
Janggu - Deep learning for genomics

Wolfgang Kopp1,∗, Remo Monti1,2, Annalaura Tamburrini1,3, Uwe Ohler1,4,
Altuna Akalin1,∗

1 Berlin Institute for Systems Biology, Max Delbrueck Center for
Molecular Medicine, 10115 Berlin, Germany.
2 Digital Health Center, Hasso Plattner Institute, University of
Potsdam, 14482 Potsdam, Germany.
3 Department of Biology, Centro di Bioinformatica Molecolare,
University of Rome ”Tor Vergata”, 00133 Rome, Italy.
4 Department of Biology, Humboldt University, 10115 Berlin,
Germany.
∗ Correspondence to: wolfgang.kopp@mdc-berlin.de,
altuna.akalin@mdc-berlin.de

Abstract

Motivation In recent years, numerous applications have demonstrated the
potential of deep learning for an improved understanding of biological pro-
cesses. However, most deep learning tools developed so far are designed to
address a specific question on a fixed dataset and/or by a fixed model ar-
chitecture. Adapting these models to integrate new datasets or to address
different hypotheses can lead to considerable software engineering effort. To
address this aspect we have built Janggu, a python library that facilitates
deep learning for genomics applications.
Results Janggu aims to ease data acquisition and model evaluation in mul-
tiple ways. Among its key features are special dataset objects, which form
a unified and flexible data acquisition and pre-processing framework for ge-
nomics data that enables streamlining of future research applications through
reusable components. Through a numpy-like interface, the dataset objects
are directly compatible with popular deep learning libraries, including keras.
Furthermore, Janggu offers the possibility to visualize predictions as genomic
tracks or by exporting them to the BIGWIG format. We illustrate the func-
tionality of Janggu on several deep learning genomics applications. First, we
evaluate different model topologies for the task of predicting binding sites

1

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MDC Repository

https://core.ac.uk/display/300327713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


for the transcription factor JunD. Second, we demonstrate the framework
on published models for predicting chromatin effects. Third, we show that
promoter usage measured by CAGE can be predicted using DNase hyper-
sensitivity, histone modifications and DNA sequence features. We improve
the performance of these models due to a novel feature in Janggu that al-
lows us to include high-order sequence features. We believe that Janggu will
help to significantly reduce repetitive programming overhead for deep learn-
ing applications in genomics, while at the same time enabling computational
biologists to assess biological hypotheses more rapidly.
Availability Janggu is freely available under a GPL-v3 license on
https://github.com/BIMSBbioinfo/janggu or via
https://pypi.org/project/janggu

Keywords: Deep learning, Machine Learning, Genomics, Epigenomics

Background

The recent explosive growth of biological data, particularly in the field of
regulatory genomics, has continuously improved our understanding about
regulatory mechanism in cell biology [1]. Meanwhile, the remarkable success
of deep neural networks in other areas, including computer vision, has at-
tracted attention in computational biology as well. Deep learning methods
are particularly attractive in this case, as they promise to extract knowledge
in a data-driven fashion from large datasets while requiring limited domain
expertise [2]. Since their introduction [3, 4], deep learning methods have
dominated computational modeling strategies in genomics where they are
now routinely used to address a variety of questions ranging from the under-
standing of protein binding from DNA sequences [3], epigenetic modifications
[4, 5, 6], predicting gene-expression from epigenetic marks [7], or predicting
the methylation state of single cells [8].

Depsite the success of these numerous deep learning solutions and tools,
their broad adaptation by the bioinformatics community has been limited.
This is partially due to the low flexibility of the published methods to adapt
to new data, which often requires a considerable engineering effort. This situ-
ation illustrates a need for software frameworks that allow for a fast turnover
when it comes to addressing new hypotheses, integrating new datasets, or
experimenting with new neural network architectures.

In fact, several recent packages, including pysster [9], kipoi [10] and selene

2

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

https://github.com/BIMSBbioinfo/janggu
https://pypi.org/project/janggu
http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


[11], have been proposed to tackle this issue on different levels. However,
they are limited in their expressiveness due to the restricted programming
interface [9], a focus on reproducibility and reusability of trained models
but not the entire training process, [10] or the adoption of a specific neural
network library through a tight integration [11]. All of them have in common
that the support of different data types beyond sequence is limited.

To address some of these shortcomings, we have developed a novel python
library for deep learning in genomics, called Janggu. The library is identically
named to a Korean percussion instrument that is shaped like an hourglass and
whose two ends reflect the two ends of a deep learning application, namely
data acquisition and evaluation. The library supports flexible prototyping of
neural network models by separating the pre-processing and dataset specifi-
cation from the modelling part. Accordingly, Janggu uses dedicated genomics
dataset objects. These objects provide easy access and pre-processing capa-
bilities to fetch data from common file formats, including FASTA, BAM,
BIGWIG and BED files (see Fig. 1), and they are directly compatible with
commonly used deep learning libraries, such as keras or scikit-learn. In this
way, they effectively bridge the gap between commonly used file formats in
genomics and the python data format that is understood by the deep learning
libraries. The dataset objects can be easily reused for different applications,
and they place no restriction on the model architecture to be used with. A key
advantage of establishing reusable and well-tested dataset components is to
allow for a faster turnaround when it comes to setting up deep learning mod-
els and increased flexibility for addressing a range of questions in genomics.
As a consequence, we expect significant reductions in repetitive software en-
gineering aspects that are usually associated with the pre-processing steps.

We illustrate Janggu on three use cases: 1) predicting transcription factor
binding of JunD, 2) using and improving published deep learning architec-
tures, and 3) predicting normalized CAGE-tags counts at promoters. In these
examples, different data formats are consumed, including FASTA, BIGWIG,
BAM and narrowPeak files. Here, we also make use of Janggu’s ability of us-
ing higher-order sequence features (see Hallmarks), and show that this leads
to significant performance improvements.

3

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


Results

Hallmarks of Janggu

Janggu offers two special dataset classes: Bioseq and Cover, which can be
used to conveniently load genomics data from a range of common file for-
mats, including FASTA, BAM, BIGWIG or BED files. Biological sequences
(e.g. from the reference genome) and coverage information (e.g. from BAM,
BIGWIG or BED files) are loaded for user-specified regions of interest (ROI),
which are provided in BED-like format. Since Bioseq and Cover both mimic
a minimal numpy interface, the objects may be directly consumed using e.g.
keras or scikit-learn.

Bioseq and Cover provide a range of options, including the binsize, step
size, or flanking regions for traversing the ROI. The data may be stored in
different ways, including as ordinary numpy arrays, as sparse arrays or in
hdf5 format, which allow the user to balance the trade-off between speed
and memory footprint of the application. A built-in caching mechanism
helps to save processing time by reusing previously generated datasets. This
mechanism automatically detects if the data has changed and needs to be
reloaded.

Furthermore, Cover and Bioseq expose dataset-specific options. For in-
stance, coverage tracks can be loaded at different resolution (e.g. base-pair
or 50-bp resolution) or be subjected to various normalization and transfor-
mation steps, including TPM-normalization. Bioseq also enables the user to
work with both DNA and protein sequences. Here, sequences can be one-hot
encoded using higher-order sequence features, allowing the models to learn
e.g. di- or tri-mer based motifs.

Finally, Janggu offers a number of model evaluation and interpretation
features: 1) Commonly used performance metrics can be directly used within
the framework, including the area under the receiver operator characteris-
tic curve (auROC) or the area under the precision-recall curve (auPRC). 2)
Predictions obtained for any deep learning library usually take the form of
numpy arrays. These arrays can be converted back to a coverage object,
which eventually ensures that the user does not have to maintain correspon-
dences between two sets of indices, namely the numpy-array indices and
genomic intervals. Hence, the application can be phrased more naturally
in terms of genomic coordinates, and numpy-array indices are abstracted
away by Janggu. 3) Conversion to coverage objects also offers the possibility

4

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


to export predictions to BIGWIG format or to inspect the results directly
via Janggu’s built-in plotGenomeTrack function. 4) Input feature impor-
tance can be investigated using the integrated gradients method [12] and
5) changes of the prediction score can studied for single nucleotide variants
taking advantage of the higher-order sequence representation. A schematic
overview is illustrated in Fig. 1. Further details on its functionality are
available in the documentation at https://janggu.readthedocs.io.

Prediction of JunD binding

To showcase different Janggu functionalities, we defined three example prob-
lems to solve entirely within the framework. We start by predicting the
binding events of the transcription factor JunD. JunD binding sites exhibit
strong interdependence between nucleotide positions [13], suggesting that it
might be beneficial to take the higher-order sequence composition directly
into account. To this end, we introduce a higher-order one-hot encoding of
the DNA sequence that captures e.g. di- or tri-nucleotide based motifs. For
example, for a sequence of length N , the di-nucleotide one-hot encoding cor-
responds to a 16×N − 1 matrix, where each column contains a single one in
the row that is associated with the di-nucleotide at that position. We shall
refer to mono-, di- and tri-nucleotide encoding as order one, two and three,
respectively. In contrast to mono-nucleotide input features, higher-order fea-
tures directly capture correlations between neighboring nucleotides.

For JunD target predictions, we observe a significant improvement in
area under the precision recall curve (auPRC) on the test set when using the
higher order sequence encoding compared to the mono-nucleotide encoding
(see Fig. 2A, red). The median performance gain across five runs amounts
to ∆auPRC = 8.3% between order 2 and 1, as well as ∆auPRC = 9.3%
between order 3 and 1.

While the use of higher-order sequence features uncovers useful infor-
mation for interpreting the human genome, the larger input and parameter
space might make the model prone to overfitting, depending on the amount
of data and the model complexity. We tested whether dropout on the input
layer, which randomly sets a subset of ones in the one-hot encoding to zeros,
would improve model generalization [14]. Using dropout on the input layer
should also largely preserve the information content of the sequence encod-
ing, as the representation of higher orders is inherently redundant due to
overlapping neighboring bases.

5

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

https://janggu.readthedocs.io
http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


In line with our expectations, dropout leads to a slight further perfor-
mance improvement for tri-nucleotide-based sequence encoding. On the other
hand, for mono-nucleotide-based encoding we observe a performance de-
crease. We observe slightly worse performance also when using di-nucleotide-
based encoding, suggesting that the model is over-regularized with the ad-
dition of dropout. However, dropout might still be a relevant option for the
di-nucleotide based encoding if the amount of data is relatively limited (see
Fig. 2A).

As many other transcription factors, JunD sites are predominately local-
ized in accessible regions in the genome, for instance as assayed via DNase-seq
[15]. To investigate this further, we set out to predict JunD binding from
the raw DNase cleavage coverage profile in 50 bp resolution extracted from
BAM files of two independent replicates simultaneously (from ENCODE and
ROADMAP, see Methods).

Raw read coverage obtained from BAM files is inherently biased, e.g.
due to differences in sequencing depths etc., which requires normalization in
order to achieve comparability between experiments. As a complementary
approach, data augmentation has been shown to improve generalization of
neural networks by increasing the amount of data by additional perturbed
examples of the original data points [16]. Accordingly, we compare TPM
normalization and Z score normalization of log(count + 1) in combination
with data augmentation by flipping the 5’ to 3’ orientation of the coverage
tracks. To test the effectiveness of normalization and data augmentation,
we swapped the input DNase experiments from ENCODE and ROADMAP
between training and test phase. The more adequate the normalization, the
higher we anticipate the performance to be on the test set.

We find that both TPM and Z score after log(count + 1) transformation
lead to improved performance compared to applying no normalization, with
the Z score after log(count+ 1) transformation yielding the best results (see
Fig. 2B). The additional application of data augmentation tends to slightly
improve the performance for predicting JunD binding from DNase-seq (see
Fig. 2B).

Next, we build a combined model for predicting JunD binding based on
the DNA sequence and DNase coverage tracks. To that end, we used the same
initial layers as for the order-3 DNA model and the DNase-specific models
using Z score after log(count+1)-normalization with orientation flipping. We
removed their output layers, concatenated the top most hidden layers, and
added a new sigmoid output layer. We trained the joint model from scratch

6

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


using randomly initialized weights for all layers and found that its perfor-
mance significantly exceeded the performance of the individual DNA and
DNase submodels, indicating that both ingredients contributed substantially
to the predictive performance (compare Fig. 2A-C).

As a means to inspect the plausibility of the results apart from summary
performance metrics (e.g. auPRC), Janggu features a built-in genome track
plotting functionality that can be used to visualize the agreement between
predicted and known binding sites, or the relationship between the predic-
tions and the input coverage signal for a selected region (Fig. 2D). Input im-
portance attribution using integrated gradients [12] additionally highlights
the relevance of sequence features for the prediction, which in the case of
the JunD prediction task reveals sequence patches reminiscent of the known
JunD binding motif (with the canonical sequence motif TGACTCA) close to
the center of the predicted peak (Fig. 2D).

Predicting chromatin profiles from genomic sequences

Predicting the function of non-coding sequences in the genome remains a
challenge. In order to address this challenge and assess the functional rel-
evance of non-coding sequences and sequence variants, multiple deep learn-
ing based models have been proposed. These models learn the genomic se-
quence features that give rise to chromatin profiles such as transcription
binding sites, histone modification signals or DNase hypersensitive sites. We
adopted two published neural network models that are designed for this pur-
pose, which have been termed DeepSEA and DanQ [4, 17]. We rebuilt these
models using the Janggu framework to predict the presence (or absence) of
919 genomic and epigenetic features, including DNase hypersensitive sites,
transcription factor binding events and histone modification marks, from the
genomic DNA sequence. To that end, we gathered and reprocessed the same
features, making use of Janggu’s pre-processing functionality [4]. Both pub-
lished models were adapted to scan both DNA strands simultaneously in the
first layer rather than just the forward strand as this leads to slight perfor-
mance improvements (see DnaConv2D layer, Janggu documentation). Then
we assessed the performance of the different models by considering different
context window sizes (500bp, 1000bp and 2000bp) as well as different one-hot
encoding representations (based on mono-, di- and tri-nucleotide content).

First, as reported previously [17], we confirm that the DanQ model con-
sistently outperforms the DeepSEA model regardless of the context window

7

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


size, one-hot encoding representation and features type (e.g. histone mod-
ification, DNase hypersensitive sites and TF binding sites) (see Fig. S.1).
Second, in line with previous reports [6, 4], we find the performance for his-
tone modifications and histone modifiers (e.g. Ezh2, Suz12, etc.) to benefit
from extending the context window sizes (see Fig. 3A and S.1) By contrast,
elongating the context window yields similar performance for accessible sites
and transcription factor binding-related features.

Third, higher-order sequence encoding influences predictions for histone
modification, DNase and TF binding associated features differently. For
histone modification predictions we observe similar performance for higher-
order and mono-nucleotide based one-hot encoding higher-order and mono-
nucleotide based one-hot encoding (see Fig. 3B,C). For the DNase acces-
sibility we observe slight but consistent improvements. Half of the DNase
associated features exhibit at least a 4% auPRC increase between the mono-
and tri-nucleotide representation (see Fig. 3D). Finally, for the majority of
transcription factor binding predictions we find mild or substantial improve-
ments (see Fig. 3E). Among the most prominent performance improvements
we obtain Nrsf, Pol3, Sp2, etc. (see Fig. 3B).

Predicting CAGE-signal at promoters

Finally, we used Janggu for the prediction of promoter usage of protein cod-
ing genes. Specifically, we built a regression application for predicting the
normalized CAGE-tag counts at promoters of protein coding genes based
on chromatin features (DNase hypersensitivity and H3K4me3 signal) and/or
DNA sequence features. Due to the limited amount of data for this task, we
pursue a per-chromosome cross-validation strategy (see Methods).

We trained a model using only the DNA sequence as input with different
one-hot encoding orders. Consistent with our JunD prediction analysis, we
observe that the use of higher-order sequence features markedly improves
the average Pearson’s correlation from 0.533 to 0.559 and 0.585 for mono-
nucleotide features compared to di- and tri-nucleotide based features, re-
spectively (see Tab. 1). Predictions from chromatin features alone yield a
substantially higher average Pearson’s correlation of 0.777 compared to using
the DNA sequence models (see Tab. 1).

Similar to the previous sections, we concatenate the individual top most
hidden layers and add new output layer to form a joint DNA and chromatin
model. Consistent with our results from the JunD prediction, the Pearson’s

8

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


correlation between observed and predicted values increases for the combined
model (see Tab. 1 and Fig. 4), even though the difference seems to be
subtle in this scenario. The results also show that chromatin features vastly
dominate the prediction accuracy compared to the contribution of the DNA
sequence. This is expected due to the fact that the DNA sequence features
are collected only from a narrow window around the promoter. On the other
hand, the chromatin features reflect activation not only due to the local
context, but also due to indirect activation from distal regulatory elements,
e.g. enhancers.

Discussion

We present a novel python library, called Janggu, that facilitates deep learn-
ing in genomics. The library includes dataset objects that manage the ex-
traction and transformation of coverage information as well as fetching bio-
logical sequence directly from a range of commonly used file types, including
FASTA, BAM or BIGWIG. These dataset objects may be consumed directly
with numpy-compatible deep learning libraries, e.g. keras, due to the fact
that they mimic a minimal numpy interface, which in turn reduces the soft-
ware engineering effort concerning the data acquisition for a range of deep
learning applications in genomics. Janggu additionally facilitates utilities to
monitor the training, performance evaluation and interpretation. For exam-
ple, model prediction or features can be inspected using a built-in genome
browser or they may be exported to BIGWIG files for further investigation.
Input feature importance can be analyzed using integrated gradient and vari-
ant effects may assessed for a given VCF format file.

We have demonstrated the use of Janggu for three case studies 1) that
required different file formats (FASTA, BAM, BIGWIG, BED and GFF), 2)
different pre-processing and data augmentation strategies, 3) that demon-
strated the advantage of one-hot encoding of higher-order sequence features
(representing mono-, di-, and tri-nucleotide sequences), 4) for a classifica-
tion and regression task (JunD prediction and published models) and a re-
gression task (CAGE-signal prediction) and utilizing per-chromosome cross-
validation. This illustrates our tool is readily applicable and flexible to ad-
dress a range of questions allowing users to more effectively concentrate on
testing biological hypothesis.

Throughout the use cases we confirmed that higher-order sequence fea-

9

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


tures improve deep learning models, because they simultaneously convey in-
formation about the DNA sequence and shape [18]. While, they have been
demonstrated to outperform commonly used position weight matrix-based
binding models [19], they have received less attention by the deep learning
community in genomics. Even though mono-nucleotide-based one-hot en-
coding approach captures higher-order sequence features to some extent by
combining the sequence information in a complicated way through e.g. multi-
ple convolutional layers [13], our results demonstrate that it is more effective
to capture correlations between neighbouring nucleotides at the initial layer,
rather than to defer this responsibility to subsequent convolutional layers.

Janggu also exposes variant effect prediction functionality, similar as
Kipoi and Selene [10, 11], that allow to make use of the higher-order se-
quence encoding.

Conclusion

We present Janggu, a novel python library that facilitates deep learning in
genomics.

• Janggu provides reusable dataset components that can be used in a
unified and flexible way to set up deep learning applications in genomics
in a variety of ways, which we have demonstrated in this article. These
dataset objects are not tied to a specific machine learning library, but
can be consumed with a range of popular frameworks, including keras
or scikit-learn.

• Coverage tracks from BAM, BIGWIG or BED can be transformed and
normalization. In addition, we have demonstrated that data augmen-
tation might further improve the generalization of models based on
coverage data.

• Janggu introduces higher-order sequence encoding based on e.g. di- or
tri-nucleotides. We show that the new encoding generally improves the
sequence based models.

• Janggu provides a number of evaluation-centered utilities that facili-
tate the interpretation of the models, including by inspection of the
results in the built-in genome browser or by exporting the results to

10

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


BIGWIG files, by facilitating integrated gradient to highlights impor-
tant input features or by screening for variants that potentially affect
the features occurrence (e.g. TF binding). We expect improved ac-
curacies for variant effect predictions through the use of higher-order
sequence encodings.

Methods

Dataset and Evaluation for JunD prediction

We downloaded JunD peaks (ENCFF446WOD, conservative IDR thresh-
olded peaks, narrowPeak format), and raw DNase-seq data (ENCFF546PJU,
Stam. Lab, ENCODE; ENCFF059BEU Stam. Lab, ROADMAP, bam-
format) for human embryonic stem cells (H1-hesc) from the encodeproject.org
and the hg38 reference genome.

We defined all chromosomes as training chromosomes except for chr2 and
chr3 which are used as validation and test chromosomes, respectively. The
region of interest was defined as the union of all JunD peaks extended by 10kb
with a binning of 200 bp. Each 200bp-bin is considered a positive labels if it
overlaps with a JunD peak. Otherwise it is considered a negative example.
For the DNA sequence, we further extended the context window by +/- 150
bp leading to a total window size of 500 bp. Similarly, for the DNase signal,
we extracted the coverage in 50 bp resolution adding a flanking region of +/-
450 bp to each 200 bp window which leads to a total input window size of
1100bp. Dataset normalization and data augmentation was performed using
Janggu dataset objects.

We implemented the architectures given in Table S.1 and S.2 for the
individual models. The individual submodels were combined by removing
the output layer, concatenating the top-most hidden layers and adding a
new output layer.

Training was performed using a binary cross-entropy loss with AMSgrad
[20] for at most 30 epochs using early stopping monitored on the validation
set with a patience of 5 epochs. We trained each model 5 times with random
initialization in order to assess reproducibility. performance were measured
on the independent test chromosome using the area under the precision recall
curve (auPRC).

11

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


Dataset and Evaluation of published models

Following the instructions of Zhou et. al [4], we downloaded the human
genome hg19 and the same 919 features in narrowPeak format from EN-
CODE and ROADMAP and implemented the neural network architecture
accordingly using keras and janggu.

All genomic regions used to train the original DeepSEA model (allTFs.pos.bed.tar.gz)
were downloaded from http://deepsea.princeton.edu/. Following their pro-
cedure, all regions on chromosomes 8 and 9 were assigned to the test set,
while the remaining regions were used for training and validation.

We downloaded the narrowPeak files from the URLs listed in Supplemen-
tary table 1 of Zhou et. al [4], adapting broken links where necessary.

We implemented DeepSEA as described in Zhou et. al [4] and DanQ
as described in Quang et. al [17]. In addition, the models were adapted
to scan both DNA strands rather than only the forward strand using the
DnaConv2D layer, available in the Janggu library. For our investigation, we
compared different context window sizes 500bp, 1000bp and 2000bp as well
as mono-, di- and tri-nucleotide based sequence encoding.

The models were trained using AMSgrad [20] for at most 30 epochs using
early stopping with a patience of 5 epochs.

We evaluated the performance using the auPRC on the independent test
regions.

Dataset and Evaluation for CAGE-tag prediction

For the CAGE-tag prediction we focused on human HepG2 cells. We down-
loaded samples for CAGE (ENCFF177HHM, bam-format), DNase (ENCFF591XCX,
bam-format) and H3K4me3 (ENCFF736LHE, bigwig-format) from the EN-
CODE project. Moreover, we used the hg38 reference genome and extracted
the set of all protein coding gene promoter regions (200 bp upstream from
the TSS) from GENCODE version V29 which constitute the ROI.

We loaded the DNA sequence using a +/- 350bp flanking window. For
CAGE, DNase and H3K4me3, we summed the signal for each promoter using
flanking windows of 400 bp, 200 bp and 200 bp to each dataset, respectively.
The promoter signals for each feature were subsequently log-transformed
using a pseudo-count of one and then Z score normalized.

The DNA and chromatin-based models are summarized in Tab. S.3 and
S.4. Furthermore, the joint model is built by concatenating the top most

12

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


hidden layers and adding a new output layer. We pursued a cross-validation
strategies where we trained a model on genes of all chromosomes but one
validation autosome, repeating the process for each autosome. Genes on
chromosome 1 were left out entirely from the cross-validation runs and were
used for the final evaluation. The models were trained using mean absolute
error loss with AMSgrad [20] for at most 100 epochs using early stopping
with a patience of 5 epochs.

For the evaluation of the model performance, we used the Pearson’s corre-
lation between the predicted and observed CAGE-signal on the test dataset.

Software availability

Janggu is freely available using the pypi echosystem and via github under
a GPL-v3 license. A comprehensive documentation, including tutorials, can
be found at https://janggu.readthedocs.io.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The authors wish to thank Jonathan Ronen for valuable comments on the
manuscript.

References

[1] Angermueller, C., Pärnamaa, T., Parts, L., Stegle, O.: Deep learning
for computational biology. Molecular systems biology 12(7), 878 (2016)

[2] Eraslan, G., Avsec, Ž., Gagneur, J., Theis, F.J.: Deep learning: new
computational modelling techniques for genomics. Nature Reviews Ge-
netics, 1 (2019)

[3] Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the
sequence specificities of dna-and rna-binding proteins by deep learning.
Nature biotechnology 33(8), 831 (2015)

13

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

https://janggu.readthedocs.io
http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


[4] Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants
with deep learning–based sequence model. Nature methods 12(10), 931
(2015)

[5] Kelley, D.R., Snoek, J., Rinn, J.L.: Basset: learning the regulatory
code of the accessible genome with deep convolutional neural networks.
Genome research (2016)

[6] Kelley, D.R., Reshef, Y.A., Bileschi, M., Belanger, D., McLean, C.Y.,
Snoek, J.: Sequential regulatory activity prediction across chromosomes
with convolutional neural networks. Genome research 28(5), 739–750
(2018)

[7] Singh, R., Lanchantin, J., Robins, G., Qi, Y.: Deepchrome: deep-
learning for predicting gene expression from histone modifications.
Bioinformatics 32(17), 639–648 (2016)

[8] Angermueller, C., Lee, H.J., Reik, W., Stegle, O.: Deepcpg: accu-
rate prediction of single-cell dna methylation states using deep learning.
Genome biology 18(1), 67 (2017)

[9] Budach, S., Marsico, A.: pysster: Classification of biological sequences
by learning sequence and structure motifs with convolutional neural net-
works. Bioinformatics 1, 3 (2018)

[10] Avsec, Z., Kreuzhuber, R., Israeli, J., Xu, N., Cheng, J., Shrikumar,
A., Banerjee, A., Kim, D.S., Urban, L., Kundaje, A., et al.: Kipoi:
accelerating the community exchange and reuse of predictive models for
genomics. bioRxiv, 375345 (2018)

[11] Chen, K.M., Cofer, E.M., Zhou, J., Troyanskaya, O.G.: Selene: a
pytorch-based deep learning library for sequence-level data. bioRxiv,
438291 (2018)

[12] Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep
networks. In: Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, pp. 3319–3328 (2017). JMLR. org

[13] Greenside, P., Shimko, T., Fordyce, P., Kundaje, A.: Dis-
covering epistatic feature interactions from neural net-
work models of regulatory DNA sequences. Bioinformat-
ics 34(17), 629–637 (2018). doi:10.1093/bioinformatics/bty575.

14

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


http://oup.prod.sis.lan/bioinformatics/article-
pdf/34/17/i629/25702257/bty575.pdf

[14] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov,
R.: Dropout: a simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research 15(1), 1929–1958 (2014)

[15] Thurman, R.E., Rynes, E., Humbert, R., Vierstra, J., Maurano, M.T.,
Haugen, E., Sheffield, N.C., Stergachis, A.B., Wang, H., Vernot, B., et
al.: The accessible chromatin landscape of the human genome. Nature
489(7414), 75 (2012)

[16] Simard, P.Y., Steinkraus, D., Platt, J.C., et al.: Best practices for convo-
lutional neural networks applied to visual document analysis. In: Icdar,
vol. 3 (2003)

[17] Quang, D., Xie, X.: Danq: a hybrid convolutional and recurrent deep
neural network for quantifying the function of dna sequences. Nucleic
acids research 44(11), 107–107 (2016)

[18] Zhou, T., Shen, N., Yang, L., Abe, N., Horton, J., Mann, R.S., Busse-
maker, H.J., Gordân, R., Rohs, R.: Quantitative modeling of transcrip-
tion factor binding specificities using dna shape. Proceedings of the Na-
tional Academy of Sciences 112(15), 4654–4659 (2015)

[19] Keilwagen, J., Grau, J.: Varying levels of complexity in transcription
factor binding motifs. Nucleic acids research 43(18), 119–119 (2015)

[20] Reddi, S.J., Kale, S., Kumar, S.: On the convergence of adam and be-
yond. In: International Conference on Learning Representations (2018).
https://openreview.net/forum?id=ryQu7f-RZ

Figures

Tables

15

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


Figure 1: Janggu schematic overview. Janggu helps with data aquisition
and evaluation of deep learning models in genomics. Data can be loaded from
various standard genomics file formats, including FASTA, BED, BAM and
BIGWIG. The output predictions can be converted back to coverage tracks
and exported to BIGWIG files.

16

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


D

Figure 2: Performance evaluation of JunD prediction. A) Performance
comparison of different one-hot encoding orders. Order 1, 2, and 3 corre-
spond to mono-, di- and tri-nucleotide based one-hot encoding, respectively.
B) Performance comparison of different normalization and data augmenta-
tion strategies applied to the read counts from the BAM files. Each model
was trained from scratch for five times. We compared 1) No normalization
(”None”), 2) TPM normalization, and 3) Z score of log(count + 1). More-
over, data augmentation consisted of 1) no augmentation (”None”) or 2)
randomly flipping 5’ to 3’ orientations. Each model was trained from scratch
for five times. C) Performance for JunD prediction for the combined model
that takes DNA and DNase coverage into account. D) Example of a JunD
binding site. The top most panel shows predicted, true JunD binding site as
well as the input DNase coverage around the peak. Underneath integrated
gradients further highlights the importance of a site reminiscent of the known
JunD motif (Jaspar motif: MA091.1).

17

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: Comparison of DanQ model variants. A) auPRC compari-
son for the context window sizes 500bp and 2000bp for tri-nucleotide based
sequence encoding. The mark color indicates the feature types: DNase hyper-
sensitive sites, histone modifications and transcription factor binding assays.
B) auPRC comparison for tri- and mono-nucleotide based sequence encoding
for a context window of 2000bp. Color coding as above. C-E) Differences in
auPRC between tri- and mono-nucleotides for histone modifications, DNase
accessibility and transcription factor binding, respectively.

Table 1: Average Pearson’s correlation across the cross-validation runs be-
tween observed and predicted normalized CAGE-counts. The models used
either DNA or Chromatin (DNase and H3K4me3) or both simultaneously as
input. Furthermore, different one-hot encoding orders were considered for
the DNA sequence.
Model DNA order mean Pearson’s corr. Stand. Error
Chromatin only - 0.777 2.97 × 10−5

DNA only 1 0.533 4.38 × 10−3

DNA only 2 0.559 8.40 × 10−3

DNA only 3 0.585 6.47 × 10−3

DNA & Chromatin 1 0.775 6.01 × 10−4

DNA & Chromatin 2 0.783 5.13 × 10−4

DNA & Chromatin 3 0.784 5.15 × 10−4

18

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


Figure 4: Agreement between predicted and observed CAGE sig-
nal. The example illustrates the agreement between predicted and observed
CAGE signal on the test chromosome for the joint DNA-chromatin model.
The DNA was represented as tri-nucleotide based one-hot encoding.

19

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


Supplementary Notes

July 15, 2019

Table S.1: DNA model for JunD prediction. DnaConv2D constitutes a wrap-
per that allows to scan both DNA strands with the same kernels.

Conv2D(10, (11, 1), ’relu’)
DnaConv2D()
MaxPool2D(30, 1)
BatchNormalization()
Conv2D(8, (3, 1), ’relu’)
GlobalMaxPooling()
BatchNormalization()
Dense(1, ’sigmoid’)

Table S.2: DNase model for JunD prediction.
Conv2D(10, (5, 2), ’relu’)
MaxPool2D(2, 1)
BatchNormalization()
Conv2D(5, (3, 1), ’relu’)
GlobalMaxPooling()
BatchNormalization()
Dense(1, ’sigmoid’)

1

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


Table S.3: DNA model for CAGE-tag prediction. λ was set to 0.0 and 0.2
for order one or higher order sequence features (two and three).

Dropout(λ)
Conv2D(10, (15, 1), ’relu’)
MaxPool2D(5, 1)
BatchNormalization()
Conv2D(8, (5, 1), ’relu’)
GlobalMaxPooling()
BatchNormalization()
Dense(1, ’linear’)

Table S.4: Chromatin model for CAGE-tag prediction.
Concatenate()([dnase signal, h3k4me3 signal])
BatchNormalization()
Dense(1, ’linear’)

2

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/


Figure S.1: DeepSEA and DanQ comparison. Performance compari-
son of DeepSEA and DanQ on the same benchmark data measured by the
area under the precision-recall curve. The comparison dissects performances
for different genomic features (Dnase, histone modifications and TF bind-
ing sites), different context window sizes (500bp, 1000bp and 2000bp) and
different sequence encoding orders (order one, two and three).

3

.CC-BY-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/700450doi: bioRxiv preprint first posted online Jul. 14, 2019; 

http://dx.doi.org/10.1101/700450
http://creativecommons.org/licenses/by-nd/4.0/

