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Background: Immune escape is one of the hallmarks of cancer and several new treatment approaches attempt to
modulate and restore the immune system'’s capability to target cancer cells. At the heart of the immune recognition
process lies antigen presentation from somatic mutations. These neo-epitopes are emerging as attractive targets for
cancer immunotherapy and new strategies for rapid identification of relevant candidates have become a priority.

Methods: We carefully screen TCGA data sets for recurrent somatic amino acid exchanges and apply MHC class |

Results: We propose a method for in silico selection and prioritization of candidates which have a high potential for
neo-antigen generation and are likely to appear in multiple patients. While the percentage of patients carrying a
specific neo-epitope and HLA-type combination is relatively small, the sheer number of new patients leads to
surprisingly high reoccurence numbers. We identify 769 epitopes which are expected to occur in 77629 patients per

Conclusion: While our candidate list will definitely contain false positives, the results provide an objective order for
wet-lab testing of reusable neo-epitopes. Thus recurrent neo-epitopes may be suitable to supplement existing
personalized T cell treatment approaches with precision treatment options.

Keywords: Cancer, Immunotherapy, Neo-epitope, Neo-antigen, Precision treatment

Background

Increasing evidence suggests that clinical efficacy of can-
cer immunotherapy is driven by T cell reactivity against
neo-antigens [1-5]. While not yet fully understood,
immune response and recognition of tumor cells contain-
ing specific peptides depends critically on the ability of
the MHC class I complexes to bind to the peptide in order
to present it to a T cell. Neo-antigens can be created by
a multitude of processes like aberrant expression of genes
normally restricted to immuno-privileged tissues, viral
etiology or by tumor specific DNA alterations that result
in the formation of novel protein sequences. Further-
more there is now evidence for neo-epitopes generated
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from alternative splicing [6] and alterations in non-coding
regions [7].

With the advent of affordable short read sequencing,
comprehensive neo-antigen screening based on whole
exome sequencing has become feasible and many can-
cer immune therapeutic approaches try to utilize detailed
understanding of the neo-epitope spectrum to create
additional or boost pre-existing T cell reactivity for thera-
peutic purposes [8, 9]. However, in practice the selection
and validation of the most promising neo-epitope candi-
dates is a difficult and time-consuming task. The typical
approach is based on the private mutational catalogue
of the individual patient: exome sequencing data is sub-
jected to bioinformatics analysis and used to predict neo-
epitopes and their binding affinities to the MHC class I
complex. Our study aims to complement this approach by
a precision medicine perspective. We search and prioritize
neo-epitope candidates which have a high potential for
neo-antigen generation and are likely to appear in multiple
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patients. These neo-antigens hold the potential for devel-
opment of off the shelf T cell therapies for sub groups
of cancer patients. We use epidemiological data to give
rough estimates for the expected number of patients in
these groups.

Candidate prediction always relies on somatic variant
detection workflows and affinity prediction algorithms
based on machine learning, see e.g. [10]. Binding pre-
diction far from perfect [11] especially for rarer HLA
types, and may also depend on mutational context [12].
Catalogues of the neo-epitope landscape across various
cancer entities have been created by various authors
[13-15]. While neoantigen landscape is diverse and sparse
[13], here we provide an unbiased, comprehensive rank-
ing of candidates, defined as neo-epitopes arising from
recurrent mutations, predicted to be binding to a specific
HLA-1 allele. The candidates are ranked according to the
expected number of target patients.

Methods

Data sets

Somatic variants for different cancer entities have been
determined using matched pairs of tumor and blood
whole exome or whole genome sequencing in the TCGA
consortium. We downloaded the open-access somatic
variants from GDC data release 7.0 [16], consisting of 33
TCGA projects and 10,182 donors in total. Details of the
somatic variant calling can be found in [17]. We excluded
patients without corresponding entries in the clinical
information tables, and 7 projects with less than 100 sam-
ples, yielding 9,641 samples covering 26 cancer studies.
Figure 1 provides an overview of the complete bioinfor-
matics process, from the GDC somatic single nucleotide
variants to the identification of the candidates.

Variant selection

For each sample we selected all single nucleotide vari-
ants obtained by the “mutect2” pipeline, that had a
“Variant_Type” equal to “SNP’, a valid ENSEMBL tran-
script ID and a valid protein mutation in “HGVSp_Short”
From these variants, we selected those with a “Vari-
ant_Classification” equal to “Missense_Mutation” We
checked that all variants had a “Mutation_Status” equal
to (up to capitalisation) “Somatic’;, that the total depth
“t_depth” was the sum of the reference “t_ref count” and
the alternate “t_alt_count” alleles counts, and that the
genomics variant length is one nucleotide. To avoid high
number of false positives we consider only variants that
are supported by at least 5 reads and have a VAF of at least
10%. Furthermore we removed any variant that occurs
with more than 1% in any population contained in the
ExAC database version 0.31 [18], by coordinates liftover
from the GRCh38 to hgl9 human genome versions. This
way we obtained 26 cancer entity data sets containing
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a total of 9,641 samples with an overall 1,384,531
variants.

Recurrent protein variant selection
We define recurrence strictly on the protein/amino acid
exchange level, i.e. different nucleotide acid variants lead-
ing to the same amino acid exchange due to code redun-
dancy will be counted together. Recurrent protein variants
are defined within each TCGA study. A protein variant is
deemed recurrent when it appears in at least 1% of all the
patients in the cohort. As cancer types are only consid-
ered when the number of patients involved in the studies is
greater than 100, this threshold ensures that every recur-
rent variant has been observed in at least 2 patients for a
given cancer type. To be conservative, the recurrence fre-
quency has been computed using, for the denominator,
all patients with clinical information in the study, includ-
ing those without high-confidence missense SN'Vs. Using
this definition, the total number of recurrent amino acid
changes is 1055. A variant recurrent in multiple cancer
types is counted multiple times in the above number, the
number of unique recurrent variants regardless of the can-
cer is 869. Additional file 1 shows the most frequent amino
acid exchanges across 25 cancer entities, as no variant
from project TCGA-KIRC’s donors is labeled as recurrent.
Recurrent variants occurring at the same positions (for
example when gene’s IDH1 codon R132 is mutated to
amino acid H, C, G or S) have been merged into 819
variants suitable for comparisons with the cancer hot
spots lists [14]. 122 out of the 819 merged variants
belong to the set of 470 cancer hotspot variants, and 5
(PCBP1:L100, SPTLC3:R97, EEF1A1:T432, BCLAF1:E163
& TTN:S3271) to the set of presumptive false positives
hotspots listed in the supplementary material of [14].

MHC class i binding prediction and epitopes selection

For all recurrent variants identified, we assess in silico
their predicted propensity that the amino-acid exchange
generates a binding neo-epitope.

A variety of machine learning algorithms have been
developed to determine the MHC binding in silico, see
ref. [19] for review. Most methods are trained on Immune
Epitope Database (IEDB) [20] entries and use allele spe-
cific predictors for frequent alleles, while pan-methods
are applied to extrapolate to less common alleles. We
predicted the MHC class I binding using NetMHCcons
[21] v1.1, which predicts peptides ICs5g binding, and clas-
sifies these predictions as non-binder, weak and strong
binders, based on the relative ranking of binding predic-
tions. As the range of IC5p binding values strongly depend
on the HLA-1 allele [22], we have used the NetMHCcons
classification to select our neo-epitope candidates.

For a given recurrent variant and a given HLA-1 type,
the epitope prediction pipeline can produce multiple
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A) Complete set of somatic variants
Donors: 10,182 Studies: 33

Variants: 3,175,929

}

Remove patients without clinical information

Variants: 3,155,183 Donors: 10,100 Studies: 33

Remove small studies (less than 100 donors)

Variants: 3,114,037 Donors: 9,641 Studies: 26

¥

Missense single nucleotide variants
Variants: 1,596,556 ‘ Donors: 9,641 ‘ Studies: 26

¥

Strongly supported variants

(VAF > 0.1, > 5 reads, EXAC < 0.01)

Variants: 1,384,531 Donors: 9,641 Studies: 26

Recurrent variants (present in > 1% of the cohort)
Variants: 1,055 Studies: 25

B

) epitope
SLLIVILSWVYLFWINMDA A length 1Cso
ILSWVLFWI 9 8.80
VILSWVLFWI 10 24.33
LLIVILSWVL 10 60.06
VLFWINMDAA 10 96.68
SLLIVILSWVL 11 97.73
VLFWINMDA 9 113.71
ILSWVLFWINM 11 306.02

)

Strongly supported variants

Neither:
1,245,815

Tumor suppressors:
10,854

L

Recurrent variants
Tumor suppressors: 57

Oncogenes: 5,648

Oncogenes: 111 Neither: 701

Predicted neo-epitopes
Variants: 4,657 Studies: 25

Predicted neo-epitopes
Tumor suppressors: 49

Oncogenes: 95 Neither: 576

Neo-epitopes with length redundancy removed
Variants: 2,598 Studies: 25

Neo-epitopes with length redundancy removed
Neither: 576

Oncogenes: 95 Tumor suppressors: 49

Strong binders candidates
Variants: 769 Studies: 25

Strong binders candidates
Oncogenes: 58

Tumor suppressors: 29 Neither: 325

Fig. 1 Workflow overview a Overview of the recurrent neo-epitope candidates generation process: TCGA studies are selected for at least 100 donors

with clinical annotations. For each of these studies, recurrent strongly supported missense Single-Nucleotide Variants are collected. Neo-epitopes
binding to 11 HLA-1 types are predicted, redundancy is removed from that set (see B) and strong binders are retained. b Example of epitope

redundancy: the 18 amino-acids long sequence surrounding recurrent variant GLRA3:5274L generates 7 binding neo-epitopes for the type
HLA-A*02:01. Our pipeline retains only the strongest predicted binder for a given variant and HLA-1 type pair (the first, with an ICsq of 8.8 nM in the
example). ¢ Number of SNVs occuring in genes classified as Oncogenes or Tumor Suppressors by Vogelstein et al. [28], at various point of the variant

selection and neo-epitope selection process

overlapping epitopes candidates, differing by their length
and/or their position (see Fig. 1B). To remove such size
redundancy, only the epitope with the lowest predicted
mutant sequence ICsg is retained. This procedure also
removes non-overlapping epitopes, to keep only at most
one epitope per recurrent protein variant and HLA-1
type. For comparison we also compute the ICsy for the
respective wild type peptide.

For MHC class I binding prediction we selected 11
frequent HLA-1 types: HLA-A*01:01, HLA-A*02:01,
HLA-A*03:01, HLA-A*11:01, HLA-B*07:02, HLA-
B*08:01, HLA-B*15:01, HLA-C*04:01, HLA-C*06:02,
HLA-C*07:01, HLA-C*07:02. We limited the search for

poly-peptides 9, 10 and 11 amino-acids long. For these
alleles, we obtain 769 strong binding recurrent peptides
and 1829 weak binders, over all considered cancer types.
Their complete list is in Additional file 2, where each
candidate is listed with the HLA-1 type it is preticted to
bind to.

Data QC

To ensure that the proportion of variants caused by tech-
nical artifacts is small, we have computed the proportion
of SN'Vs called in poly-A, poly-C, poly-G or poly-T repeats
of length greater than 6 have been computed for each
data study [23], for unique variants (that occur in only
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one patient across a project cohort), and for variants that
are observed more than once in a cohort (Additional
file 3). For comparison, we have computed the expected
frequency of such events, assuming that all possible 11-
mers (the mutated nucleotide at the center, flanked by 5
nucleotides on each side) are equiprobable, regardless of
their sequence.

Based on this equiprobable model, we have com-
puted the probability that the number of mutations
found in repeat locii is equal to or greater than the
observed numbers. When considering variants appear-
ing more than once, this probability is not signifi-
cant for all studies; when unique variants are consid-
ered, those appear in repeat locii significantly more
often than expected by chance in 7 out of 26 stud-
ies (TCGA-COAD, TCGA-KIRP, TCGA-LIHC, TCGA-
READ, TCGA-SKCM, TCGA-TGCT & TCGA-UCAC,
significance level set to 0.05 after Benjamini-Hochberg
multiple testing correction).

Mice

ABabDII mice (described in detail in [24]) have been used
for this study. They are transgenic for entire human 7CR-
a and TCR-B gene loci, as well as for HHD molecule
[25] and deficient for the murine Tcr-a and -8 chains,
as well as for murine 2m and H2-D? genes. The mice
used in the study were generated and housed under SPF
conditions (caged enriched with bedding material, 3-5
mice/cage, standard light/dark cycle, food and water ad
libitum) at the Max-Delbriick-Center animal facility. All
animal experiments were approved by the Landesamt fiir
Arbeitsschutz, Gesundheitsschutz und technische Sicher-
heit, Berlin, Germany.

Generation of mutation-specific t cells in ABabDIl mice

For each candidate, 3 ABabDII mice between 8 to 12
weeks old (6 in total) underwent immunisation. They were
injected subcutaneously with 100 ug of mutant short pep-
tide (9-10mers, JPT) supplemented with 50 ug CpG 1826
(TIB Molbiol), emulsified in incomplete Freund’s adjuvant
(Sigma). Repetitive immunizations were performed with
the same mixture at least three weeks apart. Mutation-
specific CD8" T cells in the peripheral blood of immu-
nized animals were assessed by intracellular cytokine
staining (ICS) for IFNy 7 days after each boost. All 6 ani-
mals were peptide-reactive. The 6 mice were sacrificed for
spleen preparation by cervical dislocation after isofluran
anasthesia.

Patient number estimates and HLA-1 frequencies

HLA-1 frequency data f; for the U.S. population was
retrieved from the Allele Frequency Net Database
(AFND) [26]. Frequency data were estimated by averag-
ing the allele frequencies of multiple population datasets
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from the North American (NAM) geographical region.
The major U.S. ethnic groups were included and sampled
under the NAM category. Cancer incidence data for the
U.S. population (N,;) was retrieved from the GLOBOCAN
2012 project of the International Agency for Research on
Cancer, WHO [27].

Assuming that the fraction of a recurrent variant in the
U.S. population affected by cancer entity 4 (r,;) is identical
to the observed ratio of that variant in the correspond-
ing TCGA study, the number of patients of HLA-1 type &
whose tumor contain the variant is expected to be

ny = fi y_ raNg.

d

The summation runs over 18 diseases d for which both
the TCGA projects and the cancer incidence data are
available.

Results

Recurrent variants and candidates

From the GDC repository [16], we have collected somatic
variants for 33 TGCA studies. After removing patients
without clinical meta-data, and studies with less than 100
patients, we have selected 1,384,531 high-confidence mis-
sense SNPs from 9,641 patients, see methods for details.
Using this data, 1,055 variants are deemed recurrent
(Additional file 1), as they can be found in more than 1%
of the patients in the respective study cohort. These recur-
rent variants correspond to 869 unique protein changes,
as some appear in multiple cancer entities. 77 of the recur-
rent variants occur in at least 3% of their cohort (43 unique
protein changes).

From these 869 unique protein changes, we have gen-
erated candidates that are predicted to be strong MHC
class I binders in frequent HLA-1 types that we consid-
ered for initial selection. 415 (48%) of them lead to a strong
binder prediction. In total, there are 772 candidates that
are recurrent in a cancer entity cohort, and predicted as
binding for a considered HLA-1 type. These candidates
are non-redundant among all the 9-, 10- & 11-mers con-
taining the variant: the selection process retains only the
peptide sequence with the lowest predicted ICsg. Figure 1
and Table 1 provide an overview of the variant selection
and neo-epitope candidates generation processes, while
Additional file 2 lists all neo-epitopes (weak and strong
predicted binders) after removing redundancy.

Despite large differences between variant selection pro-
tocols, 123 variants deemed recurrent by the above pro-
cess can be found among the 470 variants identified in the
cancer hotspot datasets [14] (Additional file 4). This over-
lap is strongly dependent on how frequent those variants
are observed: there are 54 common variants out of the
61 variants observed more than 10 times over our dataset
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Table 1 Overview of the 33 TCGA studies used in this analysis
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Number of patients Variants per patients

Missense variant per patient

Project name

Recurrent variants Strong binders

Total With clinical data Average Median Average Median

TCGA-BLCA 412 412 326 226 157 109 22 14
TCGA-BRCA 986 986 123 62 50 25 8 10
TCGA-CESC 289 289 358 157 143 62 17 16
TCGA-COAD 399 397 666 176 288 82 41 34
TCGA-ESCA 184 184 246 187 95 73 80 72
TCGA-GBM 393 390 212 70 93 36 15 5
TCGA-HNSC 508 508 201 139 97 66 14 3
TCGA-KIRC 336 336 79 69 33 31 0 0
TCGA-KIRP 281 281 85 82 39 38 5 2
TCGA-LAML 143 143 69 15 16 6 14 7
TCGA-LGG 508 507 70 36 33 16 14 0
TCGA-LIHC 364 364 149 120 70 58 Inl 16
TCGA-LUAD 567 515 367 242 180 113 7 0
TCGA-LUSC 492 492 368 301 187 153 20 19
TCGA-OV 436 435 173 121 58 47 10 7
TCGA-PAAD 178 178 168 50 77 19 24 12
TCGA-PCPG 179 179 13 12 5 4 8 5
TCGA-PRAD 495 495 59 35 27 15 3 7
TCGA-READ 137 136 475 148 232 70 320 186
TCGA-SARC 237 237 119 70 45 26 2 0
TCGA-SKCM 467 467 841 472 413 229 266 220
TCGA-STAD 437 437 488 157 211 74 17 14
TCGA-TGCT 144 128 23 21 9 8 9 6
TCGA-THCA 492 492 22 12 6 5 4 3
TCGA-THYM 123 123 39 24 10 4 6 2
TCGA-UCEC 530 530 1672 149 708 54 118 109
TCGA-ACC 92 92 117 36 0 0 0 0
TCGA-CHOL 51 45 110 62 0 0 0 0
TCGA-DLBC 37 37 173 157 0 0 0 0
TCGA-KICH 66 66 44 25 0 0 0 0
TCGA-MESO 82 82 47 44 0 0 0 0
TCGA-UCS 57 57 183 67 0 0 0 0
TCGA-UVM 80 80 23 16 0 0 0 0
Total 10182 10100 Total number: 3155183 Total number: 1384531 1055 769

The 7 studies displayed at the bottom have not been used for the determination of recurrent vairants, as the number of patients is less than 100. The number of strong
binders includes all occurrences of neo-epitopes candidates, so a candidate may be counted multiple times when it is predicted to be binding several HLA-1 types

(> 88%). Among the 819 variants retained for the com-
parison (see methods for details), only 5 appear among the
variants flagged as possible false positive by Chang et al.
(< 1%).

Enrichment in known cancer related genes
We observe that recurrent variants occur substantially
more frequently in known cancer-related genes than in

other genes (Fig. 1c). Initially approximatively one per-
cent of all observed variants are found in genes that
have been described [28, 29] as oncogenes (54 genes)
or tumor suppressor genes (71 genes). When recurrent
unique protein changes are considered, the fraction of
known oncogenes or tumor suppressor genes is substan-
tially increased to 13% and 6.5% respectively (a x2 test
between unique protein changes and unique recurrent
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variants gives a P value smaller than 1071°). These frac-
tions only marginally increase to 14% and 7% when only
the unique protein changes leading to predicted strong
binders for frequent HLA-1 types are considered (a x2
test between unique recurrent variants and strong binders
gives a non-significant P value). Additional file 5 shows
a similar enrichment of known cancer-related genes per
cohort. We observe that the enrichment is stronger for
oncogenes than for tumor suppressors. This might be
expected, as activating mutations in oncogenes are mainly
distributed on a few protein positions, while loss of func-
tion mutations in tumor suppressors are generally dis-
tributed more broadly along the protein sequence.

It is interesting to observe that several of the highly
prevalent neo-epitope candidates occur in genes that
are involved in known immune escape mechanisms:
RACI1:P29S is recurrent in study SKCM (melanoma), is
predicted to lead to strong binding neo-epitopes for HLA-
A*01:01 and HLA-A*02:01, and is reported to up-regulate
PD-L1 in melanoma [30]. CTNNB1:S33C is recurrent in
studies LIHC (liver hepatocellular carcinoma) and UCEC
(uterine corpus endometrial carcinoma), is predicted to
lead to strong binding neo-epitopes for HLA-A*02:01,
and has been shown to increase the expression of the
Wnt-signalling pathway in hepatocellular carcinoma [31],
leading to modulation of the immune response [32] and
ultimately to tumor immune escape [33]. In a separate
study, Cho et al. [34] show that this mutation confers
acquired resistance to the drug imatinib in metastatic
melanoma. Finally, FLT3:D835Y recurrent in study LAML
(acute myeloid leukemia), is predicted to lead to a strong
binding neo-epitope for HLA-A*01:01, HLA-A*02:01 and
HLA-C*06:02, and following Reiter et al. [35], Tyrosine
Kinase Inhibitors promote the surface expression of the
mutated FLT3, enhancing FLT3-directed immunotherapy
options, as its surface expression is negatively correlated
with proliferation.

While the described mechanisms are probably sufficient
to explain immune escape in tumor evolution, the candi-
dates could nevertheless be viable targets for adoptive T
cell therapy or TCR gene therapy.

Recurrent neo-epitopes in patient populations

Upon assumption of statistical independence, the product
of the frequency of a recurrent variant with the frequency
of class I alleles in the population and the incidence rates
of cancer types provides an estimate for the number of
patients that carry that specific candidate. Using the num-
ber of newly diagnosed patients per year and HLA-1
frequency in the US population, we are able to compute
the expected number of patients for 18 cancer entities for
which both cancer census data and a TCGA study are
available. The occurrence numbers for individual candi-
dates range from 0 to 2,254 for PIK3CA:H1047R in breast
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cancer patients of type HLA-C*07:01; Table 2 presents
a summary of expected patient numbers for the com-
plete set of candidates. We estimate that, in the US alone,
the previously discussed RAC1:P29S mutation might be
present in 628 new patients carrying the HLA-A*02:01
allele each year (in 556 melanoma patients and in 72 lung
small cell, head & neck or uterine carcinomas patients,
see Additional file 6 for details). For the CTNNB1:S33C
mutation, the total number of HLA-A*02:01 patients in
the US is expected to be 364, from uterine corpus, prostate
and liver cancer types. As another example, 115 myeloid
leukemia patients in the US are expected to be of type
HLA-A*02:01 and carry the FLT3:D835Y mutation.

Figure 2 shows the cumulative expected number of
patients that carry a specific epitope, and with match-
ing HLA-1 type, for the 50 candidates with the highest
expected patients number. The number of patients is
derived from the sum over all cancer entities, including
those in which the candidate is not recurrent according
to our criteria. For example, among newly diagnosed US
patients of type HLA-C*04:01, 88 prostate cancer patients
are expected to carry the mutation PIK3CA:R88Q), even
though its observed frequency in the PRAD study is as
low as 0.2%. The data shown in Fig. 2 can be found in
Additional file 6.

Accessible patient population

As our current understanding of peptide immunogenic-
ity is still incomplete [36], not all candidates predicted by
our pipeline can be expected to trigger an immunogenic
response in patients. To further evaluate the usefulness of
our results we consider the list of candidates (neoepitope
and HLA type pairs) selected form our ranking. Assum-
ing a T cell therapy could be generated for every candidate
we can compute the number of patients that would ben-
efit, see methods. Because of imperfections in candidate
prediction, not all candidates hold the potential for an
effective T cell therapy, and these ineffective candidates
can be thus viewed as “false positives” Because it is impos-
sible to create a reliable estimated for the fraction of these
false positives due to the complexity of the underlying
algorithm and biological process we decided to consider
a broad range of possible values from 50% to 95%, cf.
Figure 3. Using a subset of 6868 patients for whom HLA
types were known, we predict the number of patients for
whom such positive response might be expected, as a
function of the proportion of “false positives” in our can-
didates. To estimate the impact of such “false positives’,
we have randomly flagged 1000 times 337, 539, 607 &
640 candidates as “false positives’, which is correspond-
ing to a fraction of about 50%, 80%, 90% and 95% of the
total 674 candidates. This procedure left us with 1000 sets
of 337, 135, 67 & 34 candidates that were not flagged as
“false positives”. Figure 3 shows that for a pessimistic 90%
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of false positive candidates, more than 1.5% of patients
over all cancer entities (95% CI between 1.25% & 2.65%,
mean 1.78%, median 1.72%, both corresponding to about
20000 new patients per year in the U.S.) are still expected
to carry at least one of the 67 remaining candidates’ muta-
tion and corresponding HLA allele. While the proportions
are modest, the absolute number of patients seems rel-
evant. The figure in Additional file 7 shows that there
are considerable differences between entities: the propor-
tion of matching patients is much higher in diseases with
high mutational load such as melanomas (TCGA-SKCM,
median about 9% for 90% false positives), than in dis-
eases with lower mutational load, such as thyroid cancer
(TCGA-THCA, 0.2%, 90% false positives).

Confirmational evidence

A limited validation of our method was performed in two
steps: first, we confirmed that our pipeline was able to
identify candidates that have been previously reported as

eliciting spontaneous CD8' T-cell responses in cancer
patients in whom the target epitopes were subsequently
discovered [37, 38]. Both sets together (Additional file 8)
contain 37 epitopes, 35 of which could be mapped to an
ENSEMBL transcript (33 unique genes). For 27 of these
epitopes our pipeline predicted strong binding with the
specific HLA-1 type reported in the corresponding wet-
lab investigations. Another 5 epitopes where predicted as
weak binders, some of the latter are also predicted to be
strong binders in other HLA-1 types. Our pipeline classi-
fied 70% of a set of known tumor neo-antigens as strong
binders and another 14% as weak binders.

4 out of 34 unique identifiable variants studied by van
Buuren et al. [38] and Fritsch [37] are found among
our set of high confidence missense variants, but only
one (CTNNBI1:S37F) fulfills the 1% recurrence thresh-
old (9 uterine carcinoma patients). This variant was
shown to trigger immunological response against HLA-
A*24:02 [39], which isn’t in the set of alleles that we have
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systematically tested. However, our prediction show that
the same peptide might also be reactive against HLA-
C07:02.

Finally, the CDK4:R24C peptide (sequence ACDPHS-
GHFYV, see Additional file 8) is not predicted to bind to
HLA-A*02:01, even though it leads to confirmed T cell
response [40], and has been related to cutaneous malig-
nant melanoma and hereditary cutaneous melanoma [41],
[42]. Taken together, these results show that our candidate
prediction pipeline is able to recapitulate most clinically
validated neo-epitopes reported in [38] and [37], and that
some of these neo-epitopes occur from recurrent variants.

We have also performed preliminary validation for
two candidates: RAC1:P29S & TRRAP:S722F binding to
HLA-A*02:01 (Fig. 4). We utilized ABabDII mice, trans-
genic animals that harbour the human TCRap gene loci,
a chimeric HLA-A2 gene and are deficient for mouse
TCRaf and mouse MHC I genes. These mice have
been shown to express a diverse human TCR repertoire
[24, 43] and thus mimic human T cell response. They were
immunized at least twice with mutant peptides and IFNy
producing CD8™' T cells were monitored in ex vivo ICS
analysis 7 days after the last immunization. CD8% T cells
were purified from spleen cell cultures of reactive mice
using either IFNy-capture or tetramer-guided FACSort.
Sequencing of specific TCR « and 8 chain amplicons that
were obtained by RACE-PCR revealed that this procedure
yields an almost monoclonal CD8* T cell population (not
shown). In both cases, tested neo-antigen candidates lead
to T cell reactivity, confirming not only predicted MHC
binding by our pipeline but also immunogenicity in vivo
in human TCR transgenic mice. Therefore this workflow
also allows to generate potentially therapeutic relevant
TCRs to be used in the clinics for cancer immunotherapy.

Discussion

By virtue of the underlying mutational processes, the
genome architecture and accessibility as well as for func-
tional reasons within the disease process, certain somatic
mutations will be present in multiple patients while still
being highly specific to the tumor [14]. Using existing
cancer studies and neo-epitope binding predictions to
MHC class I proteins, we propose a ranking of candi-
dates which mutation occur frequently in observed cancer
patient cohorts. The candidates are ranked according to
the expected number of target patients. For one candi-
date, the target patients are defined as those who bear
the candidate’s mutation, and whose HLA types contain
the candidate’s. The expected number of target patients
is proportional to the HLA type frequency in the popula-
tion, and to the frequency of the mutation in the cancer
cohorts. Taking into account the fact that MHC bind-
ing is a necessary but not sufficient condition for T cell
activity, and the limitations of MHC binding prediction
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algorithms, our method provides an objective ranking of
neo-epitopes based on recurrent variants, as a basis for the
development of off-the-shelf immunotherapy treatments.

Despite numerous mechanisms of immune evasion,
neo-epitopes are important targets of endogenous immu-
nity [5]. In some cases at least, it has been shown that
they contribute to tumor recognition [44], achieve high
objective response (in melanoma, see ref. [45, 46]), and a
single of them is presumably sufficient for tumor regres-
sion [47]. Moreover, positive association has been shown
between antigen load and cytolytic activity [48], activated
T cells [13] and high levels of the PD-1 ligand [49]. Taken
together, these results suggest that neo-epitopes occupy a
central role in regulating immune response to cancer, and
that this role can be exploited for cancer immunotherapy.
Even though the question of negative selection for strong
binding neo-epitopes and its relation to other immune
evasion mechanisms like HLA loss or PD-L1, CTLA4
dis-regulation is still open [50]. A recent CRISPR screen
suggest that more then 500 genes are essential for cancer
immunotherapy [51].

Targeting neo-epitopes based on non-recurrent, private
somatic variants requires generation of private TCRs or
CARs for each individual patient, which is challenging
[52]. Successful treatments based on genetically engi-
neered lymphocytes has been shown for epitopes arising
from unmutated proteins, i.e. public epitopes: MART-1
and gp100 proteins have been targeted in melanoma cases
[53]. In another trial, Robbins et al. [54] have studied long-
term follow-up of patients who were treated with TCR-
transduced T cells against NY-ESO-1, a protein whose
expression is normally restricted to testis, but which is fre-
quently aberrantly expressed in tumor cells. They show
that treatment may be effective for some patients. These
results show that immune treatments based on public
variants can be beneficial, suggesting that similar success
may potentially be achieved using candidates based on
recurrent variants.

However, targeting such non somatic epitopes presents
safety and efficacy concerns [2]. The administration of
T cells transduced with MART-1 specific T-cell receptor
have led to fatal outcomes [55]. Cross-reactivity of TCR
against MAGE-A3 (a protein normally restricted to testis
and placenta) caused cardiovascular toxicity [56]. Neo-
epitopes based on recurrent somatic variants potentially
alleviate such problems, as the target sequences are truly
restricted to tumor cells.

Our computation of expected targetable patient groups
assumes that neither the cancer type nor the patient’s
mutanome are associated with the patient’s HLA-1 alleles.
In a recent study, Van den Eyden et al. [50] show that there
is little (if any) antigen depletion due to the negative selec-
tion pressure from the immune response. Molecular evo-
lution methods applied to somatic mutations show that
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nearly all mutations escape negative selection [57]. Taken
together, these results suggest that the expected probabil-
ity of a recurrent variant being present in a patient somatic
mutations pool should not be affected (significantly) by
the patient’s HLA-1 alleles.

The neo-epitope landscape is diverse and sparse [13].
Few neo-epitopes are predicted to be both strong binders
and present in multiple patients. In their analysis, Hart-
maier et al. [58] estimate that neo-epitopes suitable for
precision immuno-therapy might be relevant for about
0.3% of the patients, which is in agreement with our
results. However, the absolute number of patients is still
considerable, see Table 2. Our study shows that a relatively
large number of patients (about 1% of newly diagnosed
patients) might benefit from a small library of candidates

proven to generate immunological response. These num-
bers must be compared to “conventional” personalised
immunotherapy, where a immunologically active candi-
date must be identified for each new patient for which
efficacy and safety are always unknown. Even if a sub-
stantial part of the neo-epitopes we suggest turns out to
be false positives due to the limitation of prediction algo-
rithms and understanding of immune response, there is
potential to help tens of thousands of patients.

Conclusions

Off the shelf immune treatments can be faster, less
costly and safer for individual patients, because each neo-
epitope based treatment scheme can be reused on hun-
dreds of patients per year. In this respect, they might
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open the way to supplement existing personalized cancer
immune treatments approaches with precision treatment
options.

We believe that our ranking provides a rational order for
testing for and selecting off the shelf neo-epitope based
therapies. Our preliminary in vivo mouse experiments
show that this in principle feasible.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/512920-019-0611-7.

Additional file 1: 1055 recurrent variants identified in 26 TCGA studies.
For each variant, the number of cases harboring the variant (Number of
occurrences), the cohort size and the fraction of cases in the cohort
(Fraction) are given. When available, COSMIC entries (from ENSEMBL) are
are also listed, as well as the highest allele frequency from all populations
quoted in EXAC version 0.31 ([18]). Gene annotations from Vogelstein et al.
([28]) & Rubio-Perez et al. ([29]) are also provided.

Additional file 2: Neo-epitope candidates from recurrent variants.
Recurrent variants leading to binding (strong and weak binders)
neo-epitopes for one of the 11 HLA types considered. Peptide length
redundancy has been removed from the variant list, and each variant is
listed only once, even if it is recurrent in multiple study cohorts.

Additional file 3: Frequency of Single Nucleotides Variants (SNVs) that fall
in a poly-A, poly-C, poly-G or poly-T sequence of length at least 6. The
variants that appear only once in the whole study are colored in blue, while
the variants that appear more than once are colored in red. The dotted line
shows the expected fraction of such variants, if the sequences were all
random. Except for the LIHC study, all variants that occur more than once
in the cohort are found in difficult-to-sequence regions less than expected
by chance.

Additional file 4: Overlap between recurrent variants and hotspot
variants. The overlap is based on the codon position, so that all variants
occurring at the same protein sequence position are pooled together. The
recurrent variants that match the alternate codon definition in Chang et al.
are added to the overlap. The recurrent variants are pooled by codon and
sorted by decreasing occurrence frequency in the study. The overlap
between hotspots and highly recurrent variants is high, and the common
variants fraction decreases when recurrent variants become less frequent.
The overlap between recurrent variants and the list of suspected false
positive hotspots compiled by Chang et al. ([14]) is very limited. Inset: Venn
diagram of the total overlap between the recurrent variants called in this
study, and the hotspot variants described in Chang et al. ([14]).

Additional file 5: Oncogenes and tumor suppressors. Number of variants
occurring in genes classified as tumor suppressor genes and oncongenes
by ([28]), for each study. The numbers are given for the full set of variants,
among recurrent variants only and among variants leading to neo-epitope
candidates. As each protein change is considered only once, the total
number of variants is always smaller or equal to the sum over all studies, as
protein changes appearing in multiple studies are counted only once in
the total.

Additional file 6: Expected number of target patients for each
neo-epitope candidates, for the 18 cancer entities with associated
epidemiological data. The expected number of patients is the product
between the number of new cases, the observed variant frequency and
the HLA type frequency in the US population. The total expected number
of patients for each candidate is the sum over the expected number of
candidates by study.

Additional file 7: Expected frequency of patients with at least one
candidate not labelled as false positive. For each TCGA cohort, we have
selected at random 1000 times 50%, 20%, 10% and 5% from the
candidates, to conservately model a high rate of false positive within the
candidates. From these selected candidates, we have computed the
expected frequency of
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patients with a HLA-1 allele and a mutation matching at least one selected
candidate.

Additional file 8: Confirmation Status with Gold Standard Data Set. The
protein changes described in van Buuren et al. ([38]) and Fritsch et al. ([37])
have been mapped to the ENSEMBL protein set and neo-epitopes have
been computed using our standard pipeline. 26 of these epitopes are
exactly recovered by the pipeline, for one of them the pipeline predicts a
strong binder for a shorter peptide, and 5 of them are predicted to be
weakly binding. Column 7 to 10 are copied from ([37]) and ([38]).

Additional file 9: ARRIVE checklist concerning the animals used for the
experimental validation of the in vivo presentation of two peptides.

Abbreviations

a:SLC: small cell lung cancer, NSLC: non-small-cell lung cancer; °: Parent and
mutant sequences have been exchanged in Fritsch et al. ([37]); ©: A strong
binder is found for the shorter mutant peptide KINKNPKYK; ¢: No exact match
found by alignment against not redundant human proteins, not found in
manual inspection of proteins P19971 and ESKRG5 from gene TYMP; €: Found
by alignment against non-redundant human proteins in EAW69514.1
(melanoma associated antigen (mutated) 1, isoform CRA_e (not in ENSEMBL
peptides))
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