of
different B-cell subsets in CNS autoimmune disease, in-
cluding MS. In the same issue of N2, Sucksdorff et al.70

evaluated how natalizumab treatment of patients with MS
influenced activation of microglia, resident CNS innate im-
mune cells. Microglial activation was measured in 10 patients
with MS using the 18-kDa translocator protein (TSPO)-
binding radioligand [11C]PK11195 and PET imaging before
and after 1-year treatment with natalizumab. Natalizumab
treatment was associated with reduced microglial activation in
normal-appearing white matter and at the rim of chronic MS
lesions. Thus, their study demonstrated how natalizumab
treatment ofMSmay reduce activation of resident CNS innate
immune cells and established how TSPO-PET imaging can be
used as a tool to assess longitudinal changes in microglial ac-
tivation in NAWM and in perilesional areas in the MS brain in
vivo.

Although natalizumab is recognized as a very effective MS
therapy, its use can be associated with PML, a CNS infection
caused by the opportunistic JCV. Serum antibodies to JCV
serve as a surrogate marker for exposure to JCV, and the risk of
PML is increased with elevated titers. In theNovember issue of
N2, Largey et al.71 conducted a longitudinal observational
study analyzing serum and CSF samples before and during
natalizumab treatment of 15 patients withMS for antibodies to
JCV and other viruses, including measles, mumps, rubella, and

influenza, as well as certain bacteria. When comparing serum
and CSF antibody levels, they detected evidence of intrathecal
synthesis of anti-JCV antibodies in 20% of patients with MS
before natalizumab treatment. During natalizumab treatment,
intrathecal production of JCV antibodies was lost more fre-
quently in comparison to antigen-specific antibodies to other
neurotropic viruses and bacteria tested. Thus, their data sug-
gest that there is intrathecal production of JCV-specific anti-
bodies in a minority of patients and that there may be selective
reduction of intrathecal JCV-specific humoral immunity dur-
ing natalizumab treatment. Previous clinical investigations, and
recent experimental evidence from Hussain et al.67 and
Lehmann-Horn et al.,66,68 demonstrating that CNS penetra-
tion of B cells, like T cells, is VLA-4 dependent, raise the
possibility that reduction of intrathecal production of JCV-
specific antibodies could reflect decreased CNS recruitment of
JCV-specific B cells and/or T cells (i.e., T follicular helper),
which are required for B-cell differentiation into antibody-
producing plasmablasts and plasma cells. Further studies in-
cluding replication of these findings by Largey et al.71 in a larger
cohort will be important to determine whether reduction of
intrathecal humoral JCV-specific immunity translates to higher
risk of PML.

For several years, MOG antibodies have been well recog-
nized in acute disseminated encephalomyelitis and bi-
lateral optic neuritis. In 2014 and 2015, several groups
described patients with opticospinal disease mimicking
NMOSD that had MOG-specific antibodies, but not
AQP4-specific antibodies.72–74 At that time, there was con-
cern in classifyingMOG antibody–associated disease as a form
of NMOSD, as the pathophysiology of MOG-targeted and
AQP4-targeted diseases is distinct, the clinical course of these
conditions may not be identical, and patients with these 2
disorders may not respond to therapeutics in the same
manner.75,76 Since that time, the number of MOG antibody–
associated diseases has increased. In the March issue of N2, 2
groups described cases of patients with additional clinical
conditions associated with MOG antibodies.77,78 In 1 study,
Patterson et al.77 reported on 2 patients exhibiting signs of
small vessel CNS vasculitis. Both patients presented with fever,
headaches, and mental status changes, and 1 had cranial nerve
palsies. They had abnormal brain MRIs and brain biopsies
demonstrating lymphocytic infiltration of small vessels. With
presumed diagnosis of small vessel primary vasculitis, these
patients initially received cyclophosphamide and steroids.
While on that regimen, 1 patient developed optic neuritis.
MOG antibodies were detected in stored serum samples from
both patients, and rereview of the biopsies revealed absence of
fibrinoid necrosis, a pathologic requirement for the diagnosis
of small vessel primary vasculitis. Treatment was changed upon
recognition these patients had a MOG antibody–associated
disease. One patient had no more relapses on treatment with
rituximab, azathioprine, and low-dose prednisone, whereas the
other patient stabilized on a slow prednisone taper. In the
same issue of N2, Cobo-Calvo et al.78 identified 3 MOG
antibody–positive patients with radiologic and/or clinical
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involvement of their cranial nerves. One patient had in-
volvement at the root exit of the oculomotor nerve with
gadolinium enhancement that extended beyond the transition
between the CNS and the peripheral myelin. Labeled purified
serum IgG from each patient was tested on tissue specimens
from nonhuman primates (NHPs) (Cynomolgus macaques),
a species that expresses MOG protein that is highly homolo-
gous with human MOG. The serum IgG samples reacted to
myelin in the NHP brain tissue with the same pattern as
a MOG-specific monoclonal antibody used as a positive con-
trol and did not react with cranial nerves. AsMOG is produced
by oligodendrocytes within the CNS, absence of staining of
cranial nerves was not surprising. However, at this time, the
pathophysiologic mechanism(s) responsible for the cranial
nerve involvement in these patients with anti-MOG antibodies
is puzzling. Further studies are needed to determine whether
the MOG antibodies are pathogenic or if such antibodies are
a surrogate for a humoral or cellular immune response tar-
geting an antigen expressed in cranial nerves. Regardless, it is
important to be aware that the spectrum of conditions asso-
ciated with anti-MOG antibodies has grown, some of those
conditions may mimic other neurologic disorders, and treat-
ments may differ.

Last, we want to thank our reviewers. We are able to accept
only a minority of submitted manuscripts and must make
difficult decisions regardingwhich articles will most benefit our
readers and improve patient care. Your thoughtful comments
regarding experimental research investigations, the uniqueness
of study populations, novel methods and techniques, studies
that are particularly educational, or new strategies for di-
agnosing and treating neurologic disease are enormously
helpful and highly appreciated. Our gratitude for your dedi-
cation to reviewing for Neurology® Neuroimmunology & Neu-
roinflammation cannot be adequately conveyed.
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