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Abstract: Tight junctions are complex supramolecular entities composed of integral membrane
proteins, membrane-associated and soluble cytoplasmic proteins engaging in an intricate and dynamic
system of protein–protein interactions. Three-dimensional structures of several tight-junction proteins
or their isolated domains have been determined by X-ray crystallography, nuclear magnetic resonance
spectroscopy, and cryo-electron microscopy. These structures provide direct insight into molecular
interactions that contribute to the formation, integrity, or function of tight junctions. In addition,
the known experimental structures have allowed the modeling of ligand-binding events involving
tight-junction proteins. Here, we review the published structures of tight-junction proteins. We show
that these proteins are composed of a limited set of structural motifs and highlight common types of
interactions between tight-junction proteins and their ligands involving these motifs.

Keywords: tight junction; protein structure; protein domain; claudins; occludin; tricellulin; junctional
adhesion molecule; zonula occludens; MAGUK proteins; PDZ domain

1. Introduction

A classical paper published more than half a century ago [1] clearly demonstrated that the epithelia
of several glands and cavity-forming internal organs of the rat and guinea pig all share characteristic
tripartite junctional complexes between adjacent cells. These junctional complexes were found in
the epithelia of the stomach, intestine, gall bladder, uterus, oviduct, liver, pancreas, parotid, thyroid,
salivary ducts, and kidney. Progressing from the apical to the basal side of the endothelial cell layer, the
elements of the junctional complex were characterized as tight junctions (zonulae occludens), adherens
junctions, and desmosomes. As most apical elements of the junctional complex, tight junctions (TJs)
were distinct by the apparent fusion of adjacent cell membranes over variable distances and appeared
as a diffuse band of dense cytoplasmic material in the electron microscope. TJs formed a continuous
belt-like structure, whereas desmosomes displayed discontinuous button-like structures, and adherens
junctions (AJs) were intermediate in appearance. The molecular composition of TJs was revealed in
subsequent work by many laboratories, e.g., [2–5], and shown to include at least 40 different proteins.

In the pioneering work of Farquhar and Palade, TJs were proposed to function as effective
diffusion barriers or seals [1]. The sealing function of TJs contributes to the formation and physiological
function of the blood-brain barrier (BBB), which consists of endothelial cells sealed by apical junctional
complexes including TJs. Functions of transmembrane TJ proteins at the BBB are well documented [6–8].
BBB dysfunction is linked to a number of diseases including multiple sclerosis, stroke, brain tumors,
epilepsy, and Alzheimer’s disease [9,10].

Here, we review the current literature regarding three-dimensional structures of TJ proteins, their
domains and intermolecular interactions. We do not primarily aim at presenting each and every
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structure in detail, but attempt to distill common structural principles that underlie the architecture of
the TJ. We apologize to those authors whose work may not have been covered in this paper for reasons
of space and readability.

2. Structural Insight into Tight-Junction Proteins, Their Domains, and Interactions

In the most general, birds-eye description, the TJ consists of a set of transmembrane (TM) proteins
and the cytoplasmic plaque, a complex network of scaffolding and effector proteins that connects the
TM proteins to the actomyosin cytoskeleton of the cell (Figure 1). The TM proteins interact with their
extracellular domains in the paracellular space, and the connection to the cytoskeleton inside the cell is
structurally as yet uncharacterized [2–5,11,12]. The zonula occludens proteins ZO-1, ZO-2, and ZO-3
and the two mammalian polarity complexes PAR-3/PAR-6/aPKC and Crumbs/ PALS1/PATJ are central
players of the cytoplasmic plaque and are described in more detail in this review together with the
transmembrane TJ proteins.

2.1. Tight-Junction Transmembrane Proteins

TJ transmembrane proteins contain either one, three, or four TM segments. The Crumbs proteins
(CRBs), the junctional adhesion molecules (JAMs), the angulin proteins, and the coxsackievirus–
adenovirus receptor (CAR) are representatives of single-span TJ membrane proteins. BVES (blood-vessel
epicardial substance, also known as POPDC1 for Popeye domain-containing protein-1) is a TJ-associated
protein with three TM regions [13,14]. The claudins and the TAMPs (tight junction-associated
MARVEL-domain proteins) occludin (MARVELD1), tricellulin (MARVELD2), and MARVELD3 are
tetra-span TM proteins. MARVEL is used as a common acronym for MAL (myelin and lymphocyte)
and related proteins for vesicle trafficking and membrane link [15]. Where crystal structures are
available, for example the claudin family (Section 2.1.2, [16]), the TM segments were shown to be
α-helical.

2.1.1. Junctional Adhesion Molecules and Other Ig-Like TJ Proteins

The JAMs are a family of adhesion molecules with immunoglobulin (Ig)-like ectodomains,
localized in epithelial and endothelial cells, leukocytes, and myocardial cells [17]. The 2.5-Å crystal
structure of the soluble extracellular part of mouse JAM-A provided the first structural insight into a TJ
transmembrane protein [18]. In this structure, two Ig domains are connected by a short linker peptide,
and a U-shaped dimer is formed by symmetrical interaction of the N-terminal Ig domains (Figure 2).
This structure provided the basis for a model of homophilic interactions between the N-domains to
explain the adhesive function of JAMs in the TJ. The crystal structure of the extracellular Ig domains of
coxsackievirus–adenovirus receptor CAR, another component of the epithelial apical junction complex
that is essential for TJ integrity [19], suggests a very similar mode of CAR homodimer formation
through symmetrical interaction of its N-terminal Ig domain [20].

The extracellular portions of JAMs serve as viral attachment sites. Reoviruses attach to human
cells by binding to cell–surface carbohydrates and the junctional adhesion molecule JAM-A. The crystal
structure of reovirus attachment protein σ1 bound to the soluble form of JAM-A shows that σ1 disrupts
the native JAM-A dimer to form a heterodimer via the same interface as used in JAM-A homodimers,
but with a 1000-fold lower dissociation constant of the σ1/JAM-A heterodimer as compared to the
JAM-A homodimer [21]. In cat, infection with calicivirus is initiated by binding of the minor capsid
protein VP2 to feline junctional adhesion molecule A (JAM-A). High-resolution cryo-EM structures
of VP2 and soluble JAM-A-decorated VP2 show formation of a large portal-like assembly, which is
hypothesized to serve as a channel for the transfer of the viral genome [22].
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Figure 1. The tight-junction core structure. TM proteins of the TJ (dark blue) interact with a complex 91 
cytoplasmic protein network, the cytoplasmic plaque (shown on the right), providing a physical link 92 
to the cytoskeleton (microtubules, actin filaments). Cross-membrane interactions between TM 93 
proteins are indicated schematically. For some TM proteins (shown in pale blue) there is no direct 94 
evidence for a trans pairing interaction between TM proteins of opposing cells. The cytoplasmic 95 
plaque is composed of scaffolding proteins (yellow ovals) that associate with signaling proteins 96 
(purple ovals) and (post)transcriptional regulators (green oval), forming the zonular signalosome 97 
[23]. The three major protein complexes located in the cytoplasmic plaque are depicted. Within the 98 
ZO complex, ZO proteins are present as homodimers or ZO-1/ZO-2 and ZO-1/ZO-3 heterodimers [24] 99 
that directly associate with integral TJ membrane proteins through multiple interactions. The polarity 100 
complexes PAR-3/PAR-6/aPKC and Crumbs/PALS1/PATJ are responsible for the development of the 101 
apico-basal axis of epithelial cells and act as apical components of TJs. TM proteins: Crumbs homolog 102 
3 (CRB3); MARVEL-domain containing proteins occludin, tricellulin, and MARVEL domain-103 
containing protein 3 (MARVELD3); the claudins; the protein blood vessel epicardial substance 104 
(BVES); immunoglobulin (Ig) superfamily members such as junctional adhesion molecules (JAMs) 105 
and the coxsackievirus–adenovirus receptor (CAR). Cytoplasmic scaffolding proteins: Zonula 106 
occludens (ZO) proteins ZO-1, ZO-2, and ZO-3; partitioning defective 3/6 homologs (PAR-3, PAR-6); 107 
protein associated with Lin-7 1 (PALS1); PALS1-associated tight junction (PATJ) protein; cytoskeletal 108 
linker cingulin. Signaling proteins: Atypical protein kinase C (aPKC); proteins of the angiomotin 109 
family (AMOTs) [25]; the small Rho-GTPase Cdc42, and guanine nucleotide exchange factors for the 110 
Rho-GTPases RhoA (RhoGEFs, e.g., ARHGEF11 [26]) and Rac1 (RacGEFs, e.g., Tiam-1 [27]), 111 
respectively. Transcriptional regulator: ZO-1–associated nucleic acid-binding protein (ZONAB, YBX3 112 
in human) [28]. Figure modified and updated after Zihni et al. [12]. 113 

Figure 1. The tight-junction core structure. TM proteins of the TJ (dark blue) interact with a complex
cytoplasmic protein network, the cytoplasmic plaque (shown on the right), providing a physical link to
the cytoskeleton (microtubules, actin filaments). Cross-membrane interactions between TM proteins
are indicated schematically. For some TM proteins (shown in pale blue) there is no direct evidence
for a trans pairing interaction between TM proteins of opposing cells. The cytoplasmic plaque is
composed of scaffolding proteins (yellow ovals) that associate with signaling proteins (purple ovals)
and (post)transcriptional regulators (green oval), forming the zonular signalosome [23]. The three
major protein complexes located in the cytoplasmic plaque are depicted. Within the ZO complex,
ZO proteins are present as homodimers or ZO-1/ZO-2 and ZO-1/ZO-3 heterodimers [24] that directly
associate with integral TJ membrane proteins through multiple interactions. The polarity complexes
PAR-3/PAR-6/aPKC and Crumbs/PALS1/PATJ are responsible for the development of the apico-basal
axis of epithelial cells and act as apical components of TJs. TM proteins: Crumbs homolog 3 (CRB3);
MARVEL-domain containing proteins occludin, tricellulin, and MARVEL domain-containing protein 3
(MARVELD3); the claudins; the protein blood vessel epicardial substance (BVES); immunoglobulin (Ig)
superfamily members such as junctional adhesion molecules (JAMs) and the coxsackievirus–adenovirus
receptor (CAR). Cytoplasmic scaffolding proteins: Zonula occludens (ZO) proteins ZO-1, ZO-2, and
ZO-3; partitioning defective 3/6 homologs (PAR-3, PAR-6); protein associated with Lin-7 1 (PALS1);
PALS1-associated tight junction (PATJ) protein; cytoskeletal linker cingulin. Signaling proteins: Atypical
protein kinase C (aPKC); proteins of the angiomotin family (AMOTs) [25]; the small Rho-GTPase Cdc42,
and guanine nucleotide exchange factors for the Rho-GTPases RhoA (RhoGEFs, e.g., ARHGEF11 [26])
and Rac1 (RacGEFs, e.g., Tiam-1 [27]), respectively. Transcriptional regulator: ZO-1–associated nucleic
acid-binding protein (ZONAB, YBX3 in human) [28]. Figure modified and updated after Zihni et al. [12].
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Figure 2. JAM-A dimerization via extracellular Ig domains. Crystal structure of murine JAM-A (PDB 115 
entry 1F97) [18]. The dimer is generated by crystallographic two-fold symmetry. 116 
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containing receptors) that complement each other at tricellular TJs and co-operate with tricellulin to 122 
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Figure 2. JAM-A dimerization via extracellular Ig domains. Crystal structure of murine JAM-A (PDB
entry 1F97) [18]. The dimer is generated by crystallographic two-fold symmetry.

In addition to JAMs and CAR, other single-span Ig-like adhesion molecules such as the endothelial
cell-selective adhesion molecule (ESAM), the coxsackievirus and adenovirus receptor-like membrane
protein (CLMP), the brain- and testis-specific immunoglobulin superfamily protein (BT-IgSF or
IgSF11) [19], and the angulin family of proteins are present at TJs. The latter comprise the proteins LSR
(lipolysis-stimulated lipoprotein receptor), ILDR1, and ILDR2 (Ig-like domain-containing receptors)
that complement each other at tricellular TJs and co-operate with tricellulin to mediate full barrier
function in epithelial sheets [29,30]. Loss of LSR is linked to cell invasion and migration in human
cancer cells [31]. To date, however, no structural data are available for any of these proteins.

2.1.2. Claudins

Members of the claudin family are the most abundant TM proteins of the TJ [32]. Claudin genes are
expressed across all epithelial tissues, and in all epithelia various different claudins are expressed at the
same time [12,33–36]. Tissue-specific expression of claudin genes has been documented, for example,
for claudins in the kidney, inner ear, and eye [33].

At TJs, claudins are arranged to form extended strands by homophilic or heterophilic cis pairing
within the same membrane or trans pairing across membranes [37,38]. In humans, 23 claudins and
two claudin-like proteins are currently known (Figure 3). Although clearly homologous, the claudins
share only a small number of strictly conserved residues and differ in the lengths of their N- and
C-termini and the loops connecting their four TM helices. Highest sequence conservation is observed
within the first extracellular loop (ECL1) where a tryptophan and two cysteine residues are strictly
conserved in all sequences, suggesting formation of a disulfide bond in this region, which was
experimentally verified by crystal structure analysis [16]. Various schemes for grouping claudins have
been proposed. Based on sequence conservations, a grouping into classical claudins (1–10, 14, 15, 17,
19) and non-classical claudins (11–13, 16, 18, 20–24) was suggested [39], but the alignment shown
in Figure 3 does not clearly support a separation into these groups. Based on function within the
TJ, claudins may be grouped according to their barrier or channel forming properties with respect
to different solutes [34,35,40]. Claudins 1, 3, 5, 11, 14, and 19, for example, have been characterized
as predominantly sealing, whereas claudins 2, 10a, 10b, 15, and 17 were described as predominantly
channel forming. For claudins 4, 7, 8, and 16 a sealing or channel-forming function has not been
unequivocally determined [34]. Moreover, assignment of these functions to TM proteins of the TJ may
be difficult when individual TJ proteins are functionally replaced by paralogs in certain epithelia or in
the presence of post-translational modification.
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CLDND2), which are not included in the alignment. 66 N-terminal residues of CLDN-16 and 46
C-terminal residues of CLDN-23 are omitted from the alignment, because they have no match in any
other human claudin sequence. Domain and secondary-structure annotation follows CLDN-4 for which
a crystal structure is known in the presence of a bound toxin and loop EC1 is fully ordered [16,42],
and the claudin sequences are listed in order of their match with the CLDN-4 sequence. Residues
conserved across all human claudins are highlighted on dark blue background and residues conserved
in ≥ 50% of the sequences are shown on a light blue background. EC: Extracellular, CP: Cytoplasmic.
Conservation of hydrophobicity and charge (blue, positive; red, negative) is indicated at the bottom of
the alignment. The asterisk marks a proline residue within α3 of claudin-3, which induces a kink in
this helix and probably most other claudins. The amino-acid sequences were aligned using the Clustal
Omega server [43], and TEXshade [44] was used for illustration.

A major breakthrough in TJ research was made in 2014 when the 2.4-Å resolution crystal structure
of full-length mouse claudin-15 was reported [45]. As predicted from the sequence, the polypeptide
chain was organized into four antiparallel TM helices with the N- and C-termini on the cytoplasmic
side. On the extracellular side, a five-stranded up-and-down antiparallel β-sheet was formed by the
long ECL1 (strands β1-β4) and the short ECL2 (strand β5, pairing with β1). In this crystal structure,
ECL1 is partially disordered, because the loop (v1) connecting strands β1 and β2 is not represented
in electron density [45], but it is ordered in the presence of bound ligand (see below). A molecular
dynamics study based on the claudin-15 crystal structure [45] suggested that the protein forms a
tetrameric channel in which a cage of four aspartate-15 residues acts as a selectivity filter that favors
cation flux over anion flux [46].

This and other claudin structures are hoped to provide a basis for the targeted disruption of
epithelial barriers in the administration of drugs [47]. The subsequently published crystal structure
of mouse claudin-3 showed that proline 134 in TM helix α3 induces a bend in this helix, which is
alleviated by the corresponding alanine or glycine mutations. A proline residue at this position is
present in the majority of human claudin sequences; a helix bend brought about by this residue is likely
to modulate the morphology and adhesiveness of TJ strands [48]. Three-dimensional structures of
claudins provide the basis for in silico modeling of claudin based TJ self-assembly, their barrier and/or
channel forming potential [49–51].

Much as the extracellular Ig domains of the JAMs are attachment sites for viruses, the extracellular
loops of claudins serve as landing sites for bacterial toxins such as the Clostridium perfringens enterotoxin
(CpE). A crystal structure of full-length claudin-19 bound to the soluble, claudin-binding C-terminal
fragment of CpE (C-CPE) was determined at 3.7 Å resolution [52]. This structure showed that ligand
binding leads to a stabilization of loop v1, which is now ordered, and indicated how C-CPE binding to
selected claudins may lead to the disintegration of TJs and increased permeability across epithelial
layers. C-CPE appears to bind different claudins with a conserved geometry and to disrupt the lateral
interactions of their extracellular parts in the same way [16,52] as suggested by the crystal structure of
C-CPE-bound human claudin-4 (Figure 4) [42]. Human claudin-9 (hCLDN-9) is highly expressed in
the inner ear, essential for hearing and a high-affinity receptor of CpE. Two recently published 3.2-Å
crystal structures of hCLDN-9 bound to C-CPE reveal structural changes in claudin epitopes involved
in claudin self-assembly and suggest a mechanism for the disruption of claudin and TJ dissociation by
CpE [53].

2.1.3. Occludin

Occludin and the other TAMPs of the TJ, tricellulin, and MARVELD3, share with the claudins
the general architecture as tetraspan TM proteins with cytoplasmic N- and C-termini. However, the
TAMPs are not homologous with claudins and differ in the length and structure of their cytoplasmic
domains and extracellular loops.

The occludin cytosolic C-terminus forms a coiled-coil structure, dimerizes, and associates with all
three ZO-proteins from the TJ cytoplasmic plaque [24,54,55]. Disulfide formation within the coiled-coil
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domain was proposed as a mechanism to influence the oligomerization of occludin [56,57]. The 1.45-Å
crystal structure of the cytosolic C-terminus of occludin comprises three helices that form two separate
anti-parallel coiled-coils and a loop that packs tightly against one of the coiled-coils (Figure 5a). This
structure revealed a large positively charged surface that binds ZO-1 [58]. The cytoplasmic C-terminal
coiled-coil region of occludin associates with mainly the GUK region of ZO-1 as shown by SAXS,
NMR, and in vitro binding studies [59], which also revealed that serine phosphorylation within the
acidic binding motif of the occludin coiled-coil significantly increases the binding affinity. Notably,
several occludin isoforms result from alternative splicing and alternate promoter use, but neither this
structural polymorphism nor the multitude of known post-translational modifications from proteolysis
and serine, threonine or tyrosine phosphorylation of occludin [60] have so far been studied by X-ray or
NMR methods.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 23 
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Figure 4. Crystal structure of human claudin-4. Cartoon model of the overall fold of human CLDN-4
(wheat color) in complex with the C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE,
light blue; PDB entry 5B2G) [16,42]. The extracellular variable regions of CLDN-4 that mediate hetero-
and homotypic interactions are highlighted in magenta (v1, comprising β1 and β2) and green (v2,
between TM-helix α3 and β5), respectively. The dotted line marks a segment of polypeptide chain not
represented in electron density. The stylized lipid molecules indicate the cell membrane and are not
part of the experimental structure. EC: Extracellular; CP: Cytoplasmic.

2.1.4. Tricellulin

The precise definition of TJ architecture through freeze–fracture microscopy of epithelial
preparations from rat intestine revealed a modified structure at tricellular junctions [61]. Tricellular
pores and bicellular strand opening contribute to allowing the passage of large molecules through the TJ
in the “leak pathway” as suggested by computational structural dynamics studies [62]. TJs completely
disappear during the epithelial–mesenchymal transition (EMT), where the transcriptional repressor
Snail plays a central role. The protein tricellulin was identified in a screen using Snail-overexpressing
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epithelial cells as a protein concentrated at tricellular tight junctions (tTJs) and named for this
property [63].

Tricellulin is downregulated during the EMT. The E3 ubiquitin ligase Itch binds the N-terminus
of tricellulin via its WW domain (named after two signature tryptophan residues) to stimulate its
ubiquitination, which is, however, not primarily involved in proteasomal breakdown of tricellulin [64].
During apoptosis, cells are extruded from epithelial cell layers. Loss of functional tricellulin contributes
to dissociation of tTJs during apoptosis, when it is cleaved by caspase at aspartate residues 441 and 487
in the C-terminal coiled-coil [65]. Tricellulin is of key importance for hearing, as it was reported that
mutations in the human TRIC gene are associated with deafness [66].

Tricellulin is localized to tTJs but also to bicellular TJs. When tricellulin is selectively overexpressed
at tTJs, it decreases the permeability for large solutes up to 10 kDa, but not for ions. This seemingly
paradoxical observation may be explained by the rare occurrence of tricellular junctions relative to
bicellular junctions [67]. Tricellular TJs are regarded as potential weak points in the paracellular barrier.
Tricellulin-dependent macromolecular passage is observed in both leaky and tight epithelia [68].
Tricellulin tightens tricellular junctions and regulates bicellular TJ proteins. The extracellular loops
of tricellulin may be crucial for its sealing function, because it could be shown that a synthetic
peptide (trictide) derived from the tricellulin ECL2 may increase the passage of solutes into human
adenocarcinoma cells [69]. In MDCK cells, the tricellulin C-terminus is important for basolateral
translocation, whereas the N-terminus directs tricellulin to tricellular contacts. There is evidence for
the formation of heteromeric tricellulin–occludin contacts at elongating bicellular junctions and of
homomeric tricellulin–tricellulin complexes at tricellular junctions [70].
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Figure 5. Structural insight into occludin and tricellulin function. Cartoon models of the overall fold of
the coiled-coil domain of (a) human occludin (PDB entry 1XAW) [58] and (b) human tricellulin (PDB
entry 5N7K) [71]. The molecules are colored in a gradient ranging from blue at the N-terminus (N)
to red at the C-terminus. (c) Dimeric arrangement of the tricellulin C-terminal coiled-coil domain
observed in the crystal structure [71]. The chain marked with an asterisk (*) corresponds to the second
monomer within the dimer.

Tricellulin has an extended cytoplasmic N-terminus of 194 aa and a cytoplasmic C-terminal region
of 195 aa, in marked contrast to occludin, where these regions include 66 aa and 256 aa, respectively.
With the exception of the C-terminal coiled-coil domain, no cytoplasmic region carries a sequence
signature suggesting a known domain structure in either protein. A crystal structure of the C-terminal
coiled-coil domain of tricellulin was determined at 2.2-Å resolution (Figure 5b). This structure reveals a
dimeric arrangement with an extended polar interface (Figure 5c), which may contribute to stabilizing
tTJs [71].
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2.1.5. Other Tight-Junction Transmembrane Proteins

With the exception of tricellulin, the extracellular loops and ectodomains of the abovementioned
transmembrane TJ proteins are involved in trans pairing interactions of opposing cells (Figure 1) [5]. For
the POPDC and Crumbs family of transmembrane TJ proteins, no such cross–membrane interactions
are described. The POPDC family of tri-span TM proteins consists of BVES/POPDC1, POPDC2, and
POPDC3. BVES protein dimers are mediated by the cytoplasmic Popeye domain, and BVES–BVES
cis pairing interactions are necessary to maintain epithelial integrity and junctional stability. The
cytoplasmic tail of BVES was shown to directly interact with ZO-1 [14], but structural information on
the atomic level is still missing [14]. Crumbs was first described in D. melanogaster [72]; in mammals it
has three homologs (CRB1, CRB2, CRB3) of which the latter is expressed in all epithelial tissues [73].
As the Crumbs protein family members are part of the cell polarity complex Crumbs/PALS1/PATJ,
further information is included in Section 2.2.3.

2.2. Proteins of the Cytoplasmic Plaque

The proteins of the cytoplasmic plaque are characterized by recurrent protein–protein interaction
(PPI) domains and frequently contain natively unfolded regions [74–76]. They are interconnected in
a dynamic and multivalent PPI system, which has been partly mapped down to the domain level
(Figure 6). In addition to the interactions displayed in the figure, there are multiple PPIs with regulatory
and signaling proteins not covered in this review.

2.2.1. PDZ Domains

Many proteins of the cytoplasmic plaque contain one or multiple PDZ domains (Figure 6). We
next discuss some key features of these ubiquitous PDZ domains. PDZ domains regulate multiple
cellular processes by promoting protein–protein interactions and are abundant protein modules in
TJ proteins, but also in many other proteins in all kingdoms of life. Frequently, PDZ domains are
associated with WW, SH2, SH3 (Src homology 2 or 3), or PH (Pleckstrin homology) domains within
one polypeptide chain [77]. The term PDZ is derived from the three founding members of the family,
PSD-95 (postsynaptic density-95), the Drosophila tumor suppressor protein DLG-1 (discs large 1), and
ZO-1. As early as 2010, > 900 PDZ domains were annotated in > 300 proteins encoded in the mouse
genome, and > 200 X-ray or NMR structures of PDZ domains from various sources were known [78].
In August 2019, a PDB [79] search returned 533 entries with the keyword “PDZ domain” and 138
entries with the keyword “PDZ domain-like”. Thus, extensive structural data are available for these
domains. In general, PDZ domains are structured as a β-sandwich capped by two α-helices and bind
ligand peptides in a shallow groove between helix α2 and strand β2 (Figure 7a). Their propensity to
dimerize via domain swapping was first described for the second PDZ domain (PDZ2) of ZO-2 [80]
and later also for PDZ2 of ZO-1 and ZO-3 (Figure 7b, see Section 2.2.2.).

Domain swapping is frequently observed in small β-sheet domains. Bacterial major cold-shock
proteins [81,82], for example, were found to form domain-swapped dimers. A domain-swapped
three-stranded segment of the E. coli cold-shock protein CspA is capable of recombining with a
polypeptide region of ribosomal protein S1 to form a closed β-barrel recapitulating structural features
of both parent proteins [73].

PDZ domains have been divided into three specificity classes according to the preferred amino
acid residue at position –2 (P−2) of the binding groove [72]. Typically, PDZ domains recognize sequence
motifs at the extreme carboxy terminus of ligand proteins (Figure 7c), but binding of internal sequence
motifs is also common (Figure 7d).

PDZ domains are regarded as promising drug targets for neurological and oncological disorders,
as well as viral infections. Many structure-guided efforts are underway towards the development of
small-molecule or peptidic modulators of PDZ domains [83,84], including the PDZ domains from
Shank3, a central scaffolding protein of the post-synaptic density protein complex [85] and of the protein
interacting with C kinase (PICK1), a regulator of AMPA receptor trafficking at neuronal synapses [86].
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Figure 6. Domain structure of human PDZ domain-containing adapter proteins of the cytoplasmic
plaque that interact physically with TM proteins of the tight junction. The proteins are scaled to the
length of their amino-acid sequences. Experimental structures (usually by X-ray or NMR analysis) are
available for protein domains drawn with solid contours, but not for domains drawn with dashed
contours or for extended regions of polypeptide chains without domain annotation. Proteins binding
to components of the human cytoplasmic plaque or their homologs are indicated above or below their
interacting domains. With the exception of aPKC (as a subunit of the PAR-3/PAR-6/aPKC complex),
only TM proteins or classical adapter proteins of the TJ are included as interacting proteins. Names of
interacting proteins are written in bold letters, where the interaction is structurally characterized. Protein
names and abbreviations are explained in the text or the legend of Figure 1. Domains are abbreviated
as follows: PDZ: Initially identified in PSD-95 (postsynaptic density-95); DLG-1 (the Drosophila tumor
suppressor protein discs large 1) and ZO-1; SH3: Src homology-3; PB1: Initially identified in PHOX
and BEM1; ZU5: Present in ZO-1 and UNC5; L27: LIN-2/LIN-7; GUK: guanylate kinase homolog;
WW: Named after two signature tryptophan residues; CC: coiled-coil; CRIB: CDC42/RAC interactive
binding. Figure modified and updated after Guillemot et al. [3].
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Figure 7. Structural features of PDZ domains. (a) Topology of a prototypical PDZ domain, here PALS 1
PDZ, PDB entry 4UU6 [87]. The polypeptide chain is drawn in rainbow colors changing from N- to
C-terminus. A cleft for binding ligand peptides in an extended conformation is visible between strand
β2 and helix α2. (b) Domain-swapped dimer formed by ZO-2 PDZ2, PDB entry 3E17 [88]. The two
polypeptide chains are drawn in yellow and purple. The chain marked with an asterisk (*) corresponds
to the second monomer within the dimer. Domain swapping moves the N-terminal β1 strand and
half of β2 of one chain into the core structure of the other, leaving the ligand-binding geometry in
both halves of the dimer intact. The PDZ2 domains in ZO-1, ZO-2, and ZO-3 are all found in the
domain-swapped dimeric form [80,88–91]. (c) Canonical binding of a C-terminal ligand peptide to a
PDZ domain, here PAR-6 PDZ bound to the hexapeptide VKRSLV, PDB entry 1RZX [92]. The terminal
carboxy group is bound to the carboxylate-binding loop between strands β1 and β2 of PAR-6 PDZ and
the extended ligand peptide aligns in antiparallel orientation with β2, extending the β-sheet. Note that
this binding mode is energetically disfavored for PAR-6 PDZ and requires binding of CDC42 at a nearby
CRIB domain (not shown). (d) Binding of an internal peptide to a PDZ domain, here PAR-6 PDZ bound
to a dodecapeptide representing amino acids 29–40 of PALS1, PDB entry 1X8S [93]. The ligand peptide
adopts an extended conformation with an aspartic acid side chain mimicking the carboxy group of the
canonical C-terminal peptide ligand. Note the altered conformation of the carboxylate-binding loop.

2.2.2. MAGUK Proteins

Membrane-associated guanylate kinase homologs (MAGUKs) constitute a family of scaffolding
molecules with a core MAGUK module consisting of a PDZ, SH3, and an enzymatically inactive
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guanylate kinase (GUK) domain [94–96]. The MAGUK protein family members ZO-1, ZO-2, and
ZO-3 link the TJ membrane proteins to the cytoskeleton and provide the structural basis for the
assembly of multiprotein complexes at the cytoplasmic side of TJs (Figure 1) [97]. ZO-1 is a cytoplasmic
component of both TJs and AJs, and connects the TJ to the actin cytoskeleton via extended, presumably
unstructured polypeptide regions near its C-terminus [98]. Direct actin binding was also reported for
ZO-2 and ZO-3 [24,54,55].

ZO-1 and its paralogs ZO-2 and ZO-3 contain three N-terminal PDZ domains (Figure 6). The
propensity of these PDZ domains to recognize specific C-terminal or other peptide motifs and assemble
multicomponent TJ protein complexes will be highlighted below. Most of the claudins present at
TJs have conserved C-terminal tails that bind to PDZ1 of ZO proteins. Compared to the single PDZ
domain of the AJ protein Erbin, the ZO-1 PDZ1 domain has a broadened ligand specificity. Crystal
structures of the Erbin PDZ and the ZO-1 PDZ1 revealed the structural basis for the different ligand
specificities, where subtle conformational rearrangements are identified at multiple ligand-binding
subsites, and support a model for ligand recognition by these domains [99].

The intracellular C-terminus of claudins binds to the N-terminal PDZ1 domain of ZO proteins
with variable affinity. The affinity of claudin binding to ZO-1 PDZ1 depends on the absence or presence
of a tyrosine residue at position -6 from the claudin C-terminus. Crystal structures of ZO-1 PDZ1
with empty ligand-binding groove, with a bound claudin-1 heptapeptide, which does not have a
Tyr -6, or with a bound claudin-2 heptapeptide containing a Tyr -6 revealed significantly different
binding geometries explaining the influence of the signature tyrosine residue on binding affinity [100].
In addition to claudin binding, the ZO-1 PDZ1 also mediates interactions with phosphoinositides.
Mapping the inositol hexaphosphate binding site onto an NMR structure of ZO-1 PDZ1 revealed spatial
overlap with the claudin binding surface and thus provided a structural rationale for the observed
competition of both ligands for ZO-1 [101].

The second PDZ domain (PDZ2) of ZO-proteins is known to promote protein dimerization [24,
54,55]. A crystal structure shows that ZO-1—PDZ2 dimerization is stabilized by extensive domain
swapping of β-strands. This structural rearrangement leaves the canonical peptide-binding groove
intact in both subunits of PDZ2 dimer, which are composed of elements from both monomers [89].
Domain swapping of human ZO-1 PDZ2 was subsequently confirmed by solution NMR analysis.
In this study, the importance of strand β2 for the domain exchange was demonstrated by insertion
mutagenesis [91]. NMR analysis clearly demonstrated that PDZ2 of ZO-2 may also dimerize by
domain swapping. A 1.75 Å resolution crystal structure of the ZO-2 PDZ2 confirms formation of a
domain-swapped dimer with exchange of β-strands 1 and 2 (Figure 7b) [88], and there is evidence for
the formation of PDZ2-promoted domain-swapped homodimers in all three ZO proteins. Based on
this observation and the high sequence similarity between the ZO-1, -2, and -3 PDZ2 domains (66%
sequence identity between ZO-1 and ZO-2, 50% between ZO-1 and ZO-3, 54% between ZO-2 and
ZO-3), heterodimer formation between them was proposed as a potential mechanism of forming and
stabilizing the cytoplasmic plaque [80]. Structural evidence for domain-swapped heterodimers of ZO
proteins is, however, still lacking.

ZO-1 PDZ2 interacts with connexins, in particular the abundant connexin43, which functions in
gap junction formation and regulation. X-ray and NMR analyses showed that domain swapping of
ZO-1 PDZ2 preserves the carboxylate tail-binding pockets of the PDZ domains and creates a distinct
interface for connexin43 binding [90].

The third PDZ domain (PDZ3) of ZO proteins is important for the interaction with the C-terminus
of transmembrane JAMs. A crystal structure of ZO-1 PDZ3 was determined at 1.45 Å resolution. This
study established that ZO-1 PDZ3 preferentially binds ligands of sequence type X[D/E]XΦCOOH where
X may be any amino acid and Φ is a hydrophobic residue [72].

Following the three N-terminal PDZ domains, ZO proteins contain a SH3-GUK module. Crystal
structure analysis of the ZO-1 SH3-GUK tandem domain confirmed independent folding of the SH3
and GUK domains, and pulldown assays identified the downstream U6 loop as an intramolecular
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ligand of the SH3-GUK core with a potential role in regulating TJ assembly in vivo [102]. Crystal
structures of the complete MAGUK core module of ZO-1 comprising the PDZ3-SH3-GUK region and
its complex with the cytoplasmic tail of adhesion molecule JAM-A revealed that residues from the
adjacent SH3 domain are involved in ligand binding to the ZO-1 PDZ3 [103].

ZO-1 is distinct from its paralogs ZO-2 and ZO-3 by the presence of an extended C-terminal region
harboring a ZU5 domain [104,105] and described to mediate physical interaction with the CDC42
effector kinase MRCKβ. An NMR structure showed the ZO-1 ZU5 domain to adopt a β-barrel structure,
which is incomplete in comparison with homologous proteins by lacking two β-strands. Attempts
to analyze the structure of a ZO-1 ZU5/MRCKβ complex remained unsuccessful, but evidence could
be provided that GRINL1A (glutamate receptor, ionotropic, N-methyl-D-aspartate-like 1A combined
protein) binds ZO-1 ZU5 in a very similar way as MRCKβ. NMR analysis then showed that a 22-aa
GRINL1A peptide hairpin associates with the ZO-1 ZU5 domain to form a complete canonical ZU5
domain [106].

In the MAGI proteins (MAGUKs with inverted domain structure), the characteristic arrangement
of PPI domains present in common MAGUK proteins is inverted. Furthermore, the MAGI proteins
contain two WW domains in place of the SH3 domain found in MAGUKs (Figure 6) [107]. The family
member MAGI-1 is tethered to TJs through interactions of its PDZ domains with the C-terminus
of the non-classical junctional adhesion molecule JAM-4 [108]. In addition to its function in the TJ,
the first PDZ domain of MAGI-1 binds peptide ligands derived from the oncoprotein E6 of human
papillomavirus and the ribosomal S6 kinase 1 (RSK1) [109,110]. NMR analysis suggests the involvement
of peptide regions flanking the PDZ domain in ligand binding [109]. PALS1 (protein associated with
Lin seven 1, also known as MPP5—membrane-associated palmitoylated protein 5) is another member
of the MAGUK family (Figure 6) and described below as part of the Crumbs/ PALS1/PATJ complex.

2.2.3. The Crumbs/PALS1/PATJ Complex

The Crumbs/PALS1/PATJ complex is involved in establishing and maintaining cell polarity and
located in the cytoplasmic plaque of TJs [2,3,111]. Crumbs is a single-span TM protein, whereas the
other proteins present in this complex, PALS1 and PATJ (PALS-associated tight-junction protein),
are cytoplasmic scaffolding proteins (Figure 1). PALS1 functions as an adaptor protein mediating
indirect interactions between Crumbs and PATJ (Figure 6). Both PALS1 and PATJ share an N-terminal
L27 domain. L27 domains organize scaffold proteins into supramolecular complexes by heteromeric
L27 interactions. PATJ is recruited to TJs through interactions with the C-termini of claudin-1 and
ZO-3 [112].

The PATJ–PALS1 interaction is mediated by the single L27 domain of PATJ and the N-terminal
L27 domain (L27N) of PALS1 [113]. A crystal structure of the PALS1-L27N/PATJ-L27 heterodimer
shows that each L27 domain is composed of three α-helices and that heterodimer formation is due
to formation of a four-helix bundle by the first two α-helices of the L27 domains and coiled–coil
interactions between the helices α3 [114]. NMR structure analysis revealed closely similar topologies
for heterotetrameric mLin-2/mLin-7 and PATJ/PALS1 complexes, suggesting a general assembly mode
for L27 domains [115]. A crystal structure of a heterotrimeric complex formed by the N-terminal L27
domain of PATJ, the N-terminal tandem L27 domains of PALS1, and the N-terminal L27 domain of
MALS2 (mammalian homolog-2 of Lin-7) revealed an assembly of two cognate pairs of heterodimeric
L27 domains. This structure is thought to reveal a novel mechanism for tandem L27 domain-mediated
supramolecular complex assembly [116].

The intracellular functions of Crumbs3 (CRB3) are mediated by its conserved 37-aa cytoplasmic
tail (Crb-CT) and its interaction with PALS1 and the actin-binding protein moesin. The crystal structure
of a PALS1 PDZ-SH3-GUK/Crb-CT complex shows that all three domains of PALS1 contribute to
Crb-CT binding [117]. A further crystal structure of human PALS1 PDZ bound to 17-aa C-terminal
CRB1 peptide shows that only the very C-terminal tetrapeptide ERLI is involved in direct binding
to PALS1 PDZ. Comparison with apo-PALS1 PDZ (Figure 7a) revealed that a key phenylalanine
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residue in the PALS1 PDZ controls access to the ligand-binding groove [87]. To reveal the nature of the
Crumbs/moesin interaction, the FERM (protein 4.1/ezrin/radixin/moesin) domain of murine moesin
was co-crystallized with the soluble C-terminus of Drosophila Crumbs. The 1.5-Å resolution crystal
structure revealed that both the FERM-binding motif, as well as the PDZ-binding motif present in the
Crumbs C-terminal peptide contribute to the interaction with moesin. Phosphorylation of the Crb-CT
by atypical protein kinase C (aPKC) disrupts the Crumbs/moesin association but not the Crumbs/PALS1
interaction. Crumbs may therefore act as aPKC-mediated sensor in epithelial tissues [118].

2.2.4. The PAR-3/PAR-6/aPKC Complex

Similar as the Crumbs/PALS1/PATJ complex, the evolutionarily conserved PAR-3/PAR-6/aPKC
complex is associated to TJs and crucial for establishing and maintaining cell polarity. The complex
formed by the PAR (partition defective)-3 and PAR-6 proteins, as well as the atypical protein kinase C
(aPKC) interacts with subunits from the Crumbs/PALS1/PATJ complex and is regulated by binding
to the small GTPases CDC42 and RAC1. Composition and stoichiometry of the PAR-3/PAR-6/aPKC
complex are linked to cell polarity and to the cell cycle [119].

Human PAR-6 contains a single PDZ domain, which mediates binding to the C-terminus of TM
receptor CRB3. Binding of C-terminal ligands to the PAR-6 PDZ depends on binding of the Rho-GTPase
CDC42 to a CRIB domain adjacent to the PAR-6 PDZ. In addition, the PAR-6 PDZ also binds internal
peptides, e.g., from PALS1 and its Drosophila homolog Stardust. The regulation of ligand binding to
PAR-6 PDZ by CDC42 has been structurally characterized in a number of studies. A 2.5-Å crystal
structure of a PAR-6 PDZ-bound internal dodecapeptide derived from PALS1 revealed a characteristic
deformation of the carboxylate-binding loop of PAR-6 PDZ relative to the structure with bound
C-terminal ligand (Figure 7d) [93]. The structural adjustments associated with regulator and ligand
binding to the PAR-6 PDZ were also highlighted in a 2.1-Å crystal structure and an NMR structure of
the PAR-6 PDZ domain (Figure 7c), which revealed deviations from the canonical PDZ conformation
that account for low-affinity binding of C-terminal ligands. CDC42 binding to the adjacent CRIB
domain triggered a structural transition to the canonical PDZ conformation and was associated with a
~13-fold increase in affinity for C-terminal ligands [92]. NMR structures of the isolated PAR-6 PDZ
domain and a disulfide-stabilized CRIB-PDZ fragment identified a conformational switch in the PAR-6
PDZ domain that is linked to the increase in ligand affinity induced by CDC42 binding to PAR-6 [120].
Finally, NMR analysis of a C-terminal Crumbs peptide binding to PAR-6 and the crystal structure of
the PAR-6 PDZ/peptide complex indicated why the affinity of this interaction is 6-fold higher than in
previously studied PAR-6/peptide binding studies [121].

PAR-3 acts as central organizer of the PAR-3/PAR-6/aPKC complex and is thus essential for
establishment and maintenance of cell polarity. In Caenorhabditis elegans, PAR-3 mediates TJ binding
through interaction with junctional adhesion molecule (JAM) [122,123]. In cultured endothelial cells,
PAR-3 associates with JAM-2 and JAM-3, but neither with the related Ig-like TM proteins ESAM nor
CAR [124]. PAR-3 contains an N-terminal oligomerization domain in addition to three PDZ domains.
NMR analysis showed the monomeric PAR-3 N-terminal domain (NTD) to adopt a PB1-like fold
and to oligomerize into helical filaments. This interaction was proposed to facilitate the assembly of
higher-order PAR-3/PAR-6/aPKC complexes [125]. The ability of the PAR-3 NTD to self-associate and
form filamentous structures was further studied by crystallographic analysis of the PAR-3 NTD and
analysis of the filament structure by cryo-electron microscopy (cryo-EM). Here, it was revealed that
both lateral and longitudinal packing within PAR-3 NTD filaments is primarily mediated by Coulomb
interactions [126].

The second PDZ domain of PAR-3 binds phosphatidylinositol (PI) lipid membranes with high
affinity as shown in a biochemical and NMR study of PAR-3 PDZ2. This study also showed that the
lipid phosphatase PTEN (phosphatase and tensin homolog) binds PAR-3 PDZ3 and thus cooperates
with PI in regulating cell polarity through PAR-3 [127]. A three-dimensional structure of the second
PDZ domain of human PAR-3 was also determined as part of an NMR structure analysis automation
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study [128]. A previously unknown C-terminal PDZ-binding motif, identified in PAR-6 through crystal
structures and NMR binding analyses, mediates interactions with PDZ1 and PDZ3, but not with PDZ2
of PAR-3. Evidently, PAR-3 has the ability to recruit two PAR-6 molecules simultaneously, possibly
facilitating the assembly of polarity protein networks through these interactions [129].

2.2.5. Other Cytoplasmic Tight-Junction Proteins

In addition to the MAGUK proteins, the subunits and regulators of the Crumbs/PALS1/PATJ
and PAR-3/PAR-6/aPKC complexes, various other cytoplasmic proteins are associated with TJs. The
multiple PDZ domain protein 1 (MUPP1, also known as MPDZ) contains 13 PDZ domains. MUPP1 is a
paralog of PATJ, shares several TJ-binding partners (Figure 6) and a similar subcellular localization, but
displays a distinct selectivity in its interactions with claudins and is dispensable for TJ formation while
PATJ is not [130,131]. A crystal structure of the twelfth PDZ domain of MUPP1 was determined in a
structural genomics effort to crystallize PDZ domains with self-binding C-terminal extensions [132].
Several additional MUPP1-PDZ domains were analyzed within the research program of the Center for
Eukaryotic Structural Genomics [133] and submitted to the Protein Data Bank (PDB) [79], but without
functional annotation. Crystal structure analysis of the mouse MUPP1-PDZ4 domain revealed a
canonical PDZ fold with six β-strands and three α-helices [60]. The angiomotin (AMOT) proteins [134]
were reported to interact with MUPP1, PATJ [135], ZO-1 and MAGI-1b, and ascribed a role in the
assembly of endothelial cell junctions [25]. The cytoskeletal linker cingulin, a predicted dimeric
coiled-coil protein of unknown three-dimensional structure, was initially characterized as a peripheral
TJ component [136]. Although its amino-terminal region was reported to interact with ZO-1 in cells [137],
cingulin was later shown to be dispensable for TJ integrity and epithelial barrier function [138]. The ZO-1
associated nucleic acid-binding protein ZONAB (also referred to as YBX3 or CSDA1) is a transcription
factor that shuttles between TJs and the nucleus and regulates epithelial cell proliferation [139,140].
Although a crystal or NMR structure of ZONAB is not available, the conformation and nucleic acid
binding of its N-terminal cold shock domain may be inferred from structures of bacterial major cold
shock proteins [141] or the homologous Y-box factor YB-1 [142].

The molecular composition of TJs varies significantly between different epithelia and determines
their dual functions as effective barriers for solutes or channels for particular classes of solutes [143].
Therefore, the expression patterns of TJ proteins in various tissues are kept under tight control by
various transcription factors in addition to ZONAB. A large number of TJ and AJ transmembrane
(TM) proteins are under transcriptional control by the Grainyhead-like proteins GRHL1 and GRHL2 or
by nuclear receptors [144]. These transcription factors therefore regulate a large subset of proteins,
making up the apical junction complex. Frequently, one transcription factor controls the expression of
multiple genes encoding TJ or AJ proteins. For example, GRHL2 acts as transcriptional activator of
both AJ and TJ components including several claudins and thus functions as regulator of epithelial
differentiation [145]. Equally frequently, one TJ protein is controlled by multiple transcription factors.
The Cldn4 gene, being under transcriptional control by GRHL2, GRHL3, the androgen receptor, retinoic
acid/retinoid X receptors, and p63 in different tissues [144,146,147], serves as an impressive example
here. Although structural information is available for several of these factors [148–151], these proteins
will not be further discussed here, where the focus is placed on proteins of the TJ core structure. Equally,
the large set of signaling and effector proteins acting on the TJ [2,11,12] will not be discussed further.

3. Conclusions

Here, we have reviewed three-dimensional structures of TJ proteins, focusing on the core TJ
complex. It becomes clear that our knowledge of these structures is fairly incomplete, because
most TJ proteins do not lend themselves easily to structure analysis due to their size and/or the
presence of TM regions, natively unfolded polypeptide segments or heterogeneous post-translational
modifications [74–76]. Our knowledge of protein–protein interactions within the TJ also does not go
far beyond structural features of selected binary interactions, often involving small protein fragments
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or peptides. At a resolution that permits construction of atomic models, very little is known about the
general architecture of the TJ. Herein lies a great challenge and opportunity for future research making
use of new integrative methods in structural biology, including cryo-electron microscopy [152–155],
cryo-electron tomography [156,157], cross-linking mass spectrometry [158,159], small-angle X-ray
and neutron scattering [160,161], and others [162]. These rapidly emerging and developing methods
can be informed by the available high-resolution structures of TJ proteins, protein domains and
protein–protein interactions. We may expect to see exciting results along these lines in the near future,
revealing the architecture of TJs at high resolution in defined functional states.
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