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activation of BK and Kv7 channels
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Background and Purpose: BK channels play important roles in various physiological

and pathophysiological processes and thus have been the target of several drug

development programmes focused on creating new efficacious BK channel openers,

such as the GoSlo-SR compounds. However, the effect of GoSlo-SR compounds on

vascular smooth muscle has not been studied. Therefore, we tested the hypothesis

that GoSlo-SR compounds dilate arteries exclusively by activating BK channels.

Experimental Approach: Experiments were performed on rat Gracilis muscle, saphe-

nous, mesenteric and tail arteries using isobaric and isometric myography, sharp

microelectrodes, digital droplet PCR and the patch-clamp technique.

Abbreviations: BK channel, calcium-activated potassium channel of high conductance; GoSlo-SR-5-130, 9,10-dioxo-4-((3-(trifluoromethyl)phenyl)amino)-9,10-dihydroanthracene-2-sulfonic acid;

GoSlo-SR-5-6, sodium 1-amino-4-((3-trifluoromethylphenyl)amino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate; Kv1 channel, voltage-gated potassium channel subfamily 1; Kv2 channel,

voltage-gated potassium channel subfamily 2; Kv7 channel, voltage-gated potassium channel subfamily 7; MX, methoxamine.
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Key Results: GoSlo-SR compounds dilated isobaric and relaxed and hyperpolarised

isometric vessel preparations and their effects were abolished after (a) functionally

eliminating K+ channels by pre-constriction with 50 mM KCl or (b) blocking all K+

channels known to be expressed in vascular smooth muscle. However, these effects

were not blocked when BK channels were inhibited. Surprisingly, the Kv7 channel

inhibitor XE991 reduced their effects considerably, but neither Kv1 nor Kv2 channel

blockers altered the inhibitory effects of GoSlo-SR. However, the combined blockade

of BK and Kv7 channels abolished the GoSlo-SR-induced relaxation. GoSlo-SR com-

pounds also activated Kv7.4 and Kv7.5 channels expressed in HEK 293 cells.

Conclusion and Implications: This study shows that GoSlo-SR compounds are effec-

tive relaxants in vascular smooth muscle and mediate their effects by a combined

activation of BK and Kv7.4/Kv7.5 channels. Activation of Kv1, Kv2 or Kv7.1 channels

or other vasodilator pathways seems not to be involved.

1 | INTRODUCTION

Large conductance, calcium-activated potassium channels (BK

channels or KCa 1.1 channels) are expressed in all tissues and

organs. They contribute to a wide array of physiological functions

in the kidney and neurons (Latorre et al., 2017), as well as in the

heart (Balderas, Zhang, Stefani, & Toro, 2015) and both vascular

(Brayden & Nelson, 1992) and visceral smooth muscle (Burdyga &

Wray, 2005). Altered BK channel function has been suggested to

contribute to a variety of disease states including hypertension

(see discussion in Kyle & Braun, 2014), diabetes (Lu et al., 2005;

McGahon et al., 2007) and detrusor overactivity (Chang et al.,

2010). Thus, BK channels play important roles in various physiolog-

ical processes and changes in their function may contribute to

pathophysiological states.

Given these important roles, BK channels have been targeted in a

number of drug development programmes (reviewed in Kaczorowski

& Garcia, 2016). Many different BK channel openers have been dis-

covered (dehydrosoyasaponin 1, McManus et al., 1993; Maxikdiol,

Singh et al., 1994; DiBAC4, Morimoto et al., 2007) or synthesised

including NS1619 (Holland, Langton, Standen, & Boyle, 1996; Olesen,

Munch, Moldt, & Drejer, 1994), the pimaranes (Imaizumi et al., 2002),

NS11021 (Bentzen et al., 2007) and NS19504 (Nausch et al., 2014).

Recently, a more efficacious family of BK channel openers called the

GoSlo-SR compounds have been developed (Roy et al., 2012; Roy et

al., 2014). The efficacy of some of them has been reported to depend

on the presence of BK channel regulatory β and γ-subunits (Kshatri et

al., 2017; Large et al., 2015; Webb et al., 2015). These compounds, in

particular GoSlo-SR-5-130 and GoSlo-SR-5-6,activated BK channels

in freshly isolated smooth muscle cells from rabbit bladder (Large et

al., 2015), rabbit corpus cavernosum (Hannigan et al., 2016), and bron-

chial smooth muscle (Bradley et al., 2018). Furthermore, Webb et al.

(2015) demonstrated that the effects of GoSlo-SR-5-6 were reduced

by >80%, when a triplet of mutations were introduced on the S4/S5

linker and S6 helix.

Although GoSlo-SR compounds reliably activate BK channels in

electrophysiological experiments, their effects on the contractility of

intact smooth muscle tissues appear variable. Thus, Large et al. (2015)

showed that GoSlo-SR-5-130 decreased rabbit bladder spontaneous

contractility but did not alter contractions in response to electrical

field stimulation or carbachol application. In contrast, the closely

related compound, GoSlo-SR-5-6 failed to alter bladder contractility

(Large et al., 2015). In rabbit corpus cavernosum, GoSlo-SR-5-130

decreased spontaneous contractility and its effects (like those on the

rabbit bladder) were reversed by iberiotoxin (Hannigan et al., 2016),

suggesting that these compounds mediate their effects exclusively by

activating BK channels.

What is already known

• BK channels play important roles in various physiological

and pathophysiological processes.

• Several drug programmes are focused on creating new

efficacious BK channel openers (e.g. GoSlo-SR

compounds).

What this study adds

• GoSlo-SR compounds are effective relaxants in vascular

smooth muscle.

• They mediate their effects by a combined activation of

BK and Kv7.4/Kv7.5 channels.

What is the clinical significance

• GoSlo-SR compounds may be beneficial against com-

bined BK and Kv7 channel dysfunction (e.g, in

hypertension).
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Even though the effects of GoSlo-SR compounds have been

established on urogenital and airways smooth muscle, little is known

about their effect on vascular smooth muscle, or if these compounds

open other K channels. Given that the contractility of vascular smooth

muscle is modulated by a variety of K channels including BK channels

(Tykocki, Boerman, & Jackson, 2017), we tested the hypothesis that

GoSlo-SR compounds dilate rat arteries exclusively by activating BK

channels.

2 | METHODS

2.1 | Animals

The investigation conforms with the U.S. Guide for the Care and Use

of Laboratory Animals (Eighth Edition, National Academy of Sciences,

2011). Animal studies are reported in compliance with the ARRIVE

guidelines (McGrath & Lilley, 2015) and with the recommendations

made by the British Journal of Pharmacology. Approval for the use of

laboratory animals in this study was granted by a governmental com-

mittee on animal welfare (I-17/17). Adult, 8- to 12-week-old, male

Wistar rats were obtained from Janvier (France; RRID:

RGD_13508588). Rats have been used for studies on K+ channel

function for many years (Tykocki, Boerman, & Jackson, 2017). The

animals were provided with food and water ad libitum and housed in

a room with a controlled temperature and a 12-hr light–dark cycle in

IVC cages.

2.2 | Vessel preparation

The rats were killed under CO2 narcosis by decapitation. The lower

extremity (limb), the tail and the mesentery were quickly removed and

placed in an ice-cold physiological saline solution composed of (in

mM) 145 NaCl, 4.5 KCl, 1.2 NaH2PO4, 0.1 CaCl2, 1.0 MgSO4, 0.025

EDTA, 5 HEPES at pH 7.4. All arteries were isolated by removing all

surrounding skeletal muscle and connective tissue. Small rings 2 mm

in length were used for further experiments.

2.3 | Isobaric mounting of Gracilis arteries

Vessels were mounted on two glass pipettes in the experimental

chamber of an isobaric myograph (201CM, Danish Myotechnology,

Denmark) containing experimental solution (physiological saline solu-

tion, PSS) consisting of (in mM) 146 NaCl, 4.5 KCl, 1.2 NaH2PO4, 1.0

MgSO4, 1.6 CaCl2, 0.025 EDTA, 5.5 glucose, and 5 HEPES at pH 7.4.

The microscope image of the vessel was viewed with a CCD camera

and digitised by a frame-grabber card (Hasotec, Gemany). Based on

the vessel image, diameter changes were measured continuously at a

sampling rate of 0.5 Hz using a custom-made programme (Fischer,

Mewes, Hopp, & Schubert, 1996). Vessels were exposed to a pressure

of 80 mmHg without any luminal flow at a temperature of 37�C. To

ensure complete non-flow conditions, leaking vessels were discarded

at any stage of the experiment. After development of a spontaneous

myogenic tone, vessel viability was tested with noradrenaline at

10−5 M to test smooth muscle cell function and acetylcholine (ACh)

at 10−6 M to test endothelial cell function. At the end of the experi-

ments, all vessels were exposed to calcium-free solution to determine

the fully relaxed diameter at 80 mmHg. The fully relaxed diameter of

the vessels in this study was in the range from 240 to 368 μm. All

diameter values were normalised to the diameter of the fully relaxed

vessel at 80 mmHg in a calcium-free solution. Normalisation was done

in order to eliminate variability due to differences in the size of differ-

ent vessels.

2.4 | Isometric mounting of arteries

Isolated vessels were mounted in a wire myograph (model 410A or

610M, Danish Myotechnology, Denmark) for recording of isometric

tension on two wires with a diameter of 40 μm. Data acquisition

and analysis was performed using Labchart (ADInstruments, USA).

The arteries were stretched to their optimal lumen diameter (90%

of the diameter they would have at a transmural pressure of

100 mmHg; Mulvany & Halpern, 1977; wall tension under these

conditions corresponds to a pressure of about 45 mmHg according

to the law of Laplace) and studied in PSS consisting of (in mM)

120 NaCl, 4.5 KCl, 1.2 NaH2PO4, 1.0 MgSO4, 1.6 CaCl2, 0.025

EDTA, 5.5 glucose, 26 NaHCO3, and 5 HEPES at pH 7.4 oxygen-

ated with carbogen (95% O2 and 5% CO2) at 37�C. Viability of the

vessels was tested with methoxamine (MX) at 10−5 M to test

smooth muscle cell function and ACh at 10−5 M after pre-

constriction with 10−7 M methoxamine to test endothelial cell

function. The solution containing 50 mM KCl was prepared based

on PSS by equimolar replacement of NaCl. Vessel tension was

normalised to the peak tension developed in response to 10−5 M

methoxamine applied directly after the viability test in order to

eliminate variability due to differences in the contractility of differ-

ent vessels. To be able to compare vessel responses to different

interventions, special care was taken to carefully match vessel ten-

sion before the intervention. For example, pre-constrictions

obtained (a) before application of the GoSlo-SR compound by

application of methoxamine alone in the control group of vessels

and (b) by application of methoxamine together with IBTX in the

treatment group of vessels (different vessels compared to the con-

trol group) were the same (see Figure 5b, time point “0”).

2.5 | Functional removal of the endothelium

In the experiments of this study, the endothelium of the vessels was

removed. In isobaric experiments, this was done by passing an air bub-

ble through the lumen of the vessel. In isometric experiments,

mechanical disruption of endothelium using a rat whisker was per-

formed. Functional removal of the endothelium was considered
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successful when ACh-induced vasodilation was absent during the via-

bility test.

2.6 | Membrane potential recordings

Intracellular recordings of membrane potential in smooth muscle cells

of intact mesenteric arteries were made using microelectrodes pulled

from aluminosilicate glass and filled with 3 M KCl. An amplifier (DUO

773, World Precision Instruments) was used to record the membrane

potential. A micromanipulator (UMP, Sensapex) was employed to

make impalements from the adventitial side of the vessel. The follow-

ing criteria for acceptance of membrane potential recordings were

used: (a) an abrupt change in membrane potential upon cell penetra-

tion; (b) a constant electrode resistance when compared before, dur-

ing, and after the measurement; (c) a stable reading of the membrane

potential lasting longer than 1 min; (d) no change in the baseline when

the electrode was removed.

2.7 | Digital droplet PCR

Vessels, isolated as described above, were cut into small pieces and

homogenised for 3 min at 30 Hz in the TissueLyser (Qiagen). Total

RNA was isolated using the “miRNeasy Mini-Kit” (Qiagen) according

to the manufacturer instructions. Optional On-Column DNase Diges-

tion using the RNase-Free DNase Set (Qiagen) was performed as

described. In the final step, RNA was collected from the affinity col-

umn using 30 μl H2O, which was passed twice over the column. RNA

concentration was determined on the Tecan infinite 200.

Samples were quantified by two-step digital droplet PCR. Reverse

transcription to cDNA was done using the iScript™ cDNA Synthesis

Kit (Bio-Rad, Hercules, CA, Cat#170-8890) according to the manufac-

turer's standard protocol. All samples were diluted to a starting con-

centration of 12.5 ng RNA per microliter of reaction.

Primers and probes were either purchased from Bio-Rad or self-

designed and ordered from Sigma-Aldrich (St. Louis, MO). All probes

were FAM-labelled at the 50-end, except GAPDH which was HEX-

labelled, and BHQ1-labelled at the 30-end. Amplicon context sequence

and amplicon length can be found on the Bio-Rad Homepage (www.

bio-rad.com) in accordance with the Guidelines for Minimum Informa-

tion for Publication of Quantitative Digital PCR Experiments (MIQE;

Huggett et al., 2013). The following genes (with their Unique Assay ID

or Sequence) have been tested: KCNMA1 (dRnoCPE5151992),

KCNQ1 (dRnoCPE5168228), KCNQ2 (dRnoCPE5150290), KCNQ3

(dRnoCPE5174006), KCNQ4 (dRnoCPE5184994), KCNQ5 (ffw:

TGTACAACGTGCTGGAGAGAC, rev:

ACGATCATCACGAACTCCAGAA, Prb:

CCCGCGGCTGGGCGTTCGTCT), and GAPDH (dRnoCPE5188005).

The annealing temperature was set to 58.0�C based on a temperature

gradient run. The limit of detection, the linearity of amplification, and

the possibility to do duplex measurements were checked by dilution

of synthetic oligonucleotides corresponding to the specific probe

sequences. All primers and probes were used at a concentration of

900 and 250 nM, respectively.

Samples were quantified with digital droplet PCR (Hindson et

al., 2011) using the ddPCR™ Supermix for Probes (no dUTP; Bio-

Rad, Cat#186-3024) on a QX200™ AutoDG™ Droplet Digital™

PCR System (Bio-Rad) according to the manufacturer's standard

protocol. For each reaction of 20 μl, a volume of 1 μl cDNA was

used (as an equivalent of 12.5 ng starting RNA). Typically, mea-

surements were repeated until a minimum of 100 positive droplets

were detected (between two and nine independent experiments).

For KCNQ2, expression was too low in the limited amount of

material to observe 100 positive droplets. Each experiment

included a negative control (no template control) and a positive

control (synthetic oligo corresponding to the probe). The Quan-

taSoft analysis software (Version 1.7, Bio-Rad) was used to analyse

the ddPCR data.

2.8 | Cell isolation

A piece of a tail or mesenteric artery was placed into a microtube

containing 1 ml of an isolation solution consisting of (in mM) 55

NaCl, 6 KCl, 88 Na glutamate, 2 MgCl2, 10 HEPES, 10 glucose,

pH 7.4, as well as 0.6 mg�ml−1 papain, and 1.2 mg�ml−1 DL-DTT

for 20 min at 37�C. Thereafter, the artery was moved into a

microtube containing 1 ml of the isolation solution as well as

1.2 mg�ml−1 collagenase F, 1.0 mg�ml−1 trypsin inhibitor, and

0.5 mg�ml−1 elastase for 12 min at 37�C for cells from tail arteries

or in isolation solution containing 1 mg�ml−1 collagenase (types F

and H; ratio, 30% and 70%, respectively) and 0.1 mM CaCl2 for

16 min at 37�C for cells from mesenteric arteries. Single cells were

released by trituration with a polyethylene pipette into the experi-

mental bath solution consisting of (in mM) 126 NaCl, 4.5 KCl, 1

MgCl2, 0.1 CaCl2, 10 HEPES, 20 taurine, 20 glucose and 5 pyru-

vate at pH 7.4. The pipette solution contained (in mM) 109 KCl,

10 NaCl, 1 MgCl2, 2 CaCl2, 3 EGTA (purity 96%) and 10 HEPES.

2.9 | Patch-clamp recording on freshly isolated
cells

All experiments were performed in the whole cell mode at room tem-

perature. Patch pipettes had resistances of 2–5 MΩ. The recordings

were made with an Axopatch 200B amplifier. Stimulation of currents

and data analysis were done with the software package ISO2 or with

pClamp software version 10.2 (RRID:SCR_011323). BK currents were

isolated from Kv currents using a depolarised holding potential of

0 mV eliminating all inactivating currents. Initial experiments had

shown that neither 1 μM glibenclamide, an inhibitor of ATP-sensitive

potassium channels, nor 10 μM barium, an inhibitor of inward-

rectifying potassium channels, produced any effect on the outward

current of these cells. BK currents were normalised to the BK current

evoked at 50 mV immediately before the recording of the control

current–voltage relationship in order to account for the different size

of the BK currents in different cells.
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2.10 | Cell culture and transfection

HEK 293 cells (RRID:CVCL_0045) were cultured in DMEM media

containing 10% FBS and 1% penicillin, streptomycin antibiotics at

37�C in a humidifying incubator with 5% CO2. Subculturing was done

with a 0.5% Trypsin–EDTA solution. The day before transfection, the

cells were plated in 35 mm dishes. cDNA complexes were diluted in

100 μl serum-free media tube. In another tube, 3 μl lipofectamine

reagent was diluted in 100 μl serum-free media. These two solutions

were mixed together and incubated for 30 min at room temperature.

Immediately prior to transfection, the media in each dish were chan-

ged to a serum, and antibiotic-free media before 200 μl of the trans-

fection mixture were gently added to each dish in a drop wise

manner. Transfection was terminated after 4 hr by replacing the

media in each dish with fresh growth media.

2.11 | Patch-clamp recording on cultured HEK
cells

Electrophysiological recordings were made on single HEK cells 24-

to 48-hr post-transfection with cDNA for human Kv7.4,

Kv7.4W242L, and Kv7.5. The plasmids were kindly supplied as gifts

from Prof Søren Peter Olesen, University of Copenhagen, Den-

mark. All experiments were carried out at room temperature. Patch

pipettes were pulled from thin-walled borosilicate glass (1.5 mm

O.D. × 1.17 mm I.D.; Clark Medical Instruments) to a tip of diame-

ter approximately 1–1.5 μm and resistance of 2–5 MΩ. Voltage

clamp commands were delivered via an Axopatch 200A amplifier

(Axon Instruments) connected to a Digidata 1322A AD/DA con-

verter (Axon Instruments) interfaced to a computer running pClamp

software (Axon Instruments). The data were acquired at 10 kHz

and filtered at 2 kHz. Series resistance was uncompensated in

these experiments, we estimate that errors resulting from this were

<20 mV.

All experiments were carried out in the whole cell configuration

of the patch-clamp technique (Hamill, Marty, Neher, Sakmann, &

Sigworth, 1981). Cells were held at −80 mV and stepped from

−100 to +50 mV for 1 s in 10 mV increments with a 10 s interval

between steps. Activation curves were constructed from the peak

tail current evoked by a repolarisation back to −120 mV following

depolarising voltage steps. Data were fitted with the Boltzmann

equation of the form:

I=Imax = 1= 1+ exp V1=2−Vm
� �

=K
� �� �

,

where V1/2 was the membrane potential at which there was half maxi-

mal activation, K the slope factor, and Vm the membrane potential

(mV). The change in activation V1/2 (ΔV1/2) caused by drugs was

obtained by subtracting the V1/2 in control from that in the presence

of the drugs. Leak current was estimated from the current at the end

of the −120 mV repolarisation step in the absence of any drugs and

was digitally subtracted.

During experiments, the dish containing HEK cells was super-

fused with Hank's solution (for composition, see next paragraph). In

addition, the cell under study was continuously superfused with

Hank's solution by means of a close delivery system consisting of a

pipette (tip diameter 200 μm) placed approximately 300 μm away

from the cell. This could be switched, with a dead-space time of

around 5 s, to a solution containing a drug.

2.12 | Recording solutions for cultured cells

The composition of the solutions used was as follows (in mM): Hank's

solution: 129.8 Na+, 5.8 K+, 135 Cl−, 4.17 HCO3
−, 0.34 HPO4

2−, 0.44

H2PO4
−, 1.8 Ca2+, 0.9 Mg2+, 0.4 SO4

2−, 10 glucose, 2.9 sucrose and

10 HEPES, pH adjusted to 7.4 with NaOH. K+ pipette solution (whole

cell, in mM): 132 K+, 110 gluconate, 21 Cl−, 2 Na+, 0.5 Mg2+, 1 ATP,

0.1 GTP, 2.5 phosphocreatine, 5 HEPES, and 1 EGTA; pH adjusted to

7.2 with KOH.

2.13 | Materials

Methoxamine, ACh, TEA and the salts for the solutions were obtained

from Sigma (Germany). Iberiotoxin, penitrem A, and stromatoxin were

purchased from Alomone Labs (Isreal). DPO-1 and XE991 were

obtained from Tocris (UK). GoSlo-SR-5-6 (sodium 1-Amino-4-((3-tri-

fluoromethylphenyl)amino)-9,10-dioxo-9,10-dihydroanthracene-2-sul-

fonate) was prepared as described previously (Roy et al., 2012; Roy et

al., 2014) with a modified purification protocol. A suspension of

bromaminic acid sodium salt (0.20 g, 0.49 × 10−3 M),

3-trifluoromethyl aniline (0.12 ml, 0.99 × 10−3 M), and copper powder

(8 mg) in a buffer solution of 0.2 M Na2HPO4 (4 ml) and 0.12 M

NaH2PO4 (4 ml) was irradiated for 20 min at 110�C in a microwave

oven. The reaction mixture was cooled to room temperature, filtered,

and diluted with water (200 ml). The aqueous solution was extracted

with dichloromethane (2–3 × 200 ml) until the organic layer became

colourless indicating complete removal of unreacted amine starting

material. The aqueous layer was then saturated with solid NaCl and

extracted with ethyl acetate (2 × 200 ml). The combined ethyl acetate

layers were then washed with 5% aqueous NaCl solution

(5–6 × 200 ml) in order to remove unreacted bromaminic acid. The

organic layer was then dried over anhydrous Na2SO4, filtered, and

evaporated to give the title product as a blue solid (99 mg, 42%).

Spectroscopic data were in agreement with that already reported.

GoSlo-SR-5-130 [9,10-dioxo-4-((3-trifluoroemthyl)phenyl)amino)-

9,10,-dihydroanthracene-2-sulfonic acid] was synthesised using an

adapted method from that described previously (Roy et al., 2012; Roy

et al., 2014). To a stirring suspension of GoSlo-SR-5-6 (75 mg,

0.15 × 10−3 M) in 1 M HCl (10 ml) at 0�C, was added an aqueous solu-

tion of 1.5 ml of NaNO2 (0.60 × 10−3 M). The reaction mixture was

stirred at 0�C for 5 min, warmed to room temperature, and allowed to

stir for a further 1 hr; ethanol (10 ml) and zinc dust (65 mg,

1.5 × 10−3 M) were added. After 5 min, the reaction was quenched by
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the addition of a 0.5 M aqueous NaHCO3 solution and extracted with

ethyl acetate (2 × 50 ml). The combined organic layers were dried

over anhydrous Na2SO4, filtered, evaporated, and the residue purified

by flash chromatography (methanol-dichloromethane) to afford the

title product as a purple solid (46 mg, 69%). Spectroscopic data were

in agreement with that already reported.

2.14 | Statistics

The data and statistical analysis comply with the recommendations of

the British Journal of Pharmacology on experimental design and analy-

sis in pharmacology (Curtis et al., 2015; Curtis et al., 2018). All values

are given as mean ± SEM; n is the number of animals tested or the

number of cells recorded from, technical replicates were not treated

as independent values; groups in one experimental series were of

equal size. Group size selection was based on previous extensive

experience. The allocation of individual vessels to different treatments

of an experimental series was randomised. Blinding of the operator

was not feasible because vessel responses observed by the operator

to manage the experiment permitted inferences about the treatment.

However, data analysis was performed semi-blinded by an indepen-

dent analyst. Outliers were included in data analysis and presentation.

Statistical analysis was performed using GraphPadPrism 6.0 (RRID:

SCR_002798; GraphPad Software, Inc.) employing ANOVA

(parametric test as there was no significant variance inhomogeneity;

post hoc tests were conducted only if F in ANOVA achieved P < .05),

unpaired or paired Student's t-tests, as appropriate and only on

groups with at least n = 5. For methodological reasons, a few groups

did not reach n = 5, these data have not been subjected to statistical

analysis. A value of P < .05 was considered statistically significant.

2.15 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to

corresponding entries in http://www.guidetopharmacology.org, the

common portal for data from the IUPHAR/BPS Guide to

PHARMACOLOGY (Harding et al., 2018), and are permanently

archived in the Concise Guide to PHARMACOLOGY 2019/20

(Alexander et al., 2019).

3 | RESULTS

3.1 | Effect of GoSlo-SR compounds on myogenic
tone

Isobaric preparations of rat Gracilis muscle arteries possessing sponta-

neous myogenic tone at 80 mmHg were dilated in a concentration-

F IGURE 1 GoSlo-SR-5-130 and GoSlo-SR-5-6 cause concentration-dependent relaxations of isobaric preparations of rat Gracilis muscle
arteries. (a) Example of the effect of GoSlo-SR-5-130 on the diameter of an isobaric vessel preparation at 80 mmHg, initial vessel diameter

287 μm, maximum vessel diameter 365 μm. (b) Example of the effect of GoSlo-SR-5-6 on the diameter of an isobaric vessel preparation at
80 mmHg, initial vessel diameter 283 μm, maximum vessel diameter 343 μm. (c) Effect of GoSlo-SR compounds on spontaneous tone of isobaric
vessel preparations at 80 mmHg. Normalised vessel diameter (ratio of diameter/fully relaxed diameter at 80 mmHg) at different concentrations of
GoSlo-SR compounds. (GoSlo-SR-5-130 one-way ANOVA: n = 6; P < .05), (GoSlo-SR-5-6 one-way ANOVA: n = 7; P < .05; repeated measures
ANOVA GoSlo-SR-5-6 vs. GoSlo-SR-5-130: P < .05). (d) Effect of nimodipine on spontaneous tone of isobaric vessel preparations at 80 mmHg.
Normalised vessel diameter (ratio of diameter/fully relaxed diameter at 80 mmHg) at different concentrations of nimodipine (one-way ANOVA:
n = 12; P < .05)
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F IGURE 2 The relaxant effects of GoSlo-SR compounds are not abolished when BK channels are blocked. (a) Effect of GoSlo-SR-5-130 on
spontaneous tone of isobaric vessel preparations at 80 mmHg. Normalised vessel diameter (ratio of diameter/fully relaxed diameter at 80 mmHg)
at different concentrations of GoSlo-SR-5-130 in the absence (Control) and presence of 10−7 M IBTX (IBTX; repeated measures ANOVA: n = 6;

P = 0.20); (b) vessel dilation in the absence (Time control = application of GoSlo-SR solvent DMSO) and presence of GoSlo-SR-5-130 (Control;
repeated measures ANOVA: n = 6; P < .05), vessel dilation at different concentrations of GoSlo-SR-5-130 in the absence (Control) and presence of
10−7 M IBTX (IBTX; repeated measures ANOVA: n = 6; P = 0.28); (c) effect of GoSlo-SR-5-6 on spontaneous tone of isobaric vessel preparations
at 80 mmHg. Normalised vessel diameter (ratio of diameter/fully relaxed diameter at 80 mmHg) at different concentrations of GoSlo-SR-5-6 in
the absence (Control) and presence of 10−7 M IBTX (IBTX; repeated measures ANOVA: n = 7; P < .05); (d) vessel dilation in the absence (Time
control = application of GoSlo-SR solvent DMSO) and presence of GoSlo-SR-5-6 (Control; repeated measures ANOVA: n = 7; P < .05), vessel
dilation at different concentrations of GoSlo-SR-5-6 in the absence (Control) and presence of 10−7 M IBTX (IBTX; repeated measures ANOVA:
n = 7; P = 0.94); (e) effect of GoSlo-SR-5-6 on the pressure–diameter relationship of isobaric vessel preparations. Normalised vessel diameter
(ratio of diameter/fully relaxed diameter at 80 mmHg) at different pressures in the absence of any substances (Control), in the presence of 10−6 M
GoSlo-SR-5-6, in the presence of 10−7 M IBTX and in the presence of both GoSlo-SR-5-6 and IBTX (repeated measures ANOVA: n = 10; *P < .05);
(f) effect of GoSlo-SR-5-6 in the absence (Control) and presence of 10−7 M IBTX (unpaired Student's t- test: n = 10). The effect of GoSlo-SR-5-6 in
the absence of IBTX was quantified as (area under the GoSlo-SR-5-6 curve) − (area under the control curve). The effect of GoSlo-SR-5-6 in the
presence of IBTX was quantified as (area under the GoSlo-SR-5-6 + IBTX curve) − (area under the IBTX curve); (g) effect of IBTX in the absence
(Control) and presence of 10−6 M GoSlo-SR-5-6 (unpaired Student's t-test: n = 10). The effect of IBTX in the absence of GoSlo-SR-5-6 was
quantified as (area under the control curve) − (area under the IBTX curve). The effect of IBTX in the presence of GoSlo-SR-5-6 was quantified as
(area under the GoSlo-SR-5-6 curve) − (area under the GoSlo-SR-5-6 + IBTX curve)
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dependent manner by both GoSlo-SR-5-130 (Figure 1a,c) and GoSlo-

SR-5-6 (Figure 1b,c). The L-type calcium-channel antagonist

nimodipine also produced dilation initiated, however, at lower con-

centrations (Figure 1d).

Recent publications (Hannigan et al., 2016; Large et al., 2015)

suggest that the inhibitory effects of the GoSlo-SR family of

compounds are mediated via activation of BK channels. Therefore, we

were surprised to find that inhibition of BK channels with

IBTX (10−7 M; Galvez et al., 1990) failed to reduce the effect of either

GoSlo-SR-5-130 (Figure 2a,b) or GoSlo-SR-5-6 (Figure 2c,d) on

spontaneous myogenic tone in isobaric preparations of rat Gracilis

muscle arteries studied at 80 mmHg. However, it is important to

note that BK channels are functionally expressed in this preparation

since application of IBTX clearly contracted these vessels in

experiments subsequently testing GoSlo-SR-5-130 and in experi-

ments subsequently testing GoSlo-SR-5-6. Furthermore, GoSlo-SR-

5-6 shifted the pressure–diameter relationship of these vessels

to larger diameters, an effect which was not blocked by IBTX

(Figure 2e–g).

These data suggest that GoSlo-SR compounds dilate arteries even

when BK channels are blocked. As we show later, their effect is

abolished in high [K+]o solutions, supporting the idea that they medi-

ate their effects via activation of K+ channels. There is another func-

tionally important class of K+ channels, the Kv7 channels, widely

expressed in vascular smooth muscle (see recent reviews of Barrese,

Stott, & Greenwood, 2018; Byron & Brueggemann, 2018; Haick &

F IGURE 3 mRNA expression of BK and Kv7 channels. Relative
expression of BK and KCNQ channels in intact arteries normalised to
GAPDH

F IGURE 4 Effects of GoSlo-SR compounds are reduced when Kv7 channels are blocked and abolished when both BK and Kv7 channels are
inhibited. (a) Effect of GoSlo-SR-5-6 on spontaneous tone of isobaric vessel preparations at 80 mmHg. Normalised vessel diameter (ratio of
diameter/fully relaxed diameter at 80 mmHg) at different concentrations of GoSlo-SR-5-6 in the absence (Control) and presence of 3 × 10−6 M
XE991 (XE991; repeated measures ANOVA: n = 10; P < .05); (b) vessel dilation at different concentrations of GoSlo-SR-5-6 in the absence

(Control) and presence of 3 × 10−6 M XE991 (XE991; repeated measures ANOVA: n = 10; P < .05); (c) effect of GoSlo-SR-5-130 on spontaneous
tone of isobaric vessel preparations at 80 mmHg. Normalised vessel diameter (ratio of diameter/fully relaxed diameter at 80 mmHg) at different
concentrations of GoSlo-SR-5-130 in the presence of 10−7 M IBTX and 3 × 10−6 M XE991 in the absence (DMSO) and presence of GoSlo-
SR-5-130 (GoSlo; repeated measures ANOVA: n = 6; P = .59); (d) effect of GoSlo-SR-5-6 on spontaneous tone of isobaric vessel preparations at
80 mmHg. Normalised vessel diameter (ratio of diameter/fully relaxed diameter at 80 mmHg) at different concentrations of GoSlo-SR-5-6 in the
presence of 10−7 M IBTX and 3 × 10−6 M XE991 in the absence (DMSO) and presence of GoSlo-SR-5-6 (GoSlo; repeated measures ANOVA:
n = 6; P = .56)
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Byron, 2016). Thus, we first quantified transcriptional expression of

KCNQ1–KCNQ5 using digital PCR and compared it to KCNMA1 as

shown in Figure 3. As this figure suggests, only KCNQ4 and KCNQ5

mRNA levels were abundantly expressed, relative to KCNMA1, in

Gracilis arteries.

Having established the transcriptional expression of KCNQ, we

next examined the effects of a Kv7 channel blocker, XE991

(3 × 10−6 M; Greenwood & Ohya, 2009) on isobaric preparations

pressurised to 80 mmHg. As shown in Figure 4a,b, GoSlo-SR-5-6 pro-

duced a concentration-dependent dilation of these arteries and this

effect was reduced but not abolished when Kv7 channels were

blocked with XE991. Of note, XE991 significantly contracted these

vessels by 6.4 ± 1.1% which was not different from the effect of IBTX

as reported above. Interestingly, this effect of GoSlo-SR-5-6 was

unaltered by the Kv7.1 channel blocker HMR1556 (10−5 M, n = 5),

suggesting that either GoSlo-SR-5-6 did not mediate its effects by

activating Kv7.1 channels or Kv7.1 channels are not functionally

expressed in these vessels.

We next examined if a combination of blocking BK channels with

IBTX (10−7 M) and Kv7 channels with XE991 (3 × 10−6 M) could fur-

ther reduce the effects of the GoSlo-SR compounds on isobaric prep-

arations. Blockade of both channels abolished the relaxant effects of

GoSlo-SR-5-130 (Figure 4c) and GoSlo-SR-5-6 (Figure 4d) on myo-

genic tone, at all concentrations tested.

3.2 | Effect of GoSlo-SR compounds on agonist-
induced tone

To test if GoSlo-SR compounds mediated a relaxant effect on agonist-

induced isometric tone by activating both BK and Kv7 channels, we

next examined the effects of GoSlo-SR-5-6 on vessels preconstricted

with the α1 adrenoceptor agonist, methoxamine (MX, 10−6 M). As

Figure 5a,b suggests, application of 3 × 10−6 M and 10−5 M GoSlo-

SR-5-6 caused concentration-dependent relaxations. Interestingly,

GoSlo-SR-5-6 was less effective at relaxing tone induced with a

higher concentration (10−5 M) of MX (Figure 5c).

Importantly, the relaxant effect of GoSlo-SR-5-6 was abolished

after functionally eliminating the influence of K+ channels on vessel

tension by pre-constriction with 50 × 10−3 M KCl (Figure 6a). Vascu-

lar smooth muscle expresses a range of K+ channels including BK

channels, voltage-gated potassium channels (Kv channels), inward-

rectifying potassium channels and ATP-sensitive potassium channels

(Nelson & Quayle, 1995; Tykocki, Boerman, & Jackson, 2017). As

Figure 6b shows, the response to GoSlo-SR-5-6 was abolished after

blocking BK channels with their inhibitor iberiotoxin (IBTX, 10−7 M),

in combination with the Kv2 channel blocker stromatoxin (STX,

10−7 M, Escoubas, Diochot, Celerier, Nakajima, & Lazdunski, 2002),

the Kv1 channel inhibitor, DPO-1 (10−6 M, Lagrutta, Wang, Fermini, &

Salata, 2006; Tsvetkov et al., 2016), and the Kv7 channel blocker

F IGURE 5 GoSlo-SR-5-6 also causes concentration-dependent relaxations of isometric preparations of rat Gracilis muscle arteries. (a)
Example of the effect of GoSlo-SR-5-6 on tension of an isometric vessel preparation at 10−6 M methoxamine (MX)-induced tone. Application
denotes the time point where GoSlo-SR or vehicle was added. (b) Effect of GoSlo-SR-5-6 on 10−6 M MX-induced contraction. Vessel tension in
the absence (Time control) and presence of GoSlo-SR-5-6 at 3 × 10−6 M and at 10−5 M (repeated measures ANOVA: con vs. GoSlo-SR-5-6
10−5 M: n = 11; P < .05; con vs. GoSlo-SR-5-6 3 × 10−6 M: n = 8; P < .05; GoSlo-SR-5-6 10−5 M vs. 3 × 10−6 M: P < .05); (c) effect of GoSlo-
SR-5-6 on 10−5 M MX-induced contraction. Vessel tension in the absence (Time control) and presence of GoSlo-SR-5-6 at 10−5 M (repeated
measures ANOVA: n = 8; P < .05)
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F IGURE 6 GoSlo-SR-5-6-induced relaxations of isometric tone depend on K+ channels but are not abolished when BK channels are blocked.
(a) Effect of GoSlo-SR-5-6 on 50 mM KCl-induced contraction. Vessel tension in the absence (Time control) and presence of GoSlo-SR-5-6 at
10−5 M (repeated measures ANOVA: n = 10; P = .29); (b) effect of GoSlo-SR-5-6 on contraction induced by 10−7 M IBTX, 3 × 10−6 M XE991,

10−6 M DPO-1 and 10−7 M stromatoxin. Vessel tension in the absence (Time control) and presence of GoSlo-SR-5-6 at 10−5 M (repeated
measures ANOVA: n = 6; P = .88); (c) example of the effect of IBTX on relaxation induced by 10−5 M GoSlo-SR-5-6. Application denotes the time
point where GoSlo-SR was added. (d) Effect of 10−5 M GoSlo-SR-5-6 on methoxamine (MX)-induced contraction. Vessel tension in the absence
(con) and presence of 3 × 10−7 M IBTX (IBTX; repeated measures ANOVA: n = 7; P = .90); (e) effect of 10−5 M GoSlo-SR-5-6 on MX-induced
contraction. Vessel tension in the absence (con) and presence of 10−3 M TEA (TEA; repeated measures ANOVA: n = 5; P = .92); (f) effect of
10−5 M GoSlo-SR-5-6 on MX-induced contraction. Vessel tension in the absence (con) and presence of 10−7 M penitrem A (PenA; repeated
measures ANOVA: n = 7; P = .91); (g) effect of 3 × 10−6 M GoSlo-SR-5-6 on MX-induced contraction. Vessel tension in the absence (con) and
presence of 3 × 10−7 M IBTX (IBTX; repeated measures ANOVA: n = 8; P = .89) and of 10−7 M penitrem A (PenA; repeated measures ANOVA:
n = 8; P = .43); (h) effect of 10−6 M NS19504 on MX-induced contraction. Vessel tension in the absence (con) and presence of 10−7 M IBTX
(IBTX; repeated measures ANOVA: n = 8; P = .74) and of 10−7 M paxillin (Pax; repeated measures ANOVA: n = 8; P = .82)
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XE991 (3 × 10−6 M). These data are consistent with the idea that

GoSlo-SR-5-6 mediated its effect via activation of K+ channels, rather

than inhibiting L-type calcium channels.

The relaxations induced by GoSlo-SR-5-6 on isometric tension

recordings were also resistant to BK channel blockade with IBTX. It is

clear from the tension record shown in Figure 6c that BK channels

were functional in these preparations, since IBTX (3 × 10−7 M) con-

stricted these tissues. The response to GoSlo-SR-5-6 (10−5 M) was

not blocked by the selective BK channel blocker IBTX (Figure 6d,g)

and penitrem A (10−7 M, Figure 6f,g; Knaus et al., 1994) or low

concentrations of the non-selective K+ channel blocker TEA

(1 × 10−3 M, Figure 6e; Nelson & Quayle, 1995). A similar observation

was made for another BK channel opener, NS19504 (Nausch et al.,

2014), which induced relaxation not affected by IBTX (10−7 M) and

paxilline (10−7 M; Figure 6h).

Inhibition of Kv7 channels with XE991 (3 × 10−6 M) also consider-

ably reduced, but did not abolish the effect of GoSlo-SR-5-6 on iso-

metric tension (Figure 7a,b). Increasing the concentration of XE991 to

10−5 M did not further reduce the effects of GoSlo-SR-5-6

(Figure 7c). Blockade of Kv7 channels with 10−5 M linopirdine also

F IGURE 7 GoSlo-SR-5-6-induced relaxations of isometric tone are reduced when Kv7 channels are blocked. (a) Example of the effect of
XE991 on relaxation induced by 10−5 M GoSlo-SR-5-6. Application denotes the time point where GoSlo-SR or vehicle was added; (b) effect of
10−5 M GoSlo-SR-5-6 on methoxamine (MX)-induced contraction. Vessel tension in the absence (DMSO–con) and presence of GoSlo-SR-5-6
(GoSlo–con) and of GoSlo-SR-5-6 together with 3 × 10−6 M XE991 (GoSlo–XE991; repeated measures ANOVA: GoSlo-SR-5-6 vs. GoSlo-SR-5-
6 + XE991: n = 9; P < .05); (c) effect of 10−5 M GoSlo-SR-5-6 on MX-induced contraction. Vessel tension in the absence (DMSO–con) and
presence of GoSlo-SR-5-6 (GoSlo–con) and of GoSlo-SR-5-6 together with 10−5 M XE991 (GoSlo–XE991; repeated measures ANOVA: GoSlo-
SR-5-6 vs. GoSlo-SR-5-6 + XE991: n = 7; P < .05; repeated measures ANOVA: GoSlo-SR-5-6 + 3 × 10−6 M XE991 vs. GoSlo-SR-5-6 + 10−5 M
XE991: P = .72); (d) effect of 10−5 M GoSlo-SR-5-6 on MX-induced contraction. Vessel tension in the absence (DMSO–con) and presence of
GoSlo-SR-5-6 (GoSlo–con) and of GoSlo-SR-5-6 together with 10−5 M linopirdine (GoSlo–Lino; repeated measures ANOVA: GoSlo-SR-5-6 vs.
GoSlo-SR-5-6 + Lino: n = 9; P < .05); (e) effect of 10−5 M GoSlo-SR-5-6 on MX-induced contraction. Vessel tension in the absence (DMSO–con)
and presence of GoSlo-SR-5-6 (GoSlo–con) and of GoSlo-SR-5-6 together with 3 × 10−6 M XE991, 10−6 M DPO-1, and 10−7 M stromatoxin
(GoSlo–XE991 + DPO-1 + STX; repeated measures ANOVA: GoSlo-SR-5-6 vs. GoSlo-SR-5-6 + XE991 + DPO-1 + STX: n = 10; P < .05; repeated
measures ANOVA: GoSlo-SR-5-6 + 3 × 10−6 M XE991 vs. GoSlo-SR-5-6 + XE991 + DPO-1 + STX: P = .25)
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reduced the effect of GoSlo-SR-5-6 (Figure 7d). However, in the pres-

ence of 3 × 10−6 M XE991, the addition of the Kv1 channel inhibitor,

DPO-1 (10−6 M) together with stromatoxin (STX, 10−7 M) did not

further reduce the effect of GoSlo-SR-5-6, suggesting that neither

Kv1 nor Kv2 channels contributed to the vasorelaxant effects of

GoSlo-SR-5-6 (Figure 7e).

Of note, as shown in Figure 8, co-application of IBTX

(10−7 M) and XE991 (3 × 10−6 M) completely abolished the inhibi-

tory effects of GoSlo-SR compounds on vessels pre-constricted

with MX. Thus, neither GoSlo-SR-5-6 (Figure 8a,c) nor GoSlo-SR-

5-130 (Figure 8b,d), applied at a concentration of 10−5 M, was

able to reduce isometric tension in these experiments, consistent

with the idea that GoSlo-SR compounds mediated their effects by

activating both BK and Kv7 channels.

3.3 | Effect of GoSlo-SR compounds on
mesenteric, saphenous and tail arteries

To understand whether the effect of GoSlo-SR compounds is

unique to the Gracilis artery, the effect of GoSlo-SR-5-6 was stud-

ied on mesenteric, saphenous, and tail arteries. These arteries have

been selected, because they represent different vascular beds and

F IGURE 8 Contribution of BK and Kv7 channels to the effect of GoSlo-SR. (a) Example of the effect of IBTX and XE991 on relaxation
induced by 10−5 M GoSlo-SR-5-6. The arrows with the label (IBTX + XE991 + MX) denote the time points where pre-constriction was initiated by
the addition of IBTX, XE991 and methoxamine (MX). The arrow with the label (GoSlo/DMSO) denotes the time point where GoSlo-SR-5-6 or
vehicle (DMSO) was added; (b) example of the effect of IBTX and XE991 on relaxation induced by 10−5 M GoSlo-SR-5-130. The arrows with the
label (IBTX + XE991 + MX) denote the time points where pre-constriction was initiated by the addition of IBTX, XE991, and MX. The arrow with
the label (GoSlo/DMSO) denotes the time point where GoSlo-SR-5-130 or vehicle (DMSO) was added; (c) effect of 10−5 M GoSlo-SR-5-6 on
MX-induced contraction. Vessel tension in the presence of 10−7 M IBTX and 3 × 10−6 M XE991 in the absence (DMSO) and presence of GoSlo-
SR-5-6 (GoSlo; repeated measures ANOVA: n = 8; P = .98); (d) effect of 10−5 M GoSlo-SR-5-130 on MX-induced contraction. Vessel tension in
the presence of 10−7 M IBTX and 3 × 10−6 M XE991 in the absence (DMSO) and presence of GoSlo-SR-5-130 (GoSlo; repeated measures
ANOVA: n = 6; P = .78); (e) effect of 10−5 M GoSlo-SR-5-6 on MX-induced contraction. Vessel tension in the absence (con) and presence of
10−7 M IBTX and 10−6 M DPO-1 (IBTX + DPO; repeated measures ANOVA: n = 10; P = .43); (f) effect of 10−5 M GoSlo-SR-5-6 on MX-induced
contraction. Vessel tension in the absence (con) and presence of 10−7 M IBTX and 10−7 M stromatoxin (IBTX + STX; repeated measures ANOVA:
n = 7; P = .95)

ZAVARITSKAYA ET AL. 1175



are well studied in the participating laboratories. In mesenteric

arteries, 3 × 10−6 M GoSlo-SR-5-6 caused relaxation (Figure 9a,b).

This response was not blocked by the selective BK channel blocker

IBTX (10−7 M; Figure 9a), was considerably reduced but not

abolished by the Kv7 channel blocker XE991 (3 × 10−6 M;

Figure 9b), and was completely abolished by co-application of IBTX

and XE991 (Figure 9c).

In saphenous arteries, 10−5 M GoSlo-SR-5-6 caused relaxation

(Figure 10a,b). This response was not blocked by IBTX (10−7 M;

Figure 10a), was considerably reduced but not abolished by XE991

(3 × 10−6 M; Figure 10b), and was completely abolished by co-

application of IBTX and XE991 (Figure 10c).

In tail arteries, 10−5 M GoSlo-SR-5-6 caused relaxation

(Figure 11b). This response was completely abolished by IBTX

(10−7 M; Figure 11a), was not affected by XE991 (3 × 10−6 M;

Figure 11b), and was completely abolished by co-application of IBTX

and XE991 (Figure 11c).

Of note, the functional availability of BK and Kv7 channels during

contraction induced by MX, the agent used to produce pre-

constriction when the effect of GoSlo-SR compounds was tested, was

observed to be different in these vessels. Thus, in mesenteric

(Figure 12a) and saphenous arteries (Figure 12b), both 10−7 M IBTX

and 3 × 10−6 M XE991 increased methoxamine-induced contractile

responses to a similar degree. In contrast, in tail arteries, this effect

was observed only for IBTX (Figure 12c).

3.4 | Effect of GoSlo-SR compounds on membrane
potential and BK currents

To get more direct evidence for the involvement of ion channels in

the relaxations induced by GoSlo-SR compounds, electrophysiological

experiments were performed. We first measured the membrane

potential in smooth muscle cells of intact mesenteric arteries using

microelectrodes. The mesenteric artery was selected for these experi-

ments because it was possible to get reliable membrane potential

measurements (for criteria, see Section 2.6). We observed that the

GoSlo-SR-5-6-induced relaxation was associated with a hyper-

polarisation from −29 ± 4 to −45 ± 3 mV (n = 7; Figure 13). We were

able to reverse this hyperpolarisation and relaxation with the Kv7

channel blocker XE991 (Figure 13). In a few of these vessels, we were

also able to measure the membrane potential after the subsequent

addition of IBTX, in the continued presence of XE991. In these prelim-

inary experiments (n = 3), membrane potential was −33 ± 2 mV in

F IGURE 9 GoSlo-SR-5-6 also causes relaxation of mesenteric arteries. (a) Effect of 3 × 10−6 M GoSlo-SR-5-6 on MX-induced contraction.
Vessel tension in the presence of GoSlo-SR-5-6 (GoSlo–con), in the presence of GoSlo-SR-5-6 and 10−7 M IBTX (GoSlo–IBTX), and in the
presence of the vehicle of GoSlo-SR and IBTX (DMSO–IBTX). (repeated measures ANOVA: GoSlo-SR-5-6–IBTX vs. DMSO–IBTX: n = 7; P < .05;

GoSlo-SR-5-6–con vs. GoSlo-SR-5-6–IBTX: n = 7; P = .65); (b) effect of 3 × 10−6 M GoSlo-SR-5-6 on MX-induced contraction. Vessel tension in
the presence of GoSlo-SR-5-6 (GoSlo–con), in the presence of GoSlo-SR-5-6 and 3 × 10−6 M XE991 (GoSlo–XE), and in the presence of the
vehicle of GoSlo-SR and XE991 (DMSO–XE). (repeated measures ANOVA: GoSlo-SR-5-6–XE vs. DMSO–XE: n = 7; P < .05; GoSlo-SR-5-6–con
vs. GoSlo-SR-5-6–XE: n = 7; P < .05); (c) effect of 3 × 10−6 M GoSlo-SR-5-6 on MX-induced contraction. Vessel tension in the presence of GoSlo-
SR-5-6 and 10−7 M IBTX together with 3 × 10−6 M XE991 (GoSlo–IBTX + XE) and in the presence of the vehicle of GoSlo-SR and IBTX together
with XE991 (DMSO–IBTX + XE). (repeated measures ANOVA: GoSlo-SR-5-6–IBTX + XE vs. DMSO–IBTX + XE: n = 6; P = .32)
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XE991 and −27 ± 1 mV after both XE991 and IBTX application,

suggesting that BK channels did contribute to the hyperpolarisation.

However, these experiments were difficult to perform, and impale-

ments were often lost in XE991 and IBTX, due to the induction of

spontaneous activity by these ion channel blockers. To explore the

role of BK channels further, we also measured BK currents in freshly

isolated tail artery smooth muscle cells, which have been well docu-

mented to possess BK currents (Schubert, Noack, & Serebryakov,

1999; Schubert, Serebryakov, Engel, & Hopp, 1996). We observed

that GoSlo-SR-5-6 induced a considerable increase in BK currents

(Figure 14). A similar increase in BK currents was obtained in freshly

isolated rat mesenteric artery smooth muscle cells studied. However,

a pronounced current run-down precluded more detailed studies with

these cells.

3.5 | Effect of GoSlo-SR compounds on Kv7.4 and
Kv7.5 channels

To test if GoSlo-SR compounds activated Kv7 channels, we examined

the effects of extracellularly applied GoSlo-SR-5-6 (10−5 M) on whole

cell currents recorded from HEK cells transiently transfected with

human Kv7.4 cDNA. Preliminary experiments established that the

EC50 for GoSlo-SR-5-6 on Kv7.4 applied at a potential of −40 mV was

6.4 × 10−6 ± 0.5 μM (n = 5), suggesting that it was slightly less potent

on Kv7.4 channels, compared to BK channels (2.3 × 10−6 μM)

reported previously (Roy et al., 2012). Figure 15a shows a family of

currents recorded from a cell expressing Kv7.4 channels. In the

absence of any drugs, these currents activated slowly at potentials

positive to −60 mV (Figure 15c). Application of GoSlo-SR-5-6

(10−5 M) increased current amplitude at all voltages tested and dra-

matically slowed tail current deactivation (Figure 15b). These effects

were reversible on washout, and the currents were blocked in the

presence of XE991 (10−5 M, exploratory data, n = 4, data not shown).

The activation curve in the presence of GoSlo-SR-5-6 (10−5 M) was

characterised by a shift of V1/2 by approximately −40 mV (n = 6;

P < .05; paired t test); the slope factor was increased from 18 ± 1 mV

to 28 ± 2 mV (n = 6; P < .05; paired t test; Figure 15c). It is important

to note that the application of GoSlo-SR-5-6 increased the amplitude

of the peak tail current at all potentials recorded. It is clear from these

data that GoSlo-SR-5-6 activates Kv7.4 channels and shifts their

voltage-dependent activation to more negative potentials. Another

Kv7 channel activator, ML213 (10−5 M), also significantly shifted the

activation V1/2 by −35 ± 2 mV (from −20 ± 2 mV to −54 ± 2 mV, )

and increased Gmax to 2.2 ± 0.2 and these effects were abolished in

the W242L mutant (n = 5, data not shown). In contrast, the effects of

F IGURE 10 GoSlo-SR-5-6 also causes relaxation of saphenous arteries. (a) Effect of 10−5 M GoSlo-SR-5-6 on MX-induced contraction.
Vessel tension in the presence of GoSlo-SR-5-6 (GoSlo–con), in the presence of GoSlo-SR-5-6 and 10−7 M IBTX (GoSlo–IBTX), and in the
presence of the vehicle of GoSlo-SR and IBTX (DMSO–IBTX). (repeated measures ANOVA: GoSlo-SR-5-6–IBTX vs. DMSO–IBTX: n = 6; P < .05;

GoSlo-SR-5-6–con vs. GoSlo-SR-5-6–IBTX: n = 6; P = .55); (b) effect of 10−5 M GoSlo-SR-5-6 on MX-induced contraction. Vessel tension in the
presence of GoSlo-SR-5-6 (GoSlo–con), in the presence of GoSlo-SR-5-6 and 3 × 10−6 M XE991 (GoSlo–XE), and in the presence of the vehicle
of GoSlo-SR and XE991 (DMSO–XE). (repeated measures ANOVA: GoSlo-SR-5-6–XE vs. DMSO–XE: n = 7; P < .05; GoSlo-SR-5-6–con vs.
GoSlo-SR-5-6–XE: n = 7; P < .05); (c) effect of 10−5 M GoSlo-SR-5-6 on MX-induced contraction. Vessel tension in the presence of GoSlo-SR-5-6
and 10−7 M IBTX together with 3 × 10−6 M XE991 (GoSlo–IBTX + XE), and in the presence of the vehicle of GoSlo-SR and IBTX together with
XE991 (DMSO–IBTX + XE). (repeated measures ANOVA: GoSlo-SR-5-6–IBTX + XE vs. DMSO–IBTX + XE: n = 7; P = .78)
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GoSlo-SR-5-6 were not altered in Kv7.4 channels with a W242L

mutant (n = 5, data not shown), suggesting that, in contrast to

retigabine, residue W242 was not essential for GoSlo-SR compounds

to mediate their effects.

GoSlo-SR-5-130 (10−5 M) also activated Kv7.4 channels (Figure

15,e,f), but it was clearly less efficacious than GoSlo-SR-5-6

(Figure 15a,b,c). We were unable to determine an EC50 for this

compound on Kv7.4 because maximal effects were not reached at

30 μM and the compound came out of solution at higher concen-

trations. Nevertheless, we only observed a small increase in the

steady state current amplitude with 10−5 M GoSlo-SR-5-130. How-

ever, the tail currents were clearly slowed compared to the control

currents. GoSlo-SR-5-130 significantly shifted the activation V1/2 by

approximately −20 mV (n = 6) , and this was significantly less

effective than GoSlo-SR-5-6 (ΔV1/2 approximately −40 mV). The

slope factor K was unaffected (19 ± 1 mV under control conditions

and 21 ± 2 mV in GoSlo-SR-5-130).

We next examined the effects of the two GoSlo-SR compounds

on HEK cells expressing Kv7.5 channels. We were unable to deter-

mine the EC50 of either GoSlo-SR-5-6 or 5-130 on Kv7.5 due to lim-

ited solubility of these compounds in Hank's solution at

concentrations above 30 μM. A brief inspection of the current ampli-

tude in the first 50 ms demonstrates that GoSlo-SR-5-6 (10−5 M)

increased the amplitude of the Kv7.5 current at all voltages, but this

effect was particularly apparent at negative potentials (Figure 16a,b).

At potentials positive to −60 mV, it is clear that although GoSlo-SR-

5-6 increased the initial current amplitude, the currents decreased

during the depolarising pulse, presumably as a result of open channel

block. When the cell was repolarised from positive potentials back to

−120 mV, the apparent block was relieved, and the tail current ampli-

tude consequently increased over time. The activation curve of the

control current was constructed from tail currents measured 100 ms

after the repolarisation step began, to minimise any distortion of the

relationship caused by the block at positive potentials and was

characterised by a V1/2 of −29 ± 7 mV and the slope factor was

19 ± 4 mV. It was not possible to measure either V1/2 or slope factor

in the presence of GoSlo-SR-5-6, as the activation curve was approxi-

mately linear over the entire voltage range recorded. What is clear,

however, is that the current amplitude in GoSlo-SR-5-6 was much

greater at every voltage recorded, compared to control.

GoSlo-SR-5-130 also activated Kv7.5 currents (Figure 16d–f), but

it was less efficacious than GoSlo-SR-5-6 (Figure 16a–c) as evidenced

by their effects on Gmax. Thus, in GoSlo-SR-5-130, Gmax was

0.9 ± 0.03, and this was significantly less than that recorded in GoSlo-

SR-5-6 (2.9 ± 0.2, n = 5). Although GoSlo-SR-5-130 (10−5 M) slowed

the tail currents and increased the tail currents evoked following steps

F IGURE 11 GoSlo-SR-5-6 also causes relaxation of tail arteries. (a) Effect of 10−5 M GoSlo-SR-5-6 on MX-induced contraction. Vessel
tension in the presence of GoSlo-SR-5-6 and 10−7 M IBTX (GoSlo–IBTX), and in the presence of the vehicle of GoSlo-SR and IBTX (DMSO–IBTX;
for better discrimination of data points vessel tension in the presence of GoSlo-SR-5-6 alone is not shown in this graph—refer to panel (b);
repeated measures ANOVA: GoSlo-SR-5-6–IBTX vs. DMSO–IBTX: n = 8; P = .81); (b) effect of 10−5 M GoSlo-SR-5-6 on MX-induced contraction.
Vessel tension in the presence of GoSlo-SR-5-6 (GoSlo–con), in the presence of GoSlo-SR-5-6 and 3 × 10−6 M XE991 (GoSlo–XE), and in the
presence of the vehicle of GoSlo-SR and XE991 (DMSO–XE). (repeated measures ANOVA: GoSlo-SR-5-6–XE vs. DMSO–XE: n = 7; P < .05;
GoSlo-SR-5-6–con vs. GoSlo-SR-5-6–XE: n = 7; P = .23); (c) effect of 10−5 M GoSlo-SR-5-6 on MX-induced contraction. Vessel tension in the
presence of GoSlo-SR-5-6 and 10−7 M IBTX together with 3 × 10−6 M XE991 (GoSlo–IBTX + XE), and in the presence of the vehicle of GoSlo-SR
and IBTX together with XE991 (DMSO–IBTX + XE). (repeated measures ANOVA: GoSlo-SR-5-6–IBTX + XE vs. DMSO–IBTX + XE: n = 8; P = .85)
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to more negative potentials (<0 mV), it also slightly reduced their peak

amplitude following depolarisations positive to +10 mV (Figure 16e).

Further, it significantly shifted V1/2 by approximately −50 mV (slope

factors were unaffected 20 ± 3 mV in control compared to 18 ± 4 mV

in the presence of the drug (Figure 16f)).

4 | DISCUSSION

We utilised isometric tension and isobaric diameter recordings of rat

arteries to examine the effects of two recently disclosed BK channel

openers on vascular smooth muscle. Our focus was to ascertain if

these compounds relaxed vascular smooth muscle and determine if

these effects were mediated exclusively through activation of BK

channels.

4.1 | Effect of GoSlo-SR compounds on rat arteries

Two different GoSlo-SR compounds, GoSlo-SR-5-6 and GoSlo-SR-

5-130, produced a strong relaxation of isobaric as well as isometric

preparations of rat Gracilis muscle arteries. To the best of our knowl-

edge, the effects of GoSlo-SR compounds on blood vessels have not

been reported before. These findings are supported by the reports

demonstrating that GoSlo-SR-5-130 reduced spontaneous contractil-

ity in rabbit visceral smooth muscle. However, both GoSlo-SR

compounds did not affect induced contractility in these preparations

(Hannigan et al., 2016; Large et al., 2015). Taken together, these find-

ings show that GoSlo-SR compounds are much more effective relax-

ants in vascular compared to visceral smooth muscle.

Previous studies showed that some effects of GoSlo-SR com-

pounds on visceral smooth muscle contractility are abolished by pre-

treatment with specific BK channel blockers (Hannigan et al., 2016;

Large et al., 2015). Consequently, in the present study on vascular

smooth muscle, we tested whether K+ channels in general mediate

the effect of GoSlo-SR compounds. The influence of K+ channels on

vessel tension was functionally eliminated by pre-constricting the

vessels with 50 mM KCl. At this extracellular KCl concentration, the

equilibrium potential for K+ is close to the actual membrane potential

of smooth muscle cells. Thus, the driving force for potassium ions is

negligible. Even if K+ channels were open, there would be no K+

efflux, hence no alteration of the membrane potential and no change

in contractility. Importantly, vasodilators acting on other mechanisms

except K+ channels would retain their ability to affect vessel tone;

only K+ channel openers would lose this capability. Indeed, this was

observed; the GoSlo-SR compounds were without any effect after

pre-constriction of the vessels with 50 mM KCl. Moreover, the same

effect was seen after blocking functionally important K+ channels in

vascular smooth muscle (Nelson & Quayle, 1995; Tykocki, Boerman,

& Jackson, 2017) using the BK channel inhibitor iberiotoxin (Galvez

et al., 1990), the Kv2 channel blocker stromatoxin (Escoubas,

Diochot, Celerier, Nakajima, & Lazdunski, 2002), the Kv1 channel

F IGURE 12 IBTX and XE991 affect methoxamine-induced contraction. (a) Effect of 10−7 M IBTX and 3 × 10−6 M XE991 on methoxamine-
induced contraction in mesenteric arteries (repeated measures ANOVA: con vs. IBTX: n = 8; P < .05; con vs. XE991: n = 8; P < .05; IBTX vs. XE:
n = 8; P = .20); (b) effect of 10−7 M IBTX and 3 × 10−6 M XE991 on methoxamine-induced contraction in saphenous arteries (repeated measures
ANOVA: con vs. IBTX: n = 9; P < .05; con vs. XE991: n = 9; P < .05; IBTX vs. XE: n = 9; P = .10); (c) effect of 10−7 M IBTX and 3 × 10−6 M XE991
on methoxamine-induced contraction in tail arteries (repeated measures ANOVA: con vs. IBTX: n = 7; P < .05; con vs. XE991: n = 7; P = .39)
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inhibitor DPO-1 (Lagrutta, Wang, Fermini, & Salata, 2006; Tsvetkov

et al., 2016) and the Kv7 channel blocker XE991 (Greenwood &

Ohya, 2009). The fact that the GoSlo-SR compounds were unable

to relax blood vessels after either treatment supports the idea that

GoSlo-SR compound-induced vasodilation was due to activation of

K+ channels. This is further supported by previous findings showing

that GoSlo-SR-5-6 and 5-130 had no significant effect on smooth

muscle L-type calcium currents (Large et al., 2015), that GoSlo-SR-

5-130 was not able to affect contractile activity in rabbit bladder

in the presence of IBTX (Large et al., 2015) and that GoSlo-SR-

5-130 had no effect on KCl-induced contractions in rabbit corpus

cavernosum (Hannigan et al., 2016).

In conclusion, the data presented in this study show that GoSlo-

SR compounds mediate their vasodilator effects exclusively by

F IGURE 13 GoSlo-SR-5-6 causes hyperpolarisation of isometric preparations of rat mesenteric arteries. (a) Example of the effect of
3 × 10−6 M GoSlo-SR-5-6 on membrane potential (upper trace) and contractile force (lower trace) of an isometric vessel preparation at 10−6 M
methoxamine (MX)-induced tone and after subsequent application of 3 × 10−6 M XE991. The microelectrode symbol denotes phases when the
microelectrode was impaled/not impaled. Summarised data of membrane potential (b) and contractile force (c) in the presence of 10−6 M MX,
MX + 3 × 10−6 M GoSlo-SR-5-6, and MX + GoSlo-SR-5-6 + 3 × 10−6 M XE991. (*repeated measures ANOVA: MX vs. MX–GoSlo-SR-5-6(n = 7);
P < .05; MX–GoSlo-SR-5-6 vs. MX–GoSlo-SR-5-6–XE(n = 6); P < .05, Bonferroni's multiple comparison test)

F IGURE 14 GoSlo-SR-5-6 stimulates BK currents in freshly isolated smooth muscle cells of rat tail artery. (a) Example of the effect of 10−5 M
GoSlo-SR-5-6 on BK currents. Example traces of the BK current at different voltages in the absence (con, left panel) and presence of GoSlo-
SR-5-6 (GoSlo, right panel); the inset shows the voltage protocol—it consisted of 500-ms-long voltage steps from a holding potential of 0 mV to
test potentials between −50 and +70 mV in 20-mV increments applied every 5 s. (b) Summarised current–voltage (MP) relationship of the BK
current in the absence (Control) and presence of GoSlo-SR-5-6 (GoSlo). (repeated measures ANOVA: control vs. GoSlo-SR-5-6: n = 6; P < .05)
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activation of K+ channels, without the involvement of other vasodila-

tor pathways, for example, voltage-gated calcium channels.

4.2 | Role of BK channels in mediating the effect
of GoSlo-SR compounds on rat arteries

Recent publications (Hannigan et al., 2016; Large et al., 2015) suggest

that the inhibitory effects of the GoSlo-SR family of compounds on

urogenital smooth muscles are mediated by activation of BK channels.

Thus, we hypothesised that BK channels may play a leading role in the

effect of GoSlo-SR compounds on vascular smooth muscle. Unexpect-

edly, we were, initially, unable to get any direct support for an involve-

ment of BK channels in the effect of GoSlo-SR compounds on

vascular smooth muscle, despite evidence that BK channels were

functional in these preparations. Thus, pretreatment of Gracilis, mes-

enteric, or saphenous arteries with the most specific BK channel

inhibitor, iberiotoxin (Galvez et al., 1990) did not alter the vasodilation

induced by the GoSlo-SR compounds, even when IBTX was applied at

a high concentration (3 × 10−7 M). However, it is important to note

that IBTX alone abolished the GoSlo-SR-induced relaxation in rat tail

artery, which, as discussed later, is because Kv7 channels are function-

ally unavailable in these vessels.

In the Gracilis artery, two other widely used BK channel inhibi-

tors, TEA at 10−3 M, a concentration affecting primarily BK chan-

nels (Nelson & Quayle, 1995), and the specific BK channel inhibitor

penitrem A at 10−7 M (Knaus et al., 1994), were also unable to

modify the effect of the GoSlo-SR compounds. Finally, we

F IGURE 15 GoSlo-SR compounds activate Kv7.4 channels. (a) Typical family of currents obtained from a HEK cell during a series of voltage
steps from −100 to +60 mV in 10-mV increments lasting 1 s. Cells were held at −80 mV and repolarised back to −120 mV to obtain tail currents;
(b) currents from the same cell during incubation with 10−5 M GoSlo-SR-5-6. Tail current deactivation (τ) recorded at −120 mV following a step

to +40 mV increased from 15 ± 1 ms to 47 ± 5 ms (n = 6; P < .05; paired Student's t-test); (c) summary activation curves obtained by measuring
tail currents in six cells before (open circles) and during (blue circles) application of GoSlo-SR-5-6; (d) and (e) currents obtained from a different
cell, held at −80 mV and stepped from −100 mV to +50 mV in 10 mV increments, in the absence and presence of GoSlo-SR-5-130 (10−5 M),
respectively. Tail currents recorded at −120 mV following a step to +40 mV decayed with a τ of 15 ± 2 ms in control conditions compared to
26 ± 1 ms in GoSlo-SR-5-130 (n = 6; P < .05; paired t test); (f) summary activation curves obtained from six cells in the absence (open circles) and
presence (pink circles) of GoSlo-SR-5-130
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considered the possibility that the BK channel blocker may affect

the efficiency of the GoSlo-SR compounds to dilate vessels but not

their maximal effect at saturating concentrations. However, neither

IBTX nor penitrem A altered the effect of the GoSlo-SR compound

at a lower concentration not producing full vasodilation. These data

suggested that GoSlo-SR compounds either interfered with the

binding of BK channel blockers or that they activated other K+

channels. The former explanation appears unlikely, given that the

effects of GoSlo-SR compounds have been shown to be blocked

with IBTX and penitrem A in tissue strips (Hannigan et al., 2016;

Large et al., 2015) and in single cells (Webb et al., 2015) and that

in our study IBTX inhibited the effect of GoSlo-SR compounds in

the tail artery and regained a blocking effect against GoSlo-SR

compounds in the presence of the Kv7 channel inhibitor XE991

(for more details, see below).

In conclusion, the data presented in this study show that

GoSlo-SR compounds mediated their vasodilator effects exclusively

by activating K+ channels but are not consistent with the idea that

activation of BK channels is the predominant mechanism mediating

their effect in either rat Gracilis, mesenteric or saphenous arteries.

4.3 | Role of Kv7 channels in the effect of GoSlo-
SR compounds on rat arteries

In view of our conclusion that other K+ channels, in addition to BK

channels, mediate the vasodilator effect of GoSlo-SR compounds, we

hypothesised that Kv7 channels may play a leading role in this effect.

This idea was based on the fact that Kv7 channels are well-known to

be expressed in a large variety of vascular smooth muscle and to be

involved in vasoconstriction and vasodilation (see recent reviews of

Barrese, Stott, & Greenwood, 2018; Byron & Brueggemann, 2018;

Haick & Byron, 2016; Tykocki, Boerman, & Jackson, 2017). In particu-

lar, transcriptional expression of Kv7 channel genes and their involve-

ment in the regulation of vessel contractility has been shown for rat

mesenteric (Jepps et al., 2011; Jepps, Carr, Lundegaard, Olesen, &

F IGURE 16 GoSlo-SR compounds activate Kv7.5 channels. (a) Typical family of currents obtained from a HEK cell during a series of voltage
steps from −100 to +50 mV in 10-mV increments lasting 1 s. Dotted lines represent the zero current level. Cells were held at −80 mV and
repolarised back to −120 mV to obtain tail currents; (b) currents from the same cell during incubation with 10−5 M GoSlo-SR-5-6; (c) summary
activation curves obtained by measuring tail currents in six cells before (open circles) and during (blue circles) application of GoSlo-SR-5-6; (d) and
(e) currents obtained from a different cell, held at −80 mV and stepped from −100 to +50 mV in 10-mV increments, in the absence and presence
of GoSlo-SR-5-130 (10−5 M), respectively. Tail current deactivation increased from 26 ± 4 ms to 46 ± 4 ms following a repolarisation from +40 to
−120 mV (n = 5; P < .05; paired t test); (f) summary activation curves obtained from five cells in the absence (open circles) and presence (pink
circles) of GoSlo-SR-5-130
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Greenwood, 2015; Yeung et al., 2007), Gracilis muscle (Zavaritskaya

et al., 2013), and saphenous (Shvetsova, Gaynullina, Tarasova, &

Schubert, 2019) arteries. We confirmed the previous findings regard-

ing the transcriptional expression of Kv7 genes using an alternative

approach, digital PCR, reproducing our previous data that in rat

Gracilis muscle arteries, like in many other arteries (see recent reviews

of Barrese, Stott, & Greenwood, 2018; Byron & Brueggemann, 2018;

Haick & Byron, 2016; Tykocki, Boerman, & Jackson, 2017), both

KCNQ4 and KCNQ5 channel genes showed higher levels of expres-

sion than the other KCNQs.

Furthermore, we obtained novel data proposing an involvement

of Kv7 channels in the effect of GoSlo-SR compounds on vascular

smooth muscle. Thus, the widely used Kv7 channel inhibitor XE991

(Greenwood & Ohya, 2009; Zavaritskaya et al., 2013) reduced the

vasodilating, as well as the hyperpolarising effects of the GoSlo-SR

compounds considerably. XE991 has been employed with great

success to identify specific roles of KCNQ-encoded channels in the

circulatory system (Greenwood & Ohya, 2009; Mackie & Byron,

2008). Of note, we observed that the partial inhibition of the

GoSlo-SR-induced dilation by XE991 was not altered further after

elevating the concentration of XE991 from 3 × 10−6 to 10−5 M,

suggesting that activation of Kv7 channels was not the only mech-

anism mediating GoSlo-SR-induced vasodilation.

The GoSlo-SR-induced vasodilation that remained in the pres-

ence of XE991 was not affected when XE991 was co-applied with

either the specific Kv1 channel inhibitor DPO-1 (Lagrutta, Wang,

Fermini, & Salata, 2006; Tsvetkov et al., 2016) or the specific Kv2

channel inhibitor stromatoxin (Escoubas, Diochot, Celerier,

Nakajima, & Lazdunski, 2002). Kv1 and Kv2 channels are the other

major Kv channel subtypes expressed in arterial smooth muscle

(Albarwani et al., 2003; Amberg & Santana, 2006). Thus, either Kv1

or Kv2 channels are not activated by the GoSlo-SR compounds or

these Kv channels are not functionally available in rat Gracilis arter-

ies. The latter explanation seems unlikely, because we have

observed in an ongoing study that DPO-1 and stromatoxin are able

to modify myogenic constriction of this vessel (data not published).

Thus, Kv1 and Kv2 channels are functionally available in rat Gracilis

arteries but are not involved in the vasorelaxant effects of GoSlo-

SR compounds.

Based on the transcriptional expression data, our results suggest

that the GoSlo-SR-induced vasodilation in Gracilis muscle, mesenteric

and saphenous arteries is mediated mainly by Kv7.4 and Kv7.5 chan-

nels. We excluded any contribution from Kv7.1 channels in this

response since the specific Kv7.1 channel inhibitor HMR1556 (Chadha

et al., 2012; Gogelein, Bruggemann, Gerlach, Brendel, & Busch, 2000)

failed to affect the vasodilatory activity of GoSlo-SR-5-6.

Importantly, we observed that GoSlo-SR compounds activated

Kv7.4 and Kv7.5 currents, an effect associated with a shift of the acti-

vation properties of these channels to more negative potentials. In

this respect, GoSlo-SR-5-130, the GoSlo-SR compound with weaker

vasodilating capacity, appeared to be much less efficacious than

GoSlo-SR-5-6. Taken together, our data strongly suggest that activa-

tion of Kv7.4 and/or Kv7.5 channels or of Kv7.4/7.5 heteromeric

channels (Brueggemann et al., 2014; Chadha et al., 2014) contribute

to the vasorelaxant effects of GoSlo-SR compounds.

4.4 | Role of BK and Kv7 channels in the effect of
GoSlo-SR compounds on rat arteries

As discussed so far, blockade of Kv7 channels only partially reduced

the effect of the GoSlo-SR compounds in Gracilis, mesenteric and

saphenous arteries. However, the combined application of IBTX and

XE991 to either isobaric or isometric vessel preparations abolished

the vasodilating effect of the GoSlo-SR compounds completely. This

supports the idea that they relaxed Gracilis muscle arteries by acti-

vating both BK and Kv7 channels. This dual action of GoSlo-SR com-

pounds on BK and Kv7.4/Kv7.5 channels is further supported by the

findings made on single cells expressing these channels, that is, (a)

our findings reported in the present study demonstrating that

GoSlo-SR compounds produce a large stimulation of native BK cur-

rents and Kv7.4 and Kv7.5 channels and (b) previously published

findings showing that GoSlo-SR compounds activate expressed as

well as native BK channels (Hannigan et al., 2016; Kshatri et al.,

2017; Large et al., 2015; Roy et al., 2012; Roy et al., 2014; Webb et

al., 2015). Incidentally, the BK channel opener NS11021 has been

shown to stimulate expressed Kv7.4 channels (Bentzen et al., 2007),

and BMS204352 activates both BK and Kv7 channels (Schroder,

Strobaek, Olesen, & Christophersen, 2003). Thus, the joint activation

of BK and Kv7.4/Kv7.5 channels by BK channel opener compounds

is not without precedent and perhaps suggests that they interact

with a common site on both BK and Kv channels. Future studies will

be focused at determining the precise location of this site in Kv7

channels.

Importantly, the degree of contribution of BK and Kv7.4/Kv7.5

channels to the GoSlo-SR compound-induced vasodilation varied

depending on the experimental conditions. Thus, GoSlo-SR

compound-induced vasodilation (a) was not affected by inhibition of

BK channels when Kv7.4/7.5 channels were not blocked (b) but was

completely abolished by inhibition of BK channels when Kv7.4/7.5

channels were blocked. Of note, the latter finding is emphasised by

our data on tail arteries. In this artery, in contrast to all other vessels

studied, Kv7 channels appeared to be functionally unavailable during

MX-induced contraction, as evidenced by the absence of an effect of

XE991 on this contraction (see Figure 12c). Here, again in contrast to

the Gracilis, mesenteric, and saphenous arteries, the GoSlo-SR

compound-induced vasodilation was completely abolished when BK

channels alone were blocked. Together, this suggests that when

Kv7.4/7.5 channels are not functionally available, the effect of GoSlo-

SR compounds on BK channels was sufficient to relax the blood ves-

sels. However, when Kv7.4/7.5 channels were functionally available,

blockade of BK channels failed to reduce the response to GoSlo-SR

compounds. In addition, except in the tail artery, GoSlo-SR-induced

vasodilation was reduced by inhibition of Kv7 channels either partly,

when BK channels were not blocked, or fully when BK channels were

blocked.
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A possible explanation for our observations has been suggested

recently (Coleman, Tare, & Parkington, 2017). If the GoSlo compounds

produce a considerable hyperpolarisation, the membrane potential will

be much closer to the potassium equilibrium potential resulting in a

small driving force for potassium ions. Due to the small driving force,

blockade of potassium channels under these conditions will result in

only a small change in membrane potential and vessel tension. Thus,

our data are consistent with the idea that when IBTX has blocked

functional BK channels at small driving force, membrane potential was

almost not affected, and the effect of GoSlo was unchanged. When

XE991 has blocked functional Kv7 channels (with a somewhat larger

impact, compared to blocking BK channels) under conditions where

the driving force is small, membrane potential was presumably

affected and the effect of GoSlo was reduced. However, when IBTX

together with XE991 has blocked functional BK and Kv7 channels, the

effects on GoSlo on membrane potential were presumably blocked,

and as a result, the GoSlo-induced relaxation was attenuated.

In conclusion, the data presented in this study show that GoSlo

compounds are much more effective relaxants in vascular compared

to visceral smooth muscle. Like other small molecule BK channel

openers, GoSlo-SR compounds mediate their vasodilator effects by a

combined activation of BK and Kv7.4/Kv7.5 channels. Activation of

Kv1, Kv2, or Kv7.1 channels or other vasodilator pathways, for exam-

ple, voltage-gated calcium channels, seems not to be involved in this

effect. Whereas the joint activation of BK and Kv7.4/Kv7.5 channels

by the GoSlo-SR compounds is not without precedent, the GoSlo-SR

compound-induced vasodilation was characterised by a special fea-

ture. This vasodilation was mediated by Kv7.4/7.5 channels only when

BK and Kv7.4/7.5 channels were available but was mediated by BK

channels when Kv7.4/7.5 channels were not available. This special

mechanism of action of GoSlo-SR compounds may be beneficial for

their clinical use as K+ channels openers, for example, against com-

bined BK and Kv7 channel dysfunction like in hypertension. This idea

has to be confirmed in future studies.
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