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Abstract Transposons are mobile genetic elements that are found in nearly all organisms,

including humans. Mobilization of DNA transposons by transposase enzymes can cause genomic

rearrangements, but our knowledge of human genes derived from transposases is limited. In this

study, we find that the protein encoded by human PGBD5, the most evolutionarily conserved

transposable element-derived gene in vertebrates, can induce stereotypical cut-and-paste DNA

transposition in human cells. Genomic integration activity of PGBD5 requires distinct aspartic acid

residues in its transposase domain, and specific DNA sequences containing inverted terminal repeats

with similarity to piggyBac transposons. DNA transposition catalyzed by PGBD5 in human cells

occurs genome-wide, with precise transposon excision and preference for insertion at TTAA sites.

The apparent conservation of DNA transposition activity by PGBD5 suggests that genomic

remodeling contributes to its biological function.

DOI: 10.7554/eLife.10565.001

Introduction
Transposons are genetic elements that are found in nearly all living organisms (Feschotte and

Pritham, 2007). They can contribute to the developmental and adaptive regulation of gene

expression and are a major source of genetic variation that drives genome evolution (Cordaux and

Batzer, 2009). In humans and other mammals, they comprise about half of the nuclear genome

(Smit, 1999). The majority of primate-specific sequences that regulate gene expression are derived

from transposons (Jacques et al., 2013), and transposons are a major source of structural genetic

variation in human populations (Stewart et al., 2011).

While the majority of genes that encode transposase enzymes tend to become catalytically inactive

and their transposon substrates tend to become immobile in the course of organismal evolution, some

can maintain their transposition activities (Liu et al., 2007; Munoz-Lopez and Garcia-Perez, 2010). In

humans, at least one hundred L1 long interspersed repeated sequences (LINEs) actively transpose in

human genomes and induce structural variation (Kazazian, 2004), including somatic rearrangements

in neurons that may contribute to neuronal plasticity (Erwin et al., 2014). The human Transib-like

transposase RAG1 catalyzes somatic recombination of the V(D)J receptor genes in lymphocytes and is

essential for adaptive immunity (Hiom et al., 1998). The Mariner-derived transposase SETMAR
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functions in single-stranded DNA resection during DNA repair and replication in human cells and can

catalyze DNA transposition in vitro (Liu et al., 2007; Shaheen et al., 2010).

Among transposase enzymes that can catalyze excision and insertion of transposon sequences,

DNA transposases are distinct in their dependence only on the availability of competent genomic

substrates and cellular repair enzymes that ligate and repair excision sites, as compared to

retrotransposons, which require transcription of the mobilized sequences (Berg and Howe, 1989).

Most DNA transposases utilize an RNase H-like domain with three aspartate or glutamate residues

(so-called DDD or DDE motif) that catalyze magnesium-dependent hydrolysis of phosphodiester

bonds and strand exchange (Keith et al., 2008; Mitra et al., 2008; Dyda et al., 2012). The IS4

transposase family, which includes piggyBac transposases, is additionally distinguished by precise

excisions without modifications of the transposon flanking sequences (De Palmenaer et al., 2008).

The piggyBac transposase and its transposon were originally identified as an insertion in lepidopteran

Trichoplusia ni cells (Fraser et al., 1985). The piggyBac transposon consists of 13-bp inverted terminal

repeats (ITRs) and 19-bp subterminal inverted repeats located 3 and 31 base pairs from the 5′ and 3′
ITRs, respectively (Elick et al., 1997). PiggyBac transposase can mobilize a variety of ITR-flanked

sequences and has a preference for integration at TTAA target sites in the host genome (Fraser et al.,

1983; Beames and Summers, 1990; Wang and Fraser, 1993; Fraser et al., 1995; Elick et al., 1997;

Handler et al., 1998; Mitra et al., 2008).

Members of the piggyBac superfamily of transposons have colonized a wide range of organisms

(Sarkar et al., 2003), including a recent and likely ongoing invasion of the bat Myotis lucifugus (Mitra

et al., 2013). The human genome contains five paralogous genes derived from piggyBac

transposases, PGBD1-5 (Smit and Riggs, 1996; Sarkar et al., 2003). PGBD1 and PGBD2 invaded

the common mammalian ancestor, and PGBD3 and PGBD4 are restricted to primates, but are all

contained as single coding exons, fused in frame with endogenous host genes, such as the Cockayne

syndrome B gene (CSB)-PGBD3 fusion (Sarkar et al., 2003; Newman et al., 2008). Thus far, only the

function of PGBD3 has been investigated. CSB-PGBD3 is capable of binding DNA, including

endogenous piggyBac-like transposons in the human genome, but has no known catalytic activity,

though biochemical and genetic evidence indicates that it may participate in DNA damage response

(Bailey et al., 2012; Gray et al., 2012).

PGBD5 is distinct from other human piggyBac-derived genes by having been domesticated much

earlier in vertebrate evolution approximately 500 million years (My) ago, in the common ancestor of

cephalochordates and vertebrates (Sarkar et al., 2003; Pavelitz et al., 2013). PGBD5 is transcribed

as a multi-intronic but non-chimeric transcript predicted to encode a full-length transposase (Pavelitz

eLife digest Transposons are mobile genetic elements that can be cut out of and inserted into

DNA. They are present in most living things and make up almost half of the human genome.

Transposons help to rearrange and increase the variety of DNA sequences, which can drive evolution

and regulate the expression of genes. Enzymes called transposases help to move transposons, but

very few genes that encode these enzymes have been studied in humans.

PiggyBac transposase—which was first discovered in the cabbage looper moth—helps to move

transposons of the piggyBac family. Humans and many other animals have genes that encode similar

enzymes. In particular, the gene that encodes the human PGBD5 transposase is expressed in the

developing embryo and particular areas of the brain and is highly similar to genes found in other

vertebrate animals. These intriguing features prompted Henssen et al. to investigate PGBD5.

The experiments reveal that PGBD5 is able to move piggyBac-like transposons in human cells and

insert them into sites that contain similar DNA sequences that are preferred by other PiggyBac

transposases. Henssen et al. compared human PGBD5 to the piggyBac transposases from other

organisms, including insects, bats, and frogs. They found that PGBD5 is deeply conserved among

vertebrate organisms, and is distinct from other piggyBac transposases.

These findings suggest that PGBD5 is indeed a fully working piggyBac transposase. Further work

is needed to understand what portions of the human genome may be rearranged by PGBD5, and

how this may contribute to human brain development or disease.
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et al., 2013). Furthermore, PGBD5 expression in both human and mouse appears largely restricted to

the early embryo and certain areas of the embryonic and adult brain (Sarkar et al., 2003; Pavelitz

et al., 2013). These intriguing features prompted us to investigate whether human PGBD5 has

retained the enzymatic capability of mobilizing DNA.

Results
Human PGBD5 contains a C-terminal RNase H-like domain that has approximately 20% sequence

identity and 45% similarity to the active lepidopteran piggyBac, ciliate piggyMac, and mammalian

piggyBat transposases (Figure 1) (Sarkar et al., 2003; Baudry et al., 2009; Mitra et al., 2013). In

addition, the human genome contains 2358 sequence elements with similarity to the piggyBac

transposable elements (Table 1 and Figure 2A). Specifically, MER75 (MER75, MER75A, MER75B) and

MER85 elements show considerably similar ITR sequences as compared to lepidopteran piggyBac

transposons (Table 2 and Figure 2B). A total of 328 piggyBac-like elements in the human genome

have intact ITRs and exhibit duplications of their presumed TTAA target sites (Table 1 and Figure 2C).

We reasoned that even though the ancestral transposon substrates of PGBD5 cannot be predicted

due to its very ancient evolutionary origin (∼500 My), preservation of its transposase activity should

confer residual ability to mobilize distantly related piggyBac-like transposons. To test this hypothesis,

we used a synthetic transposon reporter PB-EF1-NEO comprised of a neomycin resistance gene

flanked by T. ni piggyBac ITRs (Figure 3B) (Cary et al., 1989; Fraser et al., 1995). We transiently

transfected human embryonic kidney (HEK) 293 cells, which lack endogenous PGBD5 expression with

the PB-EF1-NEO transposon reporter plasmid in the presence of a plasmid expressing PGBD5, and

assessed genomic integration of the reporter using clonogenic assays in the presence of G418 to

select cells with genomic integration conferring neomycin resistance (Figure 3C, Figure 3—figure

supplement 1). Given the absence of suitable antibodies to monitor PGBD5 expression, we

expressed PGBD5 as an N-terminal fusion with the green fluorescent protein (GFP). We observed

significant rates of neomycin resistance of cells conferred by the transposon reporter with GFP-

PGBD5, but not in cells expressing control GFP or mutant GFP-PGBD5 lacking the transposase

domain (Figure 3C), despite equal expression of all transgenes (Figure 3—figure supplement 2). The

efficiency of neomycin resistance conferred by the transposon reporter with GFP-PGBD5 was

approximately 4.5-fold less than that of the T. ni piggyBac-derived transposase (Figure 3D),

consistent with their evolutionary divergence. These results suggest that human PGBD5 can promote

genomic integration of a piggyBac-like transposon.

If neomycin resistance conferred by the PGBD5 and the transposon reporter is due to genomic

integration and DNA transposition, then this should require specific activity on the transposon ITRs.

To test this hypothesis, we generated transposon reporters with mutant ITRs and assayed them for

genomic integration (Figure 3B, Figure 3—figure supplement 3). DNA transposition by the

piggyBac family transposases involves hairpin intermediates with a conserved 5′-GGGTTAACCC-3′
sequence that is required for target site phosphodiester hydrolysis (Mitra et al., 2008). Thus, we

generated reporter plasmids lacking ITRs entirely or containing complete ITRs with 5′-ATATTAACCC-3′
mutations predicted to disrupt the formation of productive hairpin intermediates (Mitra et al., 2008).

To enable precise quantitation of mobilization activity, we developed a quantitative genomic PCR

assay using primers specific for the transposon reporter and the endogenous human TK1 gene for

normalization (Figure 3—figure supplements 4, 5). In agreement with the results of the clonogenic

neomycin resistance assays, we observed efficient genomic integration of the donor transposons in

cells transfected by GFP-PGBD5 as compared to the minimal signal observed in cells expressing GFP

control (Figure 3E). Deletion of transposon ITRs from the reporter reduced genomic integration to

background levels (Figure 3E). Consistent with the specific function of piggyBac family ITRs in

genomic transposition, mutation of the terminal GGG sequence in the ITR significantly reduced the

integration efficiency (Figure 3E). These results indicate that specific transposon ITR sequences are

required for PGBD5-mediated DNA transposition.

DNA transposition by piggyBac superfamily transposases is distinguished from most other DNA

transposon superfamilies by the precise excision of the transposon from the donor site and preference

for insertion in TTAA sites (Cary et al., 1989; Fraser et al., 1995). To determine the structure of the

donor sites of transposon reporters mobilized by PGBD5, we isolated plasmid DNA from cells 2 days

after transfection, amplified the transposon reporter using PCR, and determined its sequence using

capillary Sanger sequencing (Figure 4—figure supplement 1). Similar to the hyperactive T. ni
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piggyBac, cells expressing GFP-PGBD5, but not those expressing GFP control vector, exhibited

robust excision of ITR-flanked transposon with apparently precise repair of the donor plasmid

(Figure 4A,B and Figure 4—figure supplement 1). These results suggest that PGBD5 is an active cut-

and-paste DNA transposase.

To validate chromosomal integration and determine the location and precise structure of the

insertion of the reporter transposons in the human genome, we isolated genomic DNA from G418-

resistant HEK293 cells following transfection with PGBD5 and PB-EF1-NEO and amplified the

genomic sites of transposon insertions using flanking sequence exponential anchored (FLEA) PCR, a

technique originally developed for high-efficiency analysis of retroviral integrations (Pule et al., 2008).

We adapted FLEA-PCR for the analysis of genomic DNA transposition by using unique reporter

sequence to prime polymerase extension upstream of the transposon ITR into the flanking human

genome, followed by reverse linear extension using degenerate primers, and exponential

amplification using specific nested primers to generate chimeric amplicons suitable for massively

parallel single-molecule Illumina DNA sequencing (Figure 5) (Henssen et al., 2015a). This method

enabled us to isolate specific portions of the human genome flanking transposon insertions, as

evidenced by the reduced yield of amplicons isolated from control cells lacking transposase vectors or

expressing GFP (Figure 6—figure supplement 1). To identify the sequences of the transposon

genomic insertions at single-base pair resolution, we aligned reads obtained from FLEA-PCR Illumina

Figure 1. Human PGBD5 is a distinct piggyBac-like transposase. Sequence alignment of piggyBac-like transposases frog Uribo 2, bat piggyBat,

lepidopteran piggyBac, and human PGBD5. Catalytic residues conserved among piggyBac transposases are highlighted in red. Human PGBD5 D168,

D194, and D386 residues, identified in our study (Figure 7), are marked in yellow.

DOI: 10.7554/eLife.10565.003

Henssen et al. eLife 2015;4:e10565. DOI: 10.7554/eLife.10565 4 of 20

Research article Genes and chromosomes

http://dx.doi.org/10.7554/eLife.10565.003
http://dx.doi.org/10.7554/eLife.10565


sequencing to the human hg19 reference ge-

nome and synthetic transposon reporter, and

identified split reads that specifically span both

(Figure 5). These data have been deposited to

the Sequence Read Archive (http://www.ncbi.

nlm.nih.gov/sra/, accession number SRP061649,

Henssen et al., 2015c), with the processed and

annotated data available from the Dryad Digital

Repository (Henssen et al., 2015b).

To infer the mechanism of genomic integra-

tion of transposon reporters, we analyzed the

sequences of the insertion loci to determine

integration preferences at base-pair resolution

and identify potential sequence preferences. We

found that transposon amplicons isolated from

cells expressing GFP-PGBD5, but not those

isolated from GFP control cells, were significantly

enriched for TTAA sequences, as determined by

sequence entropy analysis (Crooks et al., 2004)

(Figure 6A). To discriminate between potential DNA transposition at TTAA target sites and

alternative mechanisms of chromosomal integration, we classified genomic insertions based on target

sites containing TTAA and those containing other sequence motifs (Table 3). Consistent with the DNA

transposition activity of PGBD5, we observed significant induction of TTAA-containing insertions in

cells expressing GFP-PGBD5 and transposons with intact ITRs, as compared to control cells

expressing GFP, or to cells transfected with GFP-PGBD5 and mutant ITR transposons (Table 3).

Sequence analysis of split reads containing transposon-human junction at TTAA sites revealed that,

in almost every case examined (n = 65 out of 66), joining between TTAA host and transposon DNA

Figure 2. Human piggyBac-like transposable elements have intact inverted terminal repeat sequences similar to the T. ni piggyBac transposon.

(A) Chromosome ideogram representing the distribution of annotated piggyBac-like elements in the human genome (version hg19). (B) Multiple

sequence alignment of the piggybac inverted terminal repeat (ITR) sequence with the consensus ITR sequences of the MER75 and MER85 families of

piggyBac-like elements. (C) Chromosome ideogram representing the distribution of piggyBac-like elements annotated in the human genome (version

hg19) with TTAA target site duplication as well as ITR sequences aligning with the consensus (intact ITRs).

DOI: 10.7554/eLife.10565.005

Table 1. Summary of annotated human piggyBac-

like elements

Total piggyBac-like

elements

Intact

elements*

MER75 475 144

MER75A 93 62

MER75B 114 27

MER85 905 95

UCON29 240 0

Looper 531 0

*Denotes elements with intact ITR sequences that align

with the consensus without gaps and contain a TTAA

target site duplication.

ITR, inverted terminal repeat.

DOI: 10.7554/eLife.10565.004
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occurred precisely at the GGG/CCC terminal

motif of the donor transposon ITR (Figure 6C), in

agreement with its requirement for efficient DNA

transposition (Figure 3E). Consistent with the

genome-wide transposition induced by PGBD5,

we identified transposition events in all human

chromosomes, including both genic and inter-

genic loci (Figure 6B). Thus, PGBD5 can mediate

canonical cut-and-paste DNA transposition of

piggyBac transposons in human cells.

Requirement for transposon substrates with

specific ITRs, their precise excision, and prefer-

ential insertion into TTAA-containing genomic locations is all consistent with the preservation of

PGBD5’s DNA transposase activity in human cells. Like other cut-and-paste transposases, piggyBac

superfamily transposases are thought to utilize a triad of aspartate or glutamate residues to catalyze

phosphodiester bond hydrolysis, but the catalytic triad of aspartates previously proposed for T. ni

piggyBac is apparently not conserved in the primary sequence of PGBD5 (Figure 1) (Sarkar et al.,

2003; Keith et al., 2008; Mitra et al., 2008; Nesmelova and Hackett, 2010). Thus, we

hypothesized that distinct aspartic or glutamic acid residues may be required for DNA transposition

mediated by PGBD5. To test this hypothesis, we used alanine-scanning mutagenesis and assessed

transposition activity of GFP-PGBD5 mutants using quantitative genomic PCR (Figure 7 and

Figure 7—figure supplements 1–3). This analysis indicated that simultaneous alanine mutations of

D168, D194, and D386 reduced apparent transposition activity to background levels, similar to that

of GFP control (Figure 7A). We confirmed that the mutant GFP-PGBD5 proteins have equivalent

stability and expression as the wild-type protein in cells by immunoblotting against GFP (Figure 7B).

Phylogenetic analysis of vertebrate piggyBac homologs from Danio rerio, Python bivittatus,

Xenopus tropicalis, Gallus gallus, Mus musculus, and Homo sapiens showed that PGBD5 proteins

are divergent from other piggyBac-like proteins (Figure 8) and include conservation of functionally

important D168, D194, and D386 residues that distinguish them from lepidopteran piggyBac and

human PGBD1-4 (Figure 8—figure supplement 1). These results suggest that PGBD5 represents a

distinct member of the evolutionarily ancient piggyBac-like family of DNA transposases.

Discussion
Our current findings indicate that human PGBD5 is an active piggyBac transposase that can catalyze

DNA transposition in human cells. DNA transposition by PGBD5 requires its C-terminal transposase

domain and depends on specific ITRs derived from the lepidopteran piggyBac transposons (Figure 3).

DNA transposition involves transesterification reactions mediated by DNA hairpin intermediates

(Mitra et al., 2008). Consistent with the requirement of intact termini of the piggyBac, Tn10, and Mu

transposons (Elick et al., 1997), elimination or mutation of the terminal GGG nucleotides from the

transposon substrates also abolishes the transposition activity of PGBD5 (Figure 3). PGBD5-induced

DNA transposition is precise with preference for insertions at TTAA genomic sites (Figure 4). Since

our analysis was limited to ectopically expressed PGBD5 fused to GFP and episomal substrates

derived from lepidopteran piggyBac transposons, it is possible that endogenous PGBD5 may exhibit

different activities on chromatinized substrates in the human genome.

Current structure-function analysis indicates that PGBD5 requires three aspartate residues to

mediate DNA transposition (Figure 7), but its transposase domain appears to be distinct from other

piggyBac transposase enzymes with respect to its primary sequence (Figure 1 and Figure 8) (Keith

et al., 2008). Thus, the three aspartate residues required for efficient DNA transposition by PGBD5

may form a catalytic triad that functions in phosphodiester bond hydrolysis, similar to the DDD motif

in other piggyBac family transposases, or alternatively may contribute to other steps in the

transposition reaction, such as synaptic complex formation, hairpin opening, or strand exchange (Elick

et al., 1997; Keith et al., 2008; Mitra et al., 2008). In addition, we find that alanine mutations of the

three required aspartate residues in the PGBD5 transposase domain significantly reduce but do not

completely eliminate genomic integration of the transposon reporters (Figure 7). This could reflect

residual catalytic activity despite these mutations, or that PGBD5 expression may affect other

mechanisms of DNA integration in human cells.

Table 2. Sequence identity matrix of the piggy-

Bac inverted terminal repeat sequences and

consensus sequences of the MER75 and MER85

human piggyBac-like elements

piggyBac MER75 MER85

piggyBac 100% – –

MER75 53% 100% –

MER85 56% 63% 100%

DOI: 10.7554/eLife.10565.006
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Figure 3. PGBD5 induces genomic integration of synthetic piggyBac transposons in human cells. (A) Schematic of

the human PGBD5 protein with its C-terminal transposase homology domain, as indicated. (B) Schematic of

synthetic transposon substrates used for DNA transposition assays, including transposons with mutant ITR marked

by triangles in red, and transposons lacking ITRs marked in blue. (C) Representative photographs of crystal violet-

stained colonies obtained after G418 selection of HEK293 cells co-transfected with the transposon reporter plasmid

along with transposase cDNA expression vectors. (D) Quantification of G418-selection clonogenic assays,

demonstrating the integration activities of GFP-PGBD5, PGBD5 N-terminus, T. ni. piggyBac, and green fluorescent

protein (GFP) control (GFP-PGBD5 vs GFP; p = 0.00031). (E) Quantification of genomic transposon integration using

quantitative PCR of GFP-PGBD5 and GFP expressing cells using intact (black), mutant (red), and deleted (blue) ITR-

containing transposon reporters (intact vs mutant ITR; p = 0.00011). Error bars represent standard errors of the mean

of 3 biologic replicates.

DOI: 10.7554/eLife.10565.007

The following figure supplements are available for figure 3:

Figure supplement 1. Assay for genomic integration of transposon reporters.

DOI: 10.7554/eLife.10565.008

Figure supplement 2. GFP-PGBD5, PGBD5 N-terminus, and T. ni. piggyBac are equally expressed upon

transfection in HEK293 cells.

DOI: 10.7554/eLife.10565.009

Figure 3. continued on next page
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The evolutionary conservation of the transposition activity of PGBD5 suggests that it may have hitherto

unknown biologic functions among vertebrate organisms. DNA transposition is a major source of genetic

variation that drives genome evolution, with some DNA transposases becoming extinct and others

domesticated to evolve exapted functions. The evolution of transposons’ activities can be highly variable,

with some organisms such as Zea mays undergoing continuous genome remodeling and recent twofold

expansion through endogenous retrotransposition, Drosophila and Saccharomyces owing over half of their

known spontaneous mutations to transposons, and primate species including humans exhibiting relative

extinction of transposons (Feschotte and Pritham, 2007).

Indeed, transposase-derived genes domesticated in humans have evolved to have endogenous

functions other than genomic transposition per se. For example, human RAG1 is a domesticated

Transib transposase that has retained its active transposase domain, and can transpose ITR-containing

transposons in vitro, but catalyzes somatic recombination of immunoglobulin and T-cell receptor

genes in lymphocytes across signal sequences that might be derived from related transposons

(Landree et al., 1999; Fugmann et al., 2000). Human SETMAR is a Mariner-derived transposase with

a divergent DDN transposase domain that has retained its endonuclease activity and functions in

double-strand DNA repair by non-homologous end joining (Liu et al., 2007). The human genome

encodes over 40 other genes derived from DNA transposases (Smit, 1999; Feschotte and Pritham,

2007), including THAP9 that was recently found to mobilize transposons in human cells with as of yet

Figure 3. Continued

Figure supplement 3. Sanger sequencing traces of the ITR of the synthetic transposon reporter plasmids.

DOI: 10.7554/eLife.10565.010

Figure supplement 4. Quantitative assay of genomic integration of transposon reporters.

DOI: 10.7554/eLife.10565.011

Figure supplement 5. Quantitative genomic PCR standard curve for transposon specific primers.

DOI: 10.7554/eLife.10565.012

Figure 4. PGBD5 precisely excises piggyBac transposons. (A) Representative agarose electrophoresis analysis of

PCR-amplified PB-EF1-NEO transposon reporter plasmid from transposase-expressing cells, demonstrating efficient

excision of the ITR-containing transposon by PGBD5, but not GFP or PGBD5 N-terminus mutant lacking the

transposase domain. T. ni piggyBac serves as positive control. (B) Representative Sanger sequencing fluorogram of

the excised transposon, demonstrating precise excision of the ITR and associated duplicated TTAA sequence,

marked in red, demonstrating integrations of transposons (green) into human genome (blue) with TTAA insertion

sites and genomic coordinates, as marked.

DOI: 10.7554/eLife.10565.013

The following figure supplement is available for figure 4:

Figure supplement 1. Schematic of transposon excision assay.

DOI: 10.7554/eLife.10565.014
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Figure 5. Schematic of transposon-specific flanking sequence exponential anchored–polymerase chain reaction

amplification (FLEA-PCR) and massively parallel single molecule sequencing assay for mapping and sequencing

transposon insertions.

DOI: 10.7554/eLife.10565.015
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unknown function (Majumdar et al., 2013). RAG1, THAP9, and PGBD5 are, to our knowledge, the

only human proteins with demonstrated transposase activity in human cells.

The distinct biochemical and structural features of PGBD5 indicated by our findings are

consistent with its unique evolution and function among human piggyBac-derived transposase

genes (Sarkar et al., 2003; Pavelitz et al., 2013). PGBD5 exhibits deep evolutionary conservation

predating the origin of vertebrates, including a preservation of genomic synteny across lancelet,

lamprey, teleosts, and amniotes (Pavelitz et al., 2013). This suggests that while PGBD5 likely

derived from an autonomous mobile element, this ancestral copy was immobilized early in evolution

and PGBD5 can probably no longer mobilize its own genomic locus, at least in germ line cells. The

human genome contains several thousands of miniature inverted repeat transposable elements

(MITEs) with similarity to piggyBac transposons (Figure 2 and Table 1) (Sarkar et al., 2003;

Feschotte and Pritham, 2007). CSB-PGBD3 can bind to the piggyBac-derived MER85 elements in

Figure 6. PGBD5 induces DNA transposition in human cells. (A) Analysis of the transposon integration sequences, demonstrating TTAA preferences in

integrations in cells expressing GFP-PGBD5, but not GFP control. X-axis denotes nucleotide sequence logo position, and y-axis denotes information

content in bits. (B) Circos plot of the genomic locations PGBD5-mobilized transposons plotted as a function of chromosome number and transposition

into genes (red) and intergenic regions (gray). (C) Alignment of representative DNA sequences of identified genomic integration sites.

DOI: 10.7554/eLife.10565.016

The following figure supplement is available for figure 6:

Figure supplement 1. Representative agarose gel image of amplicons from flanking sequence exponential anchored–polymerase chain reaction

amplification (FLEA-PCR).

DOI: 10.7554/eLife.10565.017
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the human genome (Bailey et al., 2012; Gray et al., 2012). Similarly, it is possible that PGBD5 can

act in trans to recognize and mobilize one or several related MITEs in the human genome. Recently,

single-molecular maps of the human genome have predicted thousands of mobile element

insertions, and the activity of PGBD5 or other endogenous transposases may explain some of these

novel variants (Chaisson et al., 2015; Pendleton et al., 2015).

Given that both human RAG1 and ciliate piggyMac domesticated transposases catalyze the

elimination of specific genomic DNA sequences (Hiom et al., 1998; Baudry et al., 2009), it is

reasonable to hypothesize that PGBD5’s biological function may similarly involve the excision of as of

yet unknown ITR-flanked sequences in the human genome or another form of DNA recombination.

Since DNA transposition by piggyBac family transposases requires substrate chromatin accessibility

and DNA repair, we anticipate that additional cellular factors are required for and regulate PGBD5

functions in cells. Likewise, just as RAG1-mediated DNA recombination of immunoglobulin loci is

restricted to B lymphocytes, and rearrangements of T-cell receptor genes to T lymphocytes, potential

DNA rearrangements mediated by PGBD5 may be restricted to specific cell types and developmental

periods.

PGBD5 localizes to the cell nucleus and is expressed during embryogenesis and neurogenesis, but

its physiological function is not yet known (Pavelitz et al., 2013). Generation of molecular diversity

through DNA recombination during nervous system development has been a long-standing

hypothesis (Dreyer et al., 1967; Wu and Maniatis, 1999). The recent discovery of somatic

retrotransposition in human neurons (Coufal et al., 2009; Evrony et al., 2012; Upton et al., 2015),

combined with our finding of DNA transposition activity by human PGBD5, which is highly expressed

in neurons, suggests that additional mechanisms of somatic genomic diversification may contribute to

vertebrate nervous system development.

Because DNA transposition is inherently topological and orientation of transposons can affect the

arrangements of reaction products (Claeys Bouuaert et al., 2011), potential activities of PGBD5 can

depend on the arrangements of accessible genomic substrates, leading to both conservative DNA

transposition involving excision and insertion of transposon elements, as well as irreversible reactions

such as DNA elimination and chromosomal breakage-fusion-bridge cycles, as originally described by

McClintock (1942). Finally, given the potentially mutagenic activity of active DNA transposases, we

anticipate that unlicensed activity of PGBD5 and other domesticated transposases can be pathogenic

in specific disease states, particularly in cases of aberrant chromatin accessibility, such as cancer.

Materials and methods

Reagents
All reagents were obtained from Sigma–Aldrich (St. Louis, MO, United States) if not otherwise

specified. Synthetic oligonucleotides were obtained from Eurofins MWG Operon (Huntsville, AL,

United States) and purified by HPLC.

Table 3. Analysis of transposon integration sequences in human genomes induced by PGBD5

Intact transposon Mutant transposon

TTAA ITR Non-ITR TTAA ITR Non-ITR

Transposase

GFP-PGBD5 82% (65)† 18% (14) 11% (4)‡ 89% (33)

GFP Control 17% (2) 83% (10) 40% (27) 60% (40)

Cells expressing GFP-PGBD5 and intact transposons exhibit significantly higher frequency of genomic integration as

compared to either GFP control, or GFP-PGBD5 with mutant transposons, with 82% (65 out of 79) of sequences

demonstrating DNA transposition of ITR transposons into TTAA sites (†p = 1.8 × 10-5). Mutation of the transposon

ITR significantly reduces ITR-mediated integration, with only 11% (4 out of 37) of sequences (‡p = 0.0016). Numbers

in parentheses denote absolute numbers of identified insertion sites.

GFP, green fluorescent protein; ITR, inverted terminal repeat.

DOI: 10.7554/eLife.10565.018
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Figure 7. Structure-function analysis of PGBD5-induced DNA transposition using alanine scanning mutagenesis.

(A) Quantitative PCR analysis of genomic integration activity of alanine point mutants of GFP-PGBD5, as compared to

wild-type and GFP control-expressing cells. D168A, D194A, and D386A mutants (red) exhibit significant reduction in

apparent activity (Asterisks denote statistical significance: p = 0.00011, p = 0.000021, p = 0.000013 vs GFP-PGBD5,

respectively). Dotted line marks threshold at which less than 1 transposon copy was detected per haploid human genome.

Error bars represent standard errors of the mean of 3 biological replicates. (B) Western immunoblot showing equal

expression of GFP-PGBD5 mutants, as compared to wild-type GFP-PGBD5 (green). β-actin (red) serves as loading control.

DOI: 10.7554/eLife.10565.019

The following figure supplements are available for figure 7:

Figure supplement 1. Sanger sequencing trances of pRecLV103-GFP-PGBD5 D>A and E>A mutants (D168A,

D175A, E188A, D192A, D194A, E203A, E205A, E236A).

DOI: 10.7554/eLife.10565.020

Figure supplement 2. Sanger sequencing trances of pRecLV103-GFP-PGBD5 D>A and E>A mutants (D241A,

D244A, E284A, E285A, E287A, D303A, E365A, E373A).

DOI: 10.7554/eLife.10565.021

Figure supplement 3. Sanger sequencing trances of pRecLV103-GFP-PGBD5 D>A and E>A mutants (D386A,

D387A, D425A, E439A, E444A, E449A, D450A).

DOI: 10.7554/eLife.10565.022
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Cell culture
HEK293 and HEK293T were obtained from the American Type Culture Collection (ATCC, Manassas,

Virginia, United States). The identity of all cell lines was verified by STR analysis and lack of

Mycoplasma contamination was confirmed by Genetica DNA Laboratories (Burlington, NC, United

States). Cell lines were cultured in DMEM supplemented with 10% fetal bovine serum and 100 U/ml

penicillin and 100 μg/ml streptomycin in a humidified atmosphere at 37˚C and 5% CO2.

Plasmid constructs
Human PGBD5 cDNA (Refseq ID: NM_024554.3) was cloned as a GFP fusion into the lentiviral

vector pReceiver-Lv103-E3156 (GeneCopoeia, Rockville, MD, United States). piggyBac ITRs

(5′-TTAACCCTAGAAAGATAATCATATTGTGACGTACGTTAAAGATAATCATGTGTAAAATTGACGCATG-3′
and 5′-CATGCGTCAATTTTACGCAGACTATCTTTCTAGGGTTAA-3′), as originally cloned by Malcolm

Fraser et al. (Elick et al., 1997; Handler et al., 1998), were cloned into PB-EF1-NEO to flank IRES-

driven neomycin resistance gene, as obtained from System Biosciences (Mountain View, CA, United

States). Plasmid encoding the hyperactive T. ni piggyBac transposase, as originally generated by

Figure 8. PGBD5 homologs are divergent from other piggyBac genes in vertebrates. Phylogenetic reconstruction of

the evolutionary relationships among piggyBac transposase-derived genes in vertebrates, demonstrating the

PGBD5 homologs represent a distinct subfamily of piggyBac-like derived genes. Scale bar represents Grishin

distance.

DOI: 10.7554/eLife.10565.023

The following figure supplement is available for figure 8:

Figure supplement 1. PGBD5 glutamic acid resitues D168, D194, and D386 are conserved across species.

DOI: 10.7554/eLife.10565.024
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Nancy Craig et al. (Li et al., 2013), was obtained from System Biosciences. Site-directed PCR

mutagenesis was used to generate mutants of PGBD5 and piggyBac, according to manufacturer’s

instructions (Agilent, Santa Clara, CA, United States). Plasmids were verified by restriction

endonuclease mapping and Sanger sequencing and deposited in Addgene. Lentivirus packaging

vectors psPAX2 and pMD2.G were obtained from Addgene (Cudre-Mauroux et al., 2003).

Cell transfection
HEK293 cells were seeded at a density of 100,000 cells per well in a 6-well plate and transfected with 2

μg of total plasmid DNA, containing 1 μg of transposon reporter (PB-EF1-NEO or mutants) and 1 μg of

transposase cDNA (pRecLV103-GFP-PGBD5 or mutants) using Lipofectamine 2000, according to

manufacturer’s instructions (Life Technologies, CA, United States). After 24 hr, transfected cells were

trypsinized and re-plated for functional assays.

Quantitative RT-PCR
Upon transfection, cells were cultured for 48 hr and total RNA was isolated using the RNeasy Mini Kit,

according to manufacturer’s instructions (Qiagen, Venlo, Netherlands). cDNA was synthesized using

the SuperScript III First-Strand Synthesis System (Invitrogen, Waltham, MA, United States).

Quantitative real-time PCR was performed using the KAPA SYBR FAST PCR polymerase with 20 ng

template and 200 nM primers, according to the manufacturer’s instructions (Kapa Biosystems,

Wilmington, MA, United States). PCR primers are listed in Supplementary file 1. Ct values were

calculated using ROX normalization using the ViiA 7 software (Applied Biosystems).

Neomycin resistance colony formation assay
Upon transfection, cells were seeded at a density of 1000 cells per 10-cm dish and selected with G418

sulfate (2 mg/ml) for 2 weeks. Resultant colonies were fixed with methanol and stained with crystal violet.

Transposon excision assay
Upon transfection, cells were cultured for 48 hr and DNA was isolated using the PureLink Genomic

DNA Mini Kit, according to manufacturer’s instructions (Life Technologies). Reporter plasmid

sequences flanking the neomycin resistance cassette transposons were amplified using hot start PCR

with an annealing temperature of 57˚C and extension time of 2 min, according to the manufacturer’s

instructions (New England Biolabs, Beverly, MA, United States) using the Mastercycler Pro

thermocycler (Eppendorf, Hamburg, Germany). PCR primers are listed in Supplementary file 1.

The PCR products were resolved using agarose gel electrophoresis and visualized by ethidium

bromide staining. Identified gel bands were extracted using the PureLink Quick Gel Extraction Kit

(Invitrogen) and Sanger sequenced to identify excision products.

Quantitative PCR assay of genomic transposon integration
Upon transfection, cells were selected with puromycin (5 μg/ml) for 2 days to eliminate non-

transfected cells. After selection, cells were expanded for 10 days without selection and genomic

DNA isolated using PureLink Genomic DNA Mini Kit (Life Technologies). Quantitative real-time PCR

was performed using the KAPA SYBR FAST PCR polymerase with 20 ng template and 200 nM primers,

according to the manufacturer’s instructions (Kapa Biosystems). PCR primers are listed in

Supplementary file 1. Ct values were calculated using ROX normalization using the ViiA 7 software

(Applied Biosystems). We determined the quantitative accuracy of this assay using analysis of serial

dilution PB-E1-NEO plasmid as reference (Figure 3—figure supplement 5).

FLEA-PCR
To amplify genomic transposon integration sites, we modified FLEA-PCR (Pule et al., 2008), as described in

Figure 5 (Henssen et al., 2015a). First, linear extension PCR was performed using 2 μg of genomic DNA and

100 nM biotinylated linear primer using the Platinum HiFidelity PCR mix, according to manufacturer’s

instructions (Invitrogen Corp.). Linear extension parameters for PCR were: 95˚C (45 s), 62˚C (45 s), 72˚C (3 min)

for 30 cycles. Reaction products were purified by diluting the samples in a total volume of 200 μl of nuclease-
free water and centrifugation using the Amicon Ultra 0.5 ml 100 K at 12,000×g for 10min at room temperature

(EMD Millipore, Billerica, MA, United States) purification. Retentate was bound to streptavidin ferromagnetic
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beads on a shaker at room temperature overnight (Dynal, Oslo, Norway). Beads were washed with 40 μl of
washing buffer (Kilobase binder kit; Dynal), then water, then 0.1 N NaOH, and finally with water again.

To anneal the anchor primer, washed beads were resuspended in a total volume of 20 μl containing
5 μM anchor primer, 500 nM dNTP, and T7 DNA polymerase buffer (New England Biolabs). Samples

were placed in a heating block pre-heated to 85˚C and allowed to passively cool to 37˚C. Once

annealed, 10 units of T7 DNA polymerase (New England Biolabs) was added and the mixtures were

incubated for 1 hr at 37˚C. Next, the beads were washed five times in water.

To exponentially amplify the purified products, beads were resuspended in a total volume of 50 μl
containing 500 nM of exponential and Transposon1 primers and the Platinum HiFidelity PCR mix. PCR

was performed with the following parameters: 95˚C for 5 min, followed by 35 cycles of 95˚C for 45 s,

62˚C for 45 s, and 72˚C for 3 min. PCR products were purified using the Invitrogen PCR purification kit

(Invitrogen Corp.). Second nested PCR was performed using 1/50th of the first exponential PCR

product as template using the Platinum HiFidelity PCR with 500 nM of exponential and Transposon2

primers. PCR was performed with the following parameters: 35 cycles of 95˚C for 45 s, 62˚C for 45 s,

and 72˚C for 3 min. Final PCR products were purified using the Invitrogen PCR purification kit,

according to the manufacturer’s instructions (Invitrogen Corp.).

Sequencing of transposon reporter integration sites
Equimolar amounts of purified FLEA-PCR amplicons were pooled, as measured using fluorometry with

the Qubit instrument (Invitrogen) and sized on a 2100 BioAanalyzer instrument (Agilent Technologies).

The sequencing library construction was performed using the KAPA Hyper Prep Kit (Kapa Biosystems)

and 12 indexed Illumina adaptors from IDT (Coralville, IO, United States), according to the

manufacturer’s instructions.

After quantification and sizing, libraries were pooled for sequencing on a MiSeq (pooled library

input at 10 pM) on a 300/300 paired end run (Illumina, San Diego, CA, United States). An average of

575,565 paired reads were generated per sample. The duplication rate varied between 56 and 87%.

Because of the use of FLEA-PCR amplicons for DNA sequencing, preparation of Illumina sequencing

libraries is associated with the formation of adapter dimers (ILLUMINA, 2015). We used cutadapt to

first trim reads to retain bases with quality score >20, then identify reads containing adapter dimers

and exclude them from further analyses (parameters -q 20 -b P7 = <P7_index> -B P5 = <P5_index>
-discard; where <P7_index> is the P7 primer adapter with the specific barcode for each library, and

<P5_index> is the generic P5 adapter sequence: GATCGGAAGAGCGTCGTGTAGGGAAAGAGTG

TAGATCTCGGTGGTCGCCGTATCATT) (Lindgreen, 2012). Anchor primer sequences were then

trimmed from the reads retained using cutadapt (-ĝGTGGCACGGACTGATCNNNNNN). Filtered and

trimmed reads were mapped to a hybrid reference genome consisting of the hg19 full chromosome

sequences and the PB-EF1-NEO plasmid sequence using bwa-mem using standard parameters (Li and

Durbin, 2010). Mapped reads were then analyzed with LUMPY using split read signatures (Layer et al.,

2014), and insertion loci were identified using the called variants flagged as interchromosomal

translocations (BND) between the plasmid sequence and the human genome. Breakpoints were

resolved to base-pair accuracy using split read signatures when possible. Insertion loci were taken with

10 flanking base pairs and aligned with MUSCLE to establish consensus sequence (Layer et al., 2014).

Genomic distribution of insertion loci was plotted using ChromoViz (https://github.com/elzbth/

ChromoViz). All analysis scripts are available from Zenodo (Henaff et al., 2015a).

Lentivirus production and cell transduction
Lentivirus production was carried out as described in Kentsis et al. (2012). Briefly, HEK293T cells were

transfected using TransIT with 2:1:1 ratio of the pRecLV103 lentiviral vector, and psPAX2 and pMD2.G

packaging plasmids, according to manufacturer’s instructions (TransIT-LT1, Mirus, Madison, WI, United

States). Virus supernatant was collected at 48 and 72 hr post-transfection, pooled, filtered, and stored at

−80˚C. HEK293T cells were transduced with virus particles at a multiplicity of infection of five in the presence

of 8 μg/ml hexadimethrine bromide. Transduced cells were selected for 2 days with puromycin (5 μg/ml).

Western blotting
To analyze protein expression by Western immunoblotting, 1 million transduced cells were suspended in

80 μl of lysis buffer (4% sodium dodecyl sulfate, 7% glycerol, 1.25% beta-mercaptoethanol, 0.2 mg/ml
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Bromophenol Blue, 30 mM Tris-HCl, pH 6.8). Cells suspensions were lysed using Covaris S220 adaptive

focused sonicator, according to the manufacturer’s instructions (Covaris, Woburn, CA, United States).

Lysates were cleared by centrifugation at 16,000×g for 10 min at 4˚C. Clarified lysates (30 μl) were resolved

using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electroeluted using the Immobilon

FL PVDF membranes (Millipore). Membranes were blocked using the Odyssey Blocking buffer (Li-Cor,

Lincoln, Nebraska) and blotted using the mouse and rabbit antibodies against GFP (1:500, clone 4B10) and

β-actin (1:5000, clone 13E5), respectively, both obtained from Cell Signaling Technology (Beverly, MA,

United States). Blotted membranes were visualized using goat secondary antibodies conjugated to IRDye

800CW or IRDye 680RD and the Odyssey CLx fluorescence scanner, according to manufacturer’s

instructions (Li-Cor).

Multiple sequence alignment analysis of DNA and protein sequences
The transposon annotation of the human genome (assembly hg19) was downloaded from the UCSC

website (http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/rmsk.txt.gz) and converted to

the GFF3 annotation format. The sequences of the elements in the piggyBac-like MER75, MER75A,

MER75B, MER85, UCON29, and LOOPER families were extracted with 50 flanking base pairs using

fastaFromBed from the BedTools genome analysis suite (http://bedtools.readthedocs.org). The set of

sequences for each family was aligned using MUSCLE using standard parameters (Edgar, 2004). ITR

sequences for each family were defined as terminal sequences conserved amongst all family members

measured using multiple sequence alignments. We used a cutoff of 70% similarity to determine the fist

position of the ITR in the alignment. The multiple sequence alignments were then manually curated to

identify the set of ‘intact’ elements defined by containing both the TTAA target site duplication as well

as both 3′ and 5′ ITRs aligning without gaps with the consensus ITR sequence. Multiple sequence

alignment of the ITR sequences was also performed with MUSCLE, and the sequence identity matrix

calculated using SIAS (http://imed.med.ucm.es/Tools/sias.html), with the following measure of identity:

Identity=100 p
�
Number of Identical Residues
Length of shortest sequence

�
:

Chromosome ideograms were made using the NCBI’s Genome Decoration Tool (http://www.ncbi.

nlm.nih.gov/genome/tools/gdp/). Multiple sequence alignment of protein sequences was done using

Clustal Omega (Thompson et al., 1994; Sievers and Higgins, 2014). Pairwise BLAST alignments-

based Grishin’s sequence distance analysis was done using BLAST (http://blast.ncbi.nlm.nih.gov/) and

MEGA6 using standard parameters (Tamura et al., 2013).

Statistical analysis
Statistical significance values were determined using two-tailed non-parametric Mann–Whitney tests

for continuous variables, and two-tailed Fisher exact test for discrete variables.
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