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Abstract

Peripheral membrane proteins with intrinsic curvature can act both as sensors of membrane curvature
and shape modulators of the underlying membranes. A well-studied example of such proteins is the
mechano-chemical GTPase dynamin that assembles into helical filaments around membrane tubes and
catalyzes their scission in a GTPase-dependent manner. It is known that the dynamin coat alone, without
GTP, can constrict membrane tubes to radii of about 10 nanometers, indicating that the intrinsic shape and
elasticity of dynamin filaments should play an important role in membrane remodeling. However, molecular
and dynamic understanding of the process is lacking. Here, we develop a dynamical polymer-chain model
for a helical elastic filament bound on a deformable membrane tube of conserved mass, accounting for
thermal fluctuations in the filament and lipid flows in the membrane. We obtained the elastic parameters
of the dynamin filament by molecular dynamics simulations of its tetrameric building block and also from
coarse-grained structure-based simulations of a 17-dimer filament. The results show that the stiffness of
dynamin is comparable to that of the membrane. We determine equilibrium shapes of the filament and
the membrane, and find that mostly the pitch of the filament, not its radius, is sensitive to variations in
membrane tension and stiffness. The close correspondence between experimental estimates of the inner
tube radius and those predicted by the model suggests that dynamin’s “stalk” region is responsible for its
GTP-independent membrane-shaping ability. The model paves the way for future mesoscopic modeling of
dynamin with explicit motor function.

1 Introduction

The shape of biological membranes is controlled by proteins that stabilize and/or generate membrane cur-
vature [1]. During the well-studied process of clathrin-mediated endocytosis, protein scaffolds with a curved
membrane binding surface are recruited to clathrin-coated pits and superimpose their curvature to the un-
derlying membrane [2]. As a paradigm for this mechanism, Bin/amphiphysin/Rvs(BAR)-domain containing
proteins form dimeric modules of various curvatures that drive different stages of endocytosis. Such membrane
reshaping processes are accomplished passively, i.e. without the input of energy. Conversely, the final stage of
endocytosis is catalyzed by the mechano-chemical enzyme dynamin that assembles at the endocytic neck and
uses the energy of GTP hydrolysis for scission. Dynamin can be considered as a chimeric protein. While it
acts as a polymeric structural scaffold that coils around the membrane tube and stabilizes membrane curva-
ture, it also works as a motor protein that generates the active forces required to perform membrane scission.
Understanding the mechanical properties of the dynamin filament is crucial to uncover how it transmits motor
force toward the constriction and eventual scission of the underlying membrane template.
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Dynamin’s structure and function in membrane scission have been extensively studied, as summarized in
the detailed review [3]. Although endocytosis involves a complex orchestration of dozens of different proteins
[4], it is remarkable that, in the presence of GTP, dynamin alone is sufficient to constrict the membrane,
create torque, and perform scission in vitro [5, 6]. Through a combination of cryo-electron microscopy [7, 8]
and X-ray crystallography [9, 10, 11] the structure of the dynamin oligomer on a membrane template has
been elucidated (Fig. 1). Two-fold symmetric dimers of dynamin are formed by a central interface in the
stalk. These dimers further assemble into tetramers and polymers through two additional stalk interfaces (the
tetramer interface [11]). The resulting stalk filament has an intrinsic helical shape and acts as a scaffold that
stabilizes membrane curvature. The pleckstrin homology (PH) domains protrude from the filament toward
the membrane and mediate binding to phosphoinositides at the lipid surface [12, 13]. Opposite the PH
domains are the motor domains which are composed of a GTPase domain (G-domain) and a bundle signaling
element (BSE). GTP-induced dimerization between G-domains of neighboring turns triggers GTP hydrolysis
and results in a conformational change of the BSE relative to the G-domain [6, 14]. The resulting powerstroke
is thought to pull adjacent turns of the filament along each other, leading to the further constriction of the
filament and of the underlying membrane. Progress in high-speed atomic force microscopy (HS-AFM) recently
allowed direct observation of membrane constriction and fission by dynamin at sub-10 nanometer resolution
in real time [15, 16].

Because of its importance in cell biology and its unique properties, dynamin has attracted the attention
of theoretical biophysicists [17, 18] and has been discussed in the context of the theory of active soft matter
[18, 6]. All-atom molecular dynamics (MD) simulations for this protein have been performed [9, 11]. Mesoscopic
models based on continuum elasticity theory [17, 19, 18, 20, 21] and particle-based dynamics [22, 23] have been
constructed and investigated. Nonetheless, a dynamic description of dynamin operation, putting together its
features as a structural and a motor protein, has not yet been reached.

The simplest mechanical description of protein filaments is through the elasticity theory [24]. Although
dynamin’s helical geometry and membrane template hinder direct measurement of the elastic parameters,
biophysical measurements have shed some light on these factors. Early experiments provided evidence that
the stalk filament’s intrinsic curvature confers dynamin’s ability to tubulate flat membranes even in the absence
of motor activity [5]. More recently [25], the analysis of an optical tweezer setup using the elastic theory of
membrane tubes [26, 27] suggested that the spontaneous curvature was similar to the curvature observed
in crystal/cryo-EM structures. Studies have also highlighted the role of membrane tension in accelerating
membrane scission [28].

Theoretical models typically treat dynamin as a elastic rod [24] and the membrane as an elastic sheet
[29]. Since the knowledge of dynamin filament’s stiffness is lacking, theoretical investigations of such elastic
models have chosen either the membrane [20] or the filament [17, 19, 25, 30, 31] as predominantly stiff. In a
previous work by some of the authors [9], the free energy surface of a modeled tetramer was computed, and
it predicted that the stalk filament should have significant intrinsic curvature and twist. However, filament’s
elastic parameters were not yet quantified.

An important aspect of the conjectured constriction mechanism of scission is the flexibility of the dynamin
scaffold. As a constricting scaffold (Fig. 1A), the dynamin filament must not be so prohibitively stiff that it
prevents its own tightening. On the other hand, dynamin must be sufficiently stiff so that it can spontaneously
(i.e. in the absence of GTP) remodel membranes into tight tubes of 10-20 nanometers in diameter [5, 25]. In
this paper, we focus on passive elastic properties of dynamin filaments, essentially in absence of GTP, and on
the interactions between these filaments and membrane tubes.

We first formulate in section 2 a continuum elastic-theory description for both the dynamin filament and
the membrane. The filament is characterized by spontaneous curvature and twist and therefore tends to form
helices that coil around an elastic membrane tube. In section 3, we report the results of molecular dynamics and
coarse-grained simulations that allow us to determine principal elastic parameters - the spontaneous curvature
and twist, together with the stiffness constants for variations of the normal and geodesic curvatures and of
the twist, and the stretch modulus - for dynamin. It is interesting that the filament is found to have a large
spontaneous twist. We identify a soft normal mode reflecting flexibility in the tetramer interface that explains
how the stalk filament can adapt to varying curvature.

Next, the continuum theory is used in section 4 to approximately determine equilibrium shapes of the
filament on a membrane tube. We find that the lumen radius of a dynamin-covered membrane tube varies
only a little, 10-12 nanometers, over a range of physiologically-relevant stiffness and tension values of the
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Figure 1: Geometry of the dynamin filament on a membrane tube. A) Cartoon of a functional dynamin filament
consistent with X-ray crystallography and cryo-EM. In presence of GTP, motor domains (orange/red) mediate
interactions between turns and produce torque (arrows). B) The stalk filament corresponds to the modeled
elastic ribbon. C) The coordinates and variables employed in the continuous elastic description. Membrane
tube in yellow and elastic ribbon in cyan. D) Apolar symmetry of the dynamin dimer. The PH domain
(green) has affinity for phosphoinositides and is oriented to the membrane tube while the motor domains point
away from the membrane. The filament is formed by connections between the stalk domains (blue). E) The

Darboux frame for the filament. The vector ξ̂ points along the filament, while the vector n̂1 is normal to
both the tube axis and ξ̂. The unit vector orthogonal to the plane defined by the first two vectors is n̂2. The
normal curvature κ, twist τ , and geodesic curvature σ correspond to rotations about the axes n̂2, ξ̂, and n̂1,
respectively.

membrane. On the other hand, it is found that the membrane can strongly compress the filament in the axial
direction. This causes the pitch of the filament to be sensitive to the membrane parameters, undergoing a
transition from a compressed phase to an expanded phase as the membrane tension is increased.

In section 5, we construct the polymer-chain model for the filament on deformable membrane tubes. Here,
coupled evolution equations determining the dynamics of the filament and the membrane are derived and
the estimates of involved characteristic time scales are obtained. The results of numerical simulations for the
polymer model are presented in section 6. They corroborate the findings from the continuum theory and,
additionally, allow us to consider in detail both the equilibrium shapes and the relaxation transients leading
to such equilibrium states. The effects of thermal fluctuations are investigated as well.

2 The continuum description

Our primary goal is to develop a polymer chain model of the dynamin filament that is amenable to Brownian
dynamics simulations. We begin by formulating a continuum elastic description that serves as the theoretical
ground for the polymer chain model. Additionally, the continuum model will be used to provide an analytical
explanation for the filament shape changes seen in numerical simulations.

2.1 Elastic energy of the filament

The geometry of the dynamin filament on a membrane tube is illustrated in Fig. 1. The structural part of
the dynamin polymer, referred to as the stalk filament (Fig. 1B), will be modeled by as a continuous elastic
ribbon. This ribbon is anchored to the membrane by PH domains that are connected to the stalk through
flexible linkers. As others have pointed out [20], the apolar symmetry of the dimer means that the ribbon
should on average be oriented orthogonal to the surface of the membrane tube. A recent study has proposed
that upon GTP-dependent cross-dimerization this apolar symmetry might be broken [21], but we consider in
the present study only the situation without GTP, where GTPase-BSE domains (Fig. 1D) are not dimerized
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and free to move. Because the GTPase-BSE domains are not dimerized and the linkers of the PH domains
are flexible, we suppose that contributions of these other domains into the bending rigidity of the dynamin
filament can be neglected.

According to [24], the shape of a ribbon can be specified by the dependence of its two principal curvatures
κ and σ and of the twist τ on the coordinate ξ defined as the arc length of the filament measured along itself,
κ = κ(ξ), σ = σ(ξ), τ = τ(ξ). For the dynamin filament, it is convenient to choose κ as the local normal
curvature, i.e. the curvature in the plane that is tangential to the ribbon and orthogonal to the tube surface.
Then, σ represents the geodesic curvature which specifies deviation from this plane (Fig. 1E). The arc length
of the filament L is fixed and the origin is taken as the midpoint of the filament. The positions of the filament
ends along the membrane axis are ±L/2 = z(ξ = ±L/2).

In the elastic approximation, the deformation energy of the filament is [24]

EF =
1

2

∫ L/2
−L/2

[βσ2 + ακ (κ− κ0)
2

+ ατ (τ − τ0)
2
]dξ (1)

where κ0 and τ0 are the spontaneous curvature and twist of a free filament. The parameters β, ακ and ατ are
the elastic moduli of the filament with respect to the geodesic and normal curvatures, and the twist. It should
be noted that the geodesic curvature does not represent an independent property of a ribbon [24]. It can be
expressed in terms of the normal curvature and the twist as

σ = ρ
∂τ

∂ξ
− h∂κ

∂ξ
(2)

where the local curvature radius of the helical ribbon, ρ, and its local pitch, h, are given by

ρ =
κ

κ2 + τ2
, h =

τ

κ2 + τ2
. (3)

Note that the structural pitch p, defined as the distance between successive turns and often used to characterize
the filament, is p = 2πh. The inverse relations are

κ =
ρ

ρ2 + h2
, τ =

h

ρ2 + h2
. (4)

Additionally, the twist angle θ, defined as

θ =
τ√

κ2 + τ2
=

h√
ρ2 + h2

= sin−1
(

∆z

∆ξ

)
, (5)

can be introduced. Using Eq. 2, the elastic energy of the filament can be finally written as

EF =
1

2

∫ L/2
−L/2

[β(
κ

κ2 + τ2
∂τ

∂ξ
− τ

κ2 + τ2
∂κ

∂ξ
)2 + ακ (κ− κ0)

2
+ ατ (τ − τ0)

2
]dξ. (6)

The first term, arising from the geodesic curvature, leads to coupling of the normal curvature and the twist
between the elements of the filament. Numerical values of spontaneous curvature and twist, as well as the
three elastic moduli, will be estimated in Section 3.

2.2 Elastic energy of the membrane tube

Locally, the membrane surface is described by its two principal curvatures c1 and c2. According to Helfrich
[29], its elastic energy is given by

EM =

∫
S

[
γ +

χ

2
(c1 + c2 −H0)2 + χ̄c1c2

]
ds (7)

where γ is the surface tension coefficient, χ is the bending stiffness of the membrane, χ̄ is the Gaussian curvature
modulus, and H0 is the spontaneous curvature. The integration is performed along the entire surface S of the
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membrane. The spontaneous curvature of the free membrane will be taken to be zero. It can be noticed that
terms of the form c1c2 do not generate any local forces for the considered axisymmetric geometry. Therefore,
we will always drop such terms (see Supplementary Eq. 61 and also a general derivation in the review [32]).

For a membrane tube aligned along the z-axis and with slowly varying radius R(z), the first principal
curvature can be chosen as the curvature in the horizontal cross-section (x, y plane) and the second curvature
along the symmetry axis z, so that

c1 =
1

R
, c2 =

∂2R

∂z2
. (8)

Note that the above expression for c2 is approximate and assumes that (dR/dz)2 � 1. The validity of this
condition is verified in Section 6.2. Hence, the Helfrich elastic energy of a membrane tube of length L is

EM = 2π

∫ L/2

−L/2
R

[
γ +

χ

2R2
+
χ

2

(
∂2R

∂z2

)2
]
dz. (9)

Physically, the membrane is a lipid bilayer and the radius R corresponds to the local distance from the tube
axis to the middle surface of the bilayer.

Several methods exist for measuring the membrane bilayer elastic modulus χ (Eq. 7), these are reviewed
in [33]. The parameter χ can vary depending on factors such as temperature, lipid composition and solvent.
It has been demonstrated that the lipid composition of the clathrin-coated pit and neck is in flux during
endocytosis [34], suggesting that there is likely a range of membrane rigidities encountered by dynamin during
its function. A relevant in vitro study [25] of dynamin polymerization used membranes with a bending rigidity
of χ ≈ 16 kBT. In our study, the range of stiffnesses between this value and 24 kBT will be explored. Also
important is the membrane tension γ because this sets the equilibrium radius of the membrane tube Req in
the absence of protein [26]. This radius can be calculated by taking ∂EM/∂R = 0 (Eq. 9):

Req =

√
χ

2γ
. (10)

In this way, the tension γ can be used to tune the tube radius experimentally. During clathrin-mediated
endocytosis, tension is present from the cell membrane and additional forces are created by actin polymerization
[35, 4].

2.3 Coupling between the filament and membrane

Physically, coupling between the filament and the membrane is provided by attachment of PH domains of the
filament to phospholipids in the membrane. Even though an individual PH domain’s affinity for the membrane
can be low, high local concentration of PH domains drives them toward the membrane [12, 8].

There are two different coupling effects. First, due to the two-fold symmetry of the dynamin dimer, the
ribbon tends to be locally orthogonal to the membrane. In our model, we have assumed that such orientation
adjustment is instantaneous and is always maintained. Second, the filament is pinned to the membrane and
cannot move away from it. This is taken into account by introducing an interaction energy penalty that
increases steeply if a deviation occurs. Because the real filament has a finite thickness, this interaction energy
should reach its minimum at r = R+ a where a is the distance between the center of the membrane bilayer to
the center of the filament. Cryo-EM structures suggest a = 8.5 nm [36, 11].

Hence, the coupling interaction energy is

Eint =
εint
2

∫ L/2
−L/2

(r(ξ)−R(ξ)− a)2dξ. (11)

Here, r(ξ) and R(ξ) are both measured relative to the axis of the tube, and R(ξ) refers to the radius of
the membrane tube at the position corresponding to the coordinate ξ along the filament. Formally, if the
dependences of κ and τ on the coordinate ξ are known, the vertical position z of the membrane element with
the coordinate ξ is

z(ξ) =

∫ ξ

0

τ√
κ2 + τ2

dξ. (12)

Therefore, R(ξ) = R(z(ξ)). The coefficient εint should be chosen large enough to ensure that significant
deviations of r from R+ a do not occur.
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Figure 2: Estimating principal elastic parameters for the stalk tetramer from explicit-solvent molecular
dynamics simulations. A) Architecture of the dynamin stalk tetramer. Interfaces 2 (dimer) and 1/3 (tetramer)
are indicated. B) The stalk domains of the tetramer comprise the simulated system. C) Time dependence of
curvature κ and twist τ over the explicit solvent trajectory. D) Distribution of distances d (squares) and its
Gaussian fit (solid line); d is the distance between the centers of mass of the dimers. E) Distributions of κ
(black triangles) and τ (red triangles), and their Gaussian fits (solid lines). F) Two-dimensional histogram of
κ and τ represented as a potential of mean force.

3 Estimation of elastic parameters from microscopic simulations

In this section, we relate the high resolution structural information available for the stalk filament with the
mesoscopic description of the filament as an elastic ribbon. The nearly identical structures of the stalk tetramer
inside a constricted stalk and of the isolated tetramer [8] suggest that constriction and relaxation of the filament
radius is mediated by only subtle motions within the tetramer.

The fundamental repeating unit in the filament is the stalk dimer, which is stabilized by interface 2,
while successive dimers connect together through two tetrameric interfaces 1 and 3 [11] (Fig. 2A). We expect
that the dimer interface should be relatively rigid compared to the tetrameric interface for the following
reasons: 1) Purified dynamin protein elutes as a dimer and higher oligomers but never monomers [9], 2)
crystal structures of other related proteins show a consistent interface 2 [9, 37, 38], and 3) the first eigenmode
of a principle component analysis of stalk tetramer simulations corresponds to bending/twisting about the
tetrameric interface (Supplementary Fig. S1). Changing the angle ϕ defined in Fig. 2A from 23◦ to 15◦,
changes the membrane’s inner lumen from 11 nm to 3 nm (Supplementary Fig. S1). An additional advantage
of this rigid dimer description is to provide a natural coarse-graining for the polymer model introduced in
Section 5.

3.1 All-atom MD simulations

In order to characterize the flexibility of the tetramer interface, we performed all-atom explicit-solvent molec-
ular dynamics simulations of the stalk tetramer (see Methods for details). These simulations are similar to
those in ref [9], but are initialized from the now available tetramer crystal structure [11].

Computational expense limits the calculations to a small piece of the filament (Fig. 2B), whereas the
elastic degrees of freedom κ and τ are defined for a long continuous ribbon. Thus, a way of mapping the
conformation of a tetramer onto κ and τ is needed. We do this by noting that a repeated, shape-conserving
coordinate transformation Θ (see Supplementary Section 2for details) always yields a helix. For a given
tetrameric interface, Θ can be found by computing the transformation necessary to move a dimer within a
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tetramer from its position to the least root-mean-squared-deviation (RMSD) fit to its partner dimer.
Thus, a given tetramer configuration provides a transformation Θ, and repeatedly applying Θ generates

a continuous helix with a particular radius r and pitch h. In turn, these r and h define the curvature κ and
the twist τ corresponding to that snapshot by using Eq 4. For example, the transformation Θ moving one
dimer onto the other in the tetramer crystal structure [11] creates the stalk filament shown in Fig. 1B. Further,
computing the distance between the centers of mass of the dimers gives local changes in the stretch d.

The potential of mean force of the tetramer viewed along either r and p or κ and τ had a single dominant
minimum (Fig. 2F). The elasticity of the stalk filament can be estimated from the distributions of stretching d,
bending κ, and twisting τ , observed in the simulations (Fig. 2D/E). At thermal equilibrium, the fluctuations
of local curvature and twist of a free filament (without the membrane) should obey Gaussian distributions (see
Supplementary Section 3for details)

P (κ) =
1√

2πσκ
exp[− (κ− κ0)2

2σ2
κ

] (13)

P (τ) =
1√

2πστ
exp[− (τ − τ0)2

2σ2
τ

] (14)

with the variances

σ2
κ =

kBT

ακd0
, σ2
τ =

kBT

ατd0
. (15)

Thus, the peaks of the Gaussian fits should provide the spontaneous curvatures and the dispersions should
give the elasticity moduli. Applying this to the MD simulation data, the numerical values shown in Table 1
were obtained.

The non-vanishing spontanous curvature κ0 means that dynamin has an intrinsic ability to bend the
membrane upon which it is bound, whereas the condition τ0 > 0 implies a right-handed helix is formed. The
small variation in the distances between centers of mass of the dimers d indicates that the filament is only
weakly stretchable or compressible (Figure 2D). Note that clustering d with either RMSD, κ, or τ was not
able to account for the small shoulder at d > 5.8 nm.

3.2 Structure-based coarse-grained simulations

The remaining elastic coefficient, i.e. the geodesic curvature modulus β, could not be determined from the MD
simulations for the tetramer. To find it, longer filament fragments were simulated in order to follow relative
changes between tetramers. As shown in Supplementary Section 4, this elastic modulus can be determined by
analyzing the correlation functions for fluctuations of the twist angle θ for a filament coiled over a rigid rod.
The correlation function has the form

C(∆ξ) ≡ 〈θ(ξ)θ(ξ + ∆ξ)〉 ∼ exp(−|ξ|/lθ), (16)

where the correlation length lθ for fluctuations of the twist angle about a stiff rod of radius ρ in the weak-twist
approximation is

lθ = r

√
β

ατ
. (17)

While a tetramer was sufficient to calculate the local twist, determining the correlation length of twist fluctu-
ations lθ requires a stalk filament longer than lθ.

In order to reach the necessary time scales to converge to the equilibrium distribution, we use a simplified
Cα representation of a 17-mer filament and a structure-based model (SBM) [39, 40]. Structure-based models

stretch curvature twist geodesic
k = 170 kBT·nm−2 ακ = 1200 kBT·nm ατ = 1100 kBT·nm β = 2860 kBT·nm

d0 = 5.6 nm κ0 = 0.058 nm−1 τ0 = 0.041 nm−1 σ0 = 0

Table 1: Elastic parameters of the dynamin filament
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(also termed Gō-models) define a known accessible structure as a global energetic minimum and have been
shown to capture the slow deformation modes defined by the network of inter-residue interactions [41].

The SBM for the filament was created using the tetramer crystal structure as the global minimum for
each tetramer. Next, tetramers were connected together into a filament by repeatedly tiling the tetrameric
interface, which created a helix with radius 17 nm, pitch 10 nm, and h = 1.6 nm [11] (Figure 3). Since there
is no explicit membrane representation, the rigid rod assumption inherent in Eq. 16 and the perpendicular
orientation assumed by the geodesic curvature were maintained by tightly, and identically, constraining the
radii of the subset of atoms shown as spheres in Fig. 3 relative to the tube axis. For this helix, the weak twist
approximation holds since h� r.

By analyzing the computation data, the value lθ = 5.0d0 was obtained through an exponential fit to the
correlation function C(τ(ξ)−τ(ξ+∆ξ)) (Figure 3). This correlation length leads to an estimate of the geodesic
curvature modulus β = 2.6ατ = 2860 kBT·nm.

3.3 Comparison with elastic properties of other polymers and of membrane

It is instructive to compare the calculated elastic moduli for the stalk filament in Table 1 with the stiffness
parameter of the of other biopolymers and the membrane. Ordinary materials have a Poisson ratio ν in the
range 0 < ν < 1/2 [24], which implies 2ακ/3 < ατ < ακ. This condition is satisfied by the calculated values
of ακ and ατ . Furthermore, note that the assumption that ακ = ατ is reasonably good, although we shall not
use it.

The persistence length lp of the stalk filament is determined by the normal curvature elastic modulus as
lp = ακ/kBT= 1.2 µm. For comparison, the persistence lengths for actin and microtubules are 17 µm and 5000
µm, respectively. Therefore, we find that dynamin filaments are much softer than these other biopolymers.
Such softness may be needed for the dynamin protein to act as a curvature sensor of the membrane. This is
consistent with the presence of a soft mode in the tetramer (Supplementary Fig. S1).

An experimental measurement of the persistence length of long, dynamin-coated membrane tubes yielded
a persistence length of 37 µm [42]. However, the above-defined correlation length refers to bending of free
filaments along the filament coordinate ξ, whereas the measured persistence length corresponded to bending of
dynamin-coated membrane tubes along their axial directions. The axial persistence length for the tubes may
be strongly influenced by dimerization of GTPase-BSE domains that leads to cross-links established between
the helical turns.

However, the dynamin filament should also constrict the membrane [25]. Therefore, the filament needs
only be sufficiently stiff to remodel its membrane template, with any further stiffness potentially hindering the
function. The relative stiffness of the stalk filament and the membrane can be compared by considering the
dimensionless ratio ακ/χp [25]. For a pitch of p =10 nm and the membrane bending stiffness χ = 20 kBT a
ratio of 6 is obtained, which is not much larger than one. This implies that the elasticities of both the filament
and the membrane have to be taken into account.

4 Equilibrium shapes of filament and membrane

The length of the dynamin filament can change due to polymerization and depolymerization processes. In fact,
since dynamin is decorating a uniform cylindrical membrane tube, the equilibrium state depending on dynamin
concentration is either completely covered or completely bare [25, 20]. Slightly above the polymerization
nucleation concentration, the growth of the dynamin filament will be however much slower than any other
relaxation processes of the filament/membrane system and the adiabatic approximation can be used. For
simplicity, in the present study we restrict ourselves to this adiabatic regime and consider the shapes of
filaments of fixed length. It should be however kept in mind that our results hold only on the intermediate
time scales, much shorter than the times associated with the filament growth or contraction.

If the length of the filament is fixed, the equilibrium state should correspond to the minimum of the total
energy E = EF + EM + Eint . Thus, the equilibrium shape of the filament occupying a part of a deformable
membrane tube is generally determined by the variational equations

δE

δκ(ξ)
=

δE

δτ(ξ)
= 0,

δE

δR(z)
= 0. (18)
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Figure 3: Estimating geodesic stiffness β for the stalk filament from coarse-grained molecular dynamics
simulations. (Top) The simulated 17-dimer filament used to determine the twist correlation function C(∆ξ).
Dimers are shown as alternating green and blue for clarity. The employed connection (17) between the
correlation length and β holds for an oriented stalk filament on a rigid rod. These requirements are implemented
by constraining the radii of all residues shown as beads to the fixed radius of 15 nm. (Bottom) The correlation
function of twist fluctuations as a function of the filament arc length: simulation data (circles) and its single
exponential fit (dotted line).

For a free membrane tube or free filament, the shapes can be easily determined with Eq. 18. We find that
a free filament takes the values of its spontaneous curvature κ0 and spontaneous twist τ0, giving a radius of
ρ = κ0/(κ

2
0 + τ20 ) = 11.5 nm and a pitch of 2πτ0/(κ

2
0 + τ20 ) = 51 nm. If such a filament were covering a

membrane tube, its radius would be R = ρ − a = 3 nm. A free membrane tube takes an equilibrium radius
Req that balances the bending stiffness and tension (Eq. 10). As a point of reference, experiments have varied
membrane stiffness χ between about 12 and 50 kBT and membrane tension γ between 0.005 to 0.025 kBT/nm2

[28]. For γ = 0.01 kBT/nm2 and χ = 20 kBT, Req = 32 nm.
When interactions are present, explicit equations (Eq. 18) can be derived and used to compute the equi-

librium shapes of the filament and the membrane. However, they turn out to be too complicated for closed
form solutions. Instead, detailed equilibrium shapes will be determined in Section 6.2 by direct numerical
integration of the evolution equations for the polymer model. Here, we will perform a simplified analysis that
yelds only the radii of the filament and the membrane far from the ends.

4.1 An approximate analysis for long filaments

Suppose that a filament of length Lf occupies a part of a long membrane tube with a total length L (Fig. 4A).
It should be expected that the shapes of the filament and of the membrane are uniform outside of an interface
region with the length of the order of Req near the filament end. If we neglect the interface contributions to
the total energy, we have

E = εfLf + εcLc + εb(L− Lc) (19)

where Lc is the length of the membrane tube which is covered by the filament and εf , εc, εb are the elastic
energies per unit length for the filament, the covered membrane, and the bare membrane, respectively. The
interaction energy vanishes, Eint = 0, if, in the filament-covered part of the tube, R = ρ − a. The bare
membrane tube has the energy per unit length of

εb = 2π
√

2γχ, (20)
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which is obtained by substituting ρ = Req into Eq. 9. The energy densities εf and εc are given by Eqs. 6 and 9.
According to Eq. 12, the total axial length of the membrane tube covered by a filament of arc length Lf with
radius ρ and pitch h is

Lc =
h√

ρ2 + h2
Lf . (21)

Summing up all contributions, we find that the total energy of the system is

E(ρ, h) =
[ακ

2
(κ− κ0)

2
+
ατ
2

(τ − τ0)
2
]
LF +M(ρ)

h√
ρ2 + h2

LF + εbL (22)

where
M(ρ) = 2πγ(ρ− a) +

πχ

ρ− a
− εb, (23)

and recall that κ and τ can be expressed in terms of ρ and h in (Eq. 3).
This energy is plotted as a function of ρ and p = 2πh for different membrane tensions γ in Supplementary

Fig. S2. The first term in Eq. 22 is the elastic energy penalty for deforming the filament to a curvature and
a twist that are different from their spontaneous values. The second term is the penalty for compressing the
membrane tube to the radius smaller than its equilibrium radius Req over the filament-covered part. The
equilibrium values of ρ and h satisfy a system of variational equations

∂E

∂ρ
=
∂E

∂h
= 0. (24)

4.2 Membrane-induced compression of the filament

Inspection of the second term in Eq. 22 reveals an important feature of the system: while keeping the filament
radius constant, the energy can be lowered if the pitch of the filament is decreased. Since the filament is then
more densely coiled, this would reduce Lc, the length of the membrane tube over which it is spread. Effectively,
the membrane generates a force that tends to compress the filament along its axis, which is counterbalanced
by the filament’s twist stiffness. Formally, given a sufficiently stiff membrane, the pitch p = 2πh will vanish.
In reality, the filament can be only compressed down to some minimal pitch pmin ∼ 12 nm because of the finite
size of the filament. Thus, the compression is manifested by a transition to such a maximally compressed
filament state.

The boundary of the compression transition in the membrane parameter plane (γ, χ) can be found by
setting h = hmin = pmin/2π in the above variational equations (Eq. 24) and solving them. Fig. 4B shows
this boundary when using the values in Table 1 as the elastic parameters of the filament. This line separates
the parameter regions with maximal compression of the filament (h = hmin) and with an expanded filament
(h > hmin). Interestingly, this structural transition in dynamin is taking place within the range of parameters
characteristic for cellular biomembranes.

Moreover, by solving the variational equations, the pitch and the radius of the equilibrium filament can be
determined for arbitrary membrane parameters (Fig. 4C). At large membrane tensions γ, the compression is
weak and the filament pitch approaches its free filament value of 51 nm. As the membrane tension is decreased,
this leads to compression of the pitch until pmin is reached.

It may appear paradoxical that less tense membranes exhibit stronger filament compression effects. To
better understand this behavior, note that M(ρ) in Eq. 22 can also be expressed as

M(ρ) =
πχ

ρ− a

(
1− ρ− a

Req

)2

(25)

and, since Req > ρ − a and Req decreases as γ grows, increasing γ lowers the membrane energy. In other
words, a tenser membrane has a smaller equilibrium radius, and thus requires less deformation to constrict it
as the filament coils around it.

Whereas the pitch can dramatically change with variation in membrane parameters, the radius of the
filament is remarkably constant. It stays close to ρ = 20 nm, which is smaller than the equilibrium radius Req

of the free membrane tube, but larger than the equilibrium radius ρ =11.5 nm of the free filament. This can
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Figure 4: Tension controlled filament compression. A. Variables and parameters used in the approximate
treatment. B. Boundary of filament compression. Inside the shaded region, the filament has the minimal
possible pitch pmin. C. Dependences of the equilibrium pitch p (solid) and radius ρ (dashed) of the filament
on membrane tension γ for χ/kBT = 16 (orange), 20 (blue), and 24 (magenta). Other parameter values are
as given in Table 1.

be compared with the filament radius of 18 nm in the “non-constricted” cryo-EM structure [36]. Additionally,
optical-trap tube-pulling experiments have indicated that there is at most a weak dependence of the filament
radius on the membrane tension [25]. We find similar behavior in polymer simulations in Section 6.3 where
the full shapes of the filament and the membrane tube will be obtained..

5 The discrete polymer model

The continuous elastic description for the filament/membrane system has been used above to determine energies
and uniform equilibrium states. While, in principle, it can be extended to also consider the dynamics of the
filament and the membrane, this description gets then too complicated for practical use. Therefore, we switch
now to a discrete polymer-like model for the filament (and shall also introduce a discrete description for
the membrane). This allows us to run later the explicit mesoscale dynamical simulations for dynamin and
the membrane where thermal fluctuations can be accounted too. Note that, in the polymer model, stretching
elasticity of the filament is additionally taken into account and repulsive excluded-volume interactions between
the turns are introduced.

The dynamin filament is now modeled by N dynamin beads, where each bead corresponds to a dynamin
dimer (Fig. 5). The coordinates of bead i are ~ri = (ri, φi, zi) where ri is the distance from the axis of the
membrane, φi is the polar angle and zi is the distance along the length of the tube. The membrane is modeled
as a stack of M disks with the thickness of dM = 4 nm, which is roughly the bilayer thickness and provides a
natural minimum length for an elastic membrane description. Below, the energies of the polymer model are
formulated by discretizing the continuum elastic energies. Then, the equations of motion for the polymer and
the membrane are derived.
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Figure 5: Definition of variables and parameters used in the polymer description.

5.1 The discretization procedure

The energy of the polymeric filament is obtained by discretizing Eq. 6 into a sum over N polymer beads, with
each term weighted by d0, the distance between successive dimers. Discretization of Eq. 6 involves determining
the curvature κi and the twist τi at discrete positions ~ri. Using Eq. 4, we find

κi =
ρi

ρ2i + h2i
, τi =

hi
ρ2i + h2i

. (26)

The coupling between the membrane and the filament (Eq. 11) enforces the filament to adopt the shape of a
membrane tube with a slowly varying radius. Therefore the radius of curvature ρi at the bead i can simply be
taken as equal to the bead’s radial distance ri. Moreover, because the filament is wrapped around a membrane
tube aligned along the z-axis, the local pitch is

h =
∂z

∂φ
. (27)

Taken together, in terms of the bead coordinates, we find

ρi = ri, hi =
zi+1 − zi
φi+1 − φi

. (28)

The expression for the geodesic curvature contains derivatives with respect to the filament coordinate ξ. These
derivatives are discretized in the same manner as hi,

dκi
dξ

=
κi − κi−1
ξi − ξi−1

,
dτi
dξ

=
τi − τi−1
ξi − ξi−1

. (29)

While the filament is non-stretchable in the continuum approximation, the polymeric representation re-
quires explicit interactions between the beads. In our polymer model, the connection is implemented by a
harmonic pair interaction potential between the neighboring beads:

Estretch =
1

2
k

N∑
i=2

(|~ri − ~ri−1| − d0)2. (30)
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The filament stretching modulus k was obtained from the MD simulations using the distribution shown in
Fig. 2D.

Furthermore, excluded volume effects will be taken into account in the polymer model. They will determine
how closely the neighboring turns can approach one another. To include such effects, we introduce a repulsive
potential along the z direction:

Erep =
N∑
i=1

N∑
j=1

εrep

(
drep
|zi − zj |

)12

. (31)

Here, εrep specifies the strength of repulsion and drep determines the repulsion length.
Taken all together, the energy of the dynamin polymer is given by

EF =
N∑
i=1

d0

[
β

(
κi

κ2i + τ2i

∂τi
∂ξ
− τi
κ2i + τ2i

∂κi
∂ξ

)2

+ ακ (κi − κ0)
2

+ ατ (τi − τ0)
2

]
+ Estretch + Erep (32)

The discrete description for the membrane is derived from the axially-symmetric continuous Helfrich elastic
membrane description, formulated above. After the discretization, the membrane tube consists of a stack of
M disks of radii Ri centered along the z-axis at positions Zj = −L/2+jdM. The centers of the disks are fixed,
but their radii can change. The dimensions of a bilayer provide a natural discretization for the membrane
disks, dM = 4 nm. The integral in Eq. 9 becomes a sum over the stack of disks

EM = πdM

 M∑
j=1

(
χ

Rj
+ 2Rjγ

)
+ χ

M−2∑
j=3

Rj

(
d2[Rj ]

dz2

)2
 (33)

where a shorthand notation
∂2

∂z2
[Rj ] ≡

1

d2M
(Rj+1 +Rj−1 − 2Rj) (34)

is used. We assume that ∂2/∂z2[Rj ] ≡ 0 at the membrane ends, j = 1,M .
After the discretization, the coupling energy between the membrane and the filament is

Eint =
1

2
εint

N∑
i=1

[
ri − a− R̄(η(i), i)

]2
(35)

where the coefficient εint specifies the coupling strength.
The role of this interaction is simply to keep filament beads at a constant distance a from the membrane.

Here, we denote as η(i) a function that returns the index j of the membrane disk which includes the filament
bead i, so that Zj < zi < Zj+1 where zi is the coordinate of bead i. Furthermore, R̄(η(i), i) denotes a
linear interpolation of the membrane radius between the nearest two membrane disks is used, to increase the
approximation accuracy. Explicitly,

R̄(j, i) = Rj +
Rj+1 −Rj

dM
(zi − Zj). (36)

Adding all three components, the full potential energy E of the system is given by E = EF + EM + Eint.
It should be noted that, while the energies have been obtained by discretization of the continuous elastic

description, the discretization length is not chosen to provide an accurate quantitative approximation for the
continuous case. Rather, the employed discretization length is chosen as the actual distance between dynamin
dimers in the filament – allowing a direct interpretation of the beads as individual dimers. This representation
is likely more appropriate than the continuum model since flexible connections between rigid dimers were
suggested by the analysis in Section 3. In a fact, our polymer model constitutes an independent dynamical
description, rather than a finite-difference scheme intended to accurately reproduce the continuous description
of dynamin.
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5.2 Evolution equations for the filament

The motion of beads in the polymer is determined by forces applied to them. On the considered microscopic
length scales, inertial effects are negligible and viscous friction effects prevail. There are two different sources of
friction for dynamin. First, its dimers (corresponding to beads) move inside a viscous water solution. Second,
the PH domains (see Fig. 1) are interacting with a lipid bilayer and move upon it [13]. Because the viscosity of
lipid bilayers is about 1000 times higher than that of water, we will assume that the dominant friction comes
from interactions with the membrane.

Hence, the motion of bead i over the tube is described by two coupled evolution equations for its coordinates
φi and zi:

dzi
dt

= vi − Γ
∂E

∂zi
+ ξi(t). (37)

dφi
dt

= − Γ

r2i

∂E

∂φi
+ ζi(t) (38)

where Γ is taken to be the mobility of a single lipid within the membrane. The local lipid flow velocity vi
along the tube at the bead position z = zi in the first equation accounts for the advection of beads by the
membrane flow. Thermal fluctuations are included through random Gaussian thermal forces ξi(t) and ζi(t)
with correlation functions

〈ξi(t)ξj(t′)〉 = 2ΓkBTδ(t− t′)δij , (39)

.

〈ζi(t)ζj(t′)〉 =
2

r2i
ΓkBTδ(t− t′)δij , (40)

where T is the temperature and kB is the Boltzmann constant.
Moreover, we need to formulate an evolution equation for the radius variable ri of a bead. Because the

filament is attached to the membrane, this variable should practically coincide with the local radius of the
tube. The description is however simplified when it is allowed to slightly deviate from the tube radius, with a
high energetic penalty described by the coupling energy Eint (Eq. 35). Thermal fluctuations can be neglected
for this variable and the respective evolution equation will be

dri
dt

= −Γr
∂Eint
∂ri

(41)

where Γr is a radial mobility. Because the coupling energy is proportional to the interaction strength parameter
εint that should be large, but otherwise is arbitrary, we will make Γr = Γ by appropriate rescaling of the
coefficient εint.

5.3 Evolution equation for the membrane

For the membrane tube, we first derive the evolution equation in the continuum description and then discretize
it. Because lipid bilayers are practically incompressible, the total area of the membrane is approximately
conserved. Hence, we can start with the continuity equation for the local area density s of the membrane:

∂s

∂t
+
∂(vs)

∂z
= 0 (42)

where v is the local lipid flow velocity. The tube area between z + ∆z and z is approximately ∆s =
2πR

√
1 + (∂R/∂z)2∆z. Assuming that the slope is small, we can approximately write s = 2πR. Hence,

the continuity equation takes the form
∂R

∂t
+
∂(vR)

∂z
= 0. (43)

Here, lipid flows are of two origins: they can be generated by pressure gradients along the membrane
tube or induced by dragging the filament with respect to the membrane. Consider a narrow segment of the
membrane tube with radius R, width ∆L and surface area S = 2πR∆L. The energy of this tube segment is
∆E = ε(R)∆L where ε(R) is the energy per unit tube length. The pressure can be defined as

P = −d(∆E)

d(∆L)
. (44)
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Because the surface area ∆s of the membrane is conserved, an increase of the segment width by d(∆L) must
be compensated by a change in its radius by dR = −(R/∆L)d(∆L). Therefore, the elastic energy of this
segment will be changed by

d(∆E) = ∆L
dε(R)

dR
dR = −Rdε(R)

dR
d(∆L). (45)

Hence, the pressure is

P = R
dε(R)

dR
= R

δE

δR(z)
(46)

where the functional derivative of the total energy E taken at position z is introduced. A gradient of the
pressure will induce a membrane flow with the velocity

vp = −ΓM
∂P

∂z
= −ΓM

∂

∂z
[R

δE

δR(z)
]. (47)

Here, ΓM is a kinetic coefficient that specifies the effective mobility of the membrane.
If the membrane tube is covered by a moving filament, it will drag the tube because of the viscous friction

between the filament and the membrane. We will determine the drag component vdrag of the flow velocity
below using the polymer description for the filament. Hence, the evolution equation for the membrane in the
continuum limit will be

∂R

∂t
+
∂(vdragR)

∂z
= ΓM

∂2

∂z2
[R

δE

δR(z)
] (48)

This evolution equation has to be complemented by a boundary condition at the ends of the membrane
tube. Depending on the physical set-up, various conditions can be applied. In the present study, we will
assume that the membrane tube is long and the filament occupies only a small part of it. At both ends, the
tube has the equilibrium radius Req.

For numerical simulations, membrane discretization should be additionally performed. We divide the
tube into a sequence of disk segments j of radius Rj , each of width ∆L = dM. Note that such disks are
only introduced for the discretization means; they are immobile and lipid flows can enter or leave them. To
determine vdrag, suppose that within a disk j there are some beads i with axial velocities ui, whereas the flow
velocity of the membrane is vj . Then, each bead experiences a viscous friction force fi = (vj − ui)/Γ from
the membrane and, reciprocally, the opposite force −fi acts on the membrane. Therefore, the total drag force
acting on the tube segment is

F drag
j =

N∑
i=1

fiδη(i),j , (49)

where the Kronecker delta symbol δη(i),j restricts the sum to the beads belonging to membrane disk j (see
Eq. 35). On the other hand, the forces must be balanced for each bead i and therefore the viscous friction
force fi should be equal to the force applied to this bead, i.e.

fi = −∂E
∂zi

. (50)

Moreover, the drag force applied per unit filament length is F drag
j /dM and, therefore, the velocity of the induced

lipid flow is vdragj = ΓMF
drag
j /dM. Combining all terms,

vdragj = −ΓM
dM

N∑
i=1

∂E

∂zi
δη(i),j (51)

This expression along with Eq. 48 completes the description of membrane evolution.
The discretized version of the evolution equation (Eq. 48) is

dRj
dt

+
∂[vjRj ]

∂z
= 0 (52)
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with

vj = −ΓM
∂2

∂z2

[
Rj

∂E

∂Rj

]
− ΓM

dM

N∑
i=1

∂E

∂zi
δη(i),j (53)

where the sum is taken over all ∆Nj beads i that are currently located within the disk segment j. The first
term takes into account lipid flows induced by the pressure gradient and the second term accounts for the
filament drag of the membrane. In the above two equations, concise operator notations

∂

∂z
[Aj ] ≡

1

2dM
(Aj+1 −Aj−1) (54)

∂2

∂z2
[Aj ] ≡

1

d2M
(Aj+1 +Aj−1 − 2Aj) (55)

are used. Fixed radial boundary conditions are implemented by taking R1 = R2 = R3 = RN−2 = RN−1 =
RN = Req.

5.4 Characteristic time scales

The physical connection between the filament and the membrane is mediated through the PH domains, either
partially immersed into the membrane or bound to single lipids [13]. Since the viscosity of a lipid bilayer is
typically 1000 times higher than that of water, the mobility of filament beads along the membrane, i.e. in
the φ and z directions, should be controlled by their interactions with the membrane. Therefore, we assume
that the mobility of the beads is approximately the same as that of the individual lipids. Diffusion constants
of single lipids can sensitively depend on the physical state and the composition of a biomembrane. For our
numerical estimates, we choose D = 1 nm2/µs, see [43]. The mobility of a lipid (or filament bead along the
tube) is linked to its diffusion coefficient through the Einstein relationship and, therefore, Γ = D/kBT. This
means that an applied force of F = 1 kBT/nm= 4.1 pN could generate a velocity v = ΓF = 1 nm/µs. Under
the action of such a force, a bead would need only 10 µs to move over a distance of 10 nm.

As opposed to motion along the tube, radial bead motion is constrained to follow the local membrane radius,
which is coupled to membrane flow by the continuity equation. The membrane mobility coefficient ΓM specifies
the local lipid flow velocity induced by application of a pressure gradient along the tube. This coefficient can
depend only on the viscous properties of the lipid bilayer forming the membrane. The dimensionalities of ΓM

and Γ differ by a factor representing a characteristic length. Choosing it as the length dlipid of a lipid, we
obtain, by order of magnitude, ΓM = dlipidΓ. Using Eqs. 48 and 9, we find that

∂R

∂t
= ΓM

∂2

∂z2

(
2πγR− πχ

R

)
, (56)

where terms with higher spatial derivatives have been dropped. For small deviations δR from the equilibrium
tube radius Req, this equation can be linearized to obtain

∂δR

∂t
= 4πγΓM

∂2δR

∂z2
. (57)

Thus, the characteristic time scale tL for relaxation of membrane radius perturbations with the length scale
L is

tL ∼
L2

γΓM
=

L2

γdlipidΓ
. (58)

where the numerical prefactor has been dropped.
If the membrane tension is γ = 0.01 kBT/nm2 and dlipid = 1 nm, perturbations with the size of L = 10

nm will relax within the characteristic time tL = 10 ms. This membrane relaxation time increases, however,
already to 1 s if the perturbation length L is 100 nm. Because the elasticity of the filament is not too different
from the membrane, relaxation times for the tube covered by the filament should not be much different from
these estimates. As we see, polymer bead motions are much faster in comparison to relaxation processes in the
membrane. This is because the latter ones are nonlocal, i.e. accompanied by lipid flows involving the entire
membrane tube.
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It should be stressed that our estimates of characteristic times are very rough and should be used only
as orientation. Differences by an order of magnitude are well possible. They may arise because diffusion
coefficients of lipids can vary substantially, depending on the membrane chemical composition and its physical
state. Moreover, strong simplifications have been made and we have also systematically omitted all numerical
factors.

6 Polymer model simulation results

Simulations with the polymer model describe the coupled dynamics of an elastic filament attached to lipids
on the outer leaflet of a membrane tube. Specific to dynamin are the input values of the filament elasticity
(Table 1) and the geometry of the filament, i.e. beads are separated from each other by 5.6 nm and from the
membrane by 8.5 nm. The parameterization is fully described in the Methods.

In contrast to the analytical treatment of Section 4, the polymer model additionally accounts for the
interface region at the filament ends. A first question is how long must a filament be to reach its asymptotic
uniform shape? Determination of the minimum membrane radius as a function of filament length shows
that the interior of filaments with N > 120 have reached their asymptotic shape (Supplementary Fig. S3).
Therefore, in the following sections we describe the shape of “long” filaments of with N = 200 (1.12 µm in
linear length) wrapped around a membrane tube 1 µm in length. The membrane tube has boundary conditions
that fix its ends to Req and the filament does not reach the ends.

Figure 6: Filament relaxation toward its equilibrium shape accompanied by flows in the membrane. The initial
condition and two snapshots are shown. The membrane was initialized with a uniform radius of Req and the
membrane parameters were γ = 0.01 kBT/nm2 and χ = 24 kBT. The filament was initialized with a 12 nm
pitch. Small thermal noise corresponding to 15 K is included to avoid local energy traps. Note that only 500
nm of the 1 µm membrane tube is shown. The full movie is available as Supplemental Movie 2.

6.1 Filament-induced membrane flow

An illustration of the dynamics of filament-induced membrane flow and the corresponding membrane-induced
filament compression is presented in Fig. 6 and Supplementary Movie 2. Here, the system is initialized in a
non-equilibrium configuration where a compressed filament is wrapped around a uniform membrane tube of
radius Req with γ = 0.01 kBT/nm2 and χ = 24 kBT. The filament initially expands to relax its pitch, since
motion along the filament is relatively faster than radial motion that generates membrane flow. Remarkably,
at an intermediate stage, the membrane tube remains thicker in the filament center than at the ends. This is
because, due to mass conservation in the membrane, the lipids leaving the regions near the filament ends create
flows partially directed into the central part of the tube. After sufficient radial constriction has occurred, the
membrane begins to compress the filament, the rate of compression controlled by the membrane flow. The
compression dynamics relaxes a 250 nm perturbation over ≈ 8 seconds, which is in agreement with the order
of magnitude estimation of 6 seconds suggested by Eq. 58.

17

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/686873doi: bioRxiv preprint first posted online Jun. 28, 2019; 

http://dx.doi.org/10.1101/686873
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Full shape of the membrane/filament system. A) Example of an energy minimized configuration for
a condensed filament with membrane parameters χ = 24 kBT, γ = 0.01 kBT/nm2. B/C) The corresponding
dependencies of filament variables on distance z along the tube, including the interface region. D) The
corresponding dependencies of the membrane radius and of its two derivatives along the tube in the interface
region. Green dotted line is a catenary fit for the region with d2R/dz2 > 0. Cyan dotted line is the exponential
decay function (59).

6.2 Full equilibrium shapes of the filament and membrane

The minimum energy shape of the filament on a membrane of stiffness χ = 24 kBT and tension γ = 0.01
kBT/nm2 is shown in Fig. 7A (see Methods for simulation details) . The radius and pitch are constant within
the filament except at the end, where the filament winds around a tube of growing radius. The dependencies
of the filament radius r and pitch p on the coordinate z along the tube, together with the dependencies of the
local normal curvature κ, twist τ , and geodesic curvature σ, are shown in Fig. 7B/C. As r is forced to follow
the growing tube radius, the other quantities vary as well. The pitch of the filament is constant in its central
part, but increases almost four-fold at its end. The geodesic curvature σ is non-vanishing in the interface
region near the filament end.

The corresponding profile of the membrane tube is analyzed in Fig. 7D. The tube takes its equilibrium
radius Req (Eq. 10) far from the filament and has a constant compressed radius Rmin within the filament
covered portion. For the chosen membrane parameters, the interface region within which the radius decreases
from Req to Rmin is approximately 150 nm long.

Interestingly, the inflection point z = z0 where d2R/dz2 changes its sign coincides with the end of the
filament. It is well known that tensionless membrane tube necks will take the shape of a catenoid since the
latter has zero mean curvature [17, 44]. Here, despite being under tension and subject to the influence of the
filament end, the portion of the interface region with d2R/dz2 > 0 still closely follows the half-catenoid shape.
On the other side of the inflection point, where d2R/dz2 < 0, the tube profile is well approximated by the
exponential function

r(z) = Req + (R0 −Req)e(z−z0)/Req (59)

with the decay length of Req, where R0 is the tube radius at the end of the filament. This could have
been expected because the correlation length for radial perturbations of the equilibrium bare membrane tube
coincides with its equilibrium radius Req.

With the membrane profile in hand, it is useful to check the validity of the approximation that the curvature
along z can be taken as d2R/dz2 (Eq. 9), which assumes (dR/dz)2 � 1. Fig. 7 shows that even for a low tension
tube, compressed by the filament, (dR/dz)2 reaches a maximum of only ≈ 0.1 and hence the low-curvature
approximation for the membrane is justified.

6.3 Filament compression by the membrane

The transition from the maximally compressed to the expanded filament, controlled by the membrane tension,
has been found above through an approximate analysis of the continuum model in Section 4. Numerical
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simulations show that it is also present in the polymer description. Fig. 8 summarizes the results of numerical
investigations of the filament compression effect.

Below a characteristic critical tension γc, depending on the membrane stiffness χ, the filament is com-
pressed in its interior to the minimum pitch pmin. For higher membrane tensions, the pitch grows with γ
asymptotically approaching the maximum pitch of the free filament of 51 nm. Fig. 8B shows the dependencies
of the equilibrium pitch and radius in the middle of the filament on the membrane tension. They are similar
to those found in the continuum description (Fig. 4C). Note however that the polymer description does not
yield a sharp transition at γ = γc since the interface region is now explicitly taken into account.

In contrast to the pitch, the radius is only weakly dependent on the membrane parameters. The combination
of two effects can be here involved. First, the tube radius should tend to decrease with the growing tension, as
already seen in the tension dependence (Eq. 10) of the equilibrium bare membrane tube. On the other hand,
the decreasing coiling density, i.e. an increased pitch, may favor inflation of the tube and thus compensate the
first effect.

Though the radius of the tube in the middle of the filament remains constant, the profile and the position
of the interface region depend on membrane tension γ. In the bare part of the tube, the membrane radius
approaches Req, which decreases with increasing γ. Through the local interaction (Eq. 35) between the filament
and the membrane, each bead feels a force acting along the tube direction and proportional to the gradient of
the tube radius dR/dz. Such additional forces, acting on the beads at filament ends where the gradients exist,
are responsible for filament compression by the membrane. Since the magnitude of the gradient decreases along
with Req (Fig. 8C), the membrane-induced pressure eventually cannot counterbalance the intrinsic tendency
of the filament to take on its spontaneous pitch, leading to filament expansion for γ > γc. Notice that, even
when γ < γc, the end of the filament has larger pitch (Fig. 7B).

These results rely on the values of the elastic parameters obtained for dynamin in our MD simulations in
Section 3. One may ask therefore whether such findings are strongly sensitive to the specific parameter values
employed. To check this, minimum energy shapes for the filaments were additionally numerically determined
by varying the elastic parameters, i.e. under the transformations ακ, ατ , β → ωακ, ωατ , ωβ (Supplementary
Fig. S4). For a more stiff filament (ω = 10), we have found that the filament radius is approximately 15
nm and the pitch is larger than 30 nm across the whole range of membrane tensions. For a more pliant
filament (ω = 0.1), a pitch compression similar to that at ω = 1 is found, whereas the radius increases above
30 nm at low membrane tensions. Experimental observations of dynamin-covered, low-tension, membrane
tubes yield a filament radius and pitch near 20 nm and 10 nm, respectively [36, 5, 45, 46, 47]. Thus, the
predicted equilibrium shapes of significantly stiffer or more pliant filaments appear to be inconsistent with the
experimental measurements: the pitch would have been too large for stiffer filaments and the radius would
have been too large for more pliant tubes.

6.4 Thermal fluctuations

In the paper thus far, we have stayed in the deterministic limit or close to it. At nanometer scales, the effects
of substantial thermal noise must also considered since they set the range of expected fluctuations and can
shift the average values of observables away from their deterministic values. With the polymer model, thermal
fluctuations of the filament are naturally included (Section 5.2). Explicit fluctuations in the membrane tube
are still neglected by us, but we can notice that fluctuations in the beads will lead to fluctuations in the
membrane because of the coupling of the filament to the membrane tube.

The effects of thermal fluctuations in numerical simulations of the polymer model are presented in Fig. 9.
Here, a filament with 200 beads has been simulated sufficiently long to obtain the statistical averages. The
entire simulation data was used to determine the mean radius 〈r〉 and the mean pitch 〈p〉 (see Methods for
details). To determine the fluctuation intensities, local averaging of the radius and the pitch over 21 beads
(note that a helical turn of radius 19 nm and pitch 12 nm contains 21 beads) was performed. Then, mean-
square deviations of the smoothened variables were computed. See Supplementary Fig. S5and Supplementary
Movie 3 for excerpts of trajectories with thermal fluctuations.

One can see that thermal noise has only a small effect on the radius of the membrane tube. Radial
fluctuations are weak and, moreover, the statistical mean values of the radius are close to the deterministic
predictions. The situation is, however, different for the pitch. Normalized fluctuations in the pitch are of about
20 percent in magnitude and have a maximum near the compression transition point. Moreover, the mean
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Figure 8: Membrane parameters influence the filament pitch. A) Two examples of energy-minimized configu-
rations showing a condensed filament at low tension (top, γ = 0.01 kBT/nm2) and an expanded filament at
high tension (bottom, γ = 0.025 kBT/nm2) for χ = 24 kBT. B) Dependencies of the radius (open symbols)
and the pitch (closed symbols) of the filament on membrane tension γ for χ = 16 kBT (squares) and χ = 24
kBT (circles). The displayed values were obtained by averaging the pitch/radius over 20 beads in the middle
of the filament; each symbol corresponds to one simulation. C) Equilibrium membrane tube profiles at χ = 24
kBT for different membrane tensions. From top to bottom: γ = 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 2.0, 3.0, 4.0
×10−2 kBT/nm2. The filled circles mark membrane contact points of the first bead of the filament. Since the
profiles are symmetric, only the data for a half of the tube is displayed.

pitch differs substantially from that determined by energy minimization. This behavior can be understood by
examining the energy landscape given by Eq. 22 (Fig. S2). The minimum determining the equilibrium shape
lies inside an energy basin which is narrow along the r direction, explaining why the radius is well-defined and
its fluctuations are weak. However, the basin is wide along the p direction. Therefore, fluctuations in the pitch
are strong and substantial deviations between the mean pitch and the deterministic prediction are observed.

7 Discussion and Conclusions

We have developed a mesoscopic description for dynamin filaments coiled around membranes tubes. In our
model, the filament is treated as an elastic polymer that naturally tends toward a helical shape. The elastic
parameters of the filament could be determined from direct microscopic simulations of short fragments of it.
Moreover, the model includes a deformable membrane tube with elastic energy given by the classical Helfrich
description. The dynamical equations for membrane evolution, taking into account the membrane area conser-
vation and lipid flows, are formulated as well. Thermal fluctuations at mesoscales are also resolved. Therefore,
significant progress has been made in modeling the coupled behavior between dynamin and membranes.

Our principal conclusion is that the elasticities of the filament and the membrane are of comparable
magnitudes and therefore both of them must be considered when modeling is performed. Remarkably, our
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Figure 9: Thermal fluctuations in the polymer model. Data shown is for membrane stiffness χ = 24 kBT,
T = 310K, and a filament containing 200 dimers. (Lower panel) Ensemble-average filament radius 〈r〉 is plotted
as filled blue diamonds; average pitch 〈p〉 is plotted as open red diamonds. Solid/dotted line is the radius/pitch
for the minimal energy shapes, i.e. zero temperature (see Fig. 8B). The bars indicate the root-mean-square
deviations (RMSD)

√
〈δ2r〉 and

√
〈δ2p〉 of the radius and the pitch from their mean values 〈r〉 and 〈p〉. (Upper

panel) Relative fluctuations of the radius and the pitch. They are defined as the RMSD normalized by the
ensemble averages. Filled blue circles show σr/〈r〉; open red circles show σp/〈p〉.

analysis has revealed that, within a realistic parameter range, the radius of the filament is not significantly
sensitive to elastic properties of the membrane. Alone, this observation may seem to support a conjecture
that the membrane is relatively soft. However, we have also found that the pitch of the dynamin filament is
sensitively dependent on the membrane parameters. Generally, the membrane tends to compress the helical
filament along its symmetry direction and the elastic membrane properties are crucial for this effect. In
agreement with experimental data, we have found that, even in absence of GTP and of the motor operation,
the elastic properties of the stalk filament are enough to constrict the membrane tube, but this constriction is
not sufficient for membrane fission. In turn, the membrane acts on the filament and compresses it, tending to
minimize the fraction of the tube length covered by dynamin.

In the future, the polymer model can be extended to consider further aspects of dynamin function, such
as the motor operation powered by GTP hydrolysis. This will allow a study of the dynamin helix under the
conditions that go beyond relaxation processes and fluctuations about the equilibrium states. Polymerization
and depolymerization processes are not yet accounted for in the model. Moreover, we have assumed that the
membrane tube always maintains an axial-symmetric shape, an approximation that may be less good near
the ends of the filament. Hemifusion and scission are processes that go beyond an elastic description of the
membrane, but coupling the polymeric filament with particle-based membrane models [48] would provide the
possibility to follow the entire membrane scission process too.

During the scission process the helical dynamin oligomer is believed [3] to constrict its underlying membrane
tube by creating forces that induce the constriction of the helix itself. The structural backbone of the dy-
namin oligomer consists of the stalk filament, formed by repeated connection of dimers through the tetrameric
interface. Consistent with previous work [9], we have found that the crystallographic tetramer exhibits a soft
mode and that the presence of such a mode effectively accounts for an adaptable radius of the stalk filament.
The previously mapped energy profile appeared bimodal, with local energy minima at low pitch/low radius
and high pitch/high radius. Possible reasons for the discrepancy are the use of a modelled tetramer or that
the length of the simulations was only one tenth of the sampling here.

For a free helical filament in the absence of membrane and inter-helical interactions, the radius and the
pitch are determined by the spontaneous curvature and spontaneous twist. As shown in Section 4, the radius
of the free filament is 11.5 nm and its pitch is 51 nm. The equilibrium shapes of filaments on membrane tubes
were then determined by using a continuum model, including elastic deformation effects for the membrane and
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the filament, and also the discrete polymer model for dynamin. We found that, when the filament is coiled
around a tube, its radius is increased from 11.5 nm to about 22 nm, reflecting a contribution from the elasticity
of the membrane. Hence, membrane tubes will be constricted to an inner lumen radius of 8-10 nanometers
over a range of physiological membrane stiffnesses and tensions.

This range of tube diameters agrees with the determinations from various experimental techniques, includ-
ing apo cryo-EM structure [36], negative stain EM [5, 45], in vitro fluorescence [46], and in vivo imaging of
elongated necks in arrested clathrin-mediated endocytosis [47]. Similar tube diameters are even observed for
a construct lacking the PH domain [46]. The correspondence between these experimental measurements and
the presented model, which only includes the elasticity of the stalk filament, strongly suggests that the stalk
filament alone provides the GTP-independent membrane shaping activity of dynamin.

The presented model shows a dependence of the filament pitch on the tension of the membrane and, re-
markably, the strongest effects are exhibited by almost tensionless membranes. This is because the equilibrium
radius of a bare membrane tube is large in the tensionless limit, and hence the relative constriction is stronger
for such membranes. According to our results, the pitch varies from about 50 nm for high-tension membranes
to 12 nm for low-tension membranes. Below the crossover tension, the filament gets maximally compressed
and only subject to the excluded volume of the stalk, which was set to be 12 nm. The compression of the
helical turns is reminiscent of the membrane-elasticity-driven clustering predicted for anisotropically-curved
proteins [49].

In agreement with these results, most structural studies find a helical pitch under 15 nm for typical (in
vitro almost tensionless) membrane tubes. Larger pitch values of up to 50 nm were not, however, so far
experimentally observed, although they have been previously found in molecular dynamics simulations [9].
Even on stiff tubes, dynamin has been reported to take on pitches less than 25 nm [50, 51, 16]. This difference
can be due to two additional effects which are not taken into account in the present model. First, it should be
noted that polymerization processes [30, 20] are not yet included into it and therefore our results correspond to
the filaments of fixed intrinsic length. The filaments may however tend to grow when such a process takes place.
When the growth gets arrested at the end of a tube, the polymerization force [25] should appear leading to
additional compression of the filament and thus to a shorter pitch. Second, GTP-induced cross dimerization of
G-domains [50, 51, 16] should lead to additional strong interactions between helical turns, further favouring the
compression to a shorter pitch. In the case of stiff, preformed membrane tubes, dynamin has been observed to
undergo a transition to a larger pitch [50] when GDP-bound. Loosening of the compressed twist after removal
of strong G-domain dimerization seems to be a plausible explanation for this shape change.

Because the effects of both filament and membrane elasticity on the equilibrium shapes have been accounted
for in the present study, previous modeling assumptions can be analyzed. As we have found, taking the tube
radius as constant over a large range of membrane tensions [25] is a good approximation indeed. Furthermore,
approximating the tube neck shape near the ends of the filament as a catenoid [20] is also a reasonable
assumption.

Our model takes explicitly into account lipid flows in the membrane and a drag of the membrane by
dynamin moving upon it. Consistent with previous theoretical work [18, 6], constriction of the membrane tube
by dynamin involves hydrodynamical flows in the membrane. We find that therefore constriction of tubes
covered by long filaments should be characterized by large relaxation times, reaching, for example, about 10
s for membrane shape perturbations of about 250 nm in length. On the other hand, for the short, < 30 nm,
scaffolds proposed to perform scission in vivo [52], membrane flows should equilibrate in under 100 ms, and
therefore are unlikely to be rate limiting for membrane scission.

In this study, primary attention has been paid to in vitro experimental setups where long membrane
tubes and extended dynamin filaments are typically used, in contrast to short dynamin oligomers involved
in endocytocis in living cells. Nonetheless, some conclusions referring to the in vivo situation can be drawn
as well. The soft mode and the elasticity of the tetramer should describe the conformational changes taking
place in the filament during motor-driven constriction. Dynamin’s large intrinsic twist may help to ensure
that non-productive left-handed helices are avoided [53], while low-tension membrane necks compensate by
promoting interactions between helical dynamin rings. Later in the process, tension-driven filament expansion
may play a role in disassembly of constricted collars. Finally, future studies of the polymer model, extended
to include ligand-dependent inter-dimer interactions, will allow hypothetical scenarios of motor function to be
tested, and thus contribute towards comprehensive understanding of the dynamin molecular machine.

22

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/686873doi: bioRxiv preprint first posted online Jun. 28, 2019; 

http://dx.doi.org/10.1101/686873
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 Methods

8.1 All-atom simulations of a tetramer

To estimate the flexibility of the stalk, an explicit-solvent simulation was performed for a stalk tetramer
construct. The simulation was initialized from the tetramer crystal structure [11] and contained for each
monomer residues 321-499 and 643-698 that comprise the four helices of the stalk. A 5 residue SSGSS linker
was inserted between residues 499 and 643, where the PH domain is cut out. K+ and Cl−1 ions were used
to neutralize the system and provide a salt concentration of 0.15 M along with the TIP3P water model.
Periodic boundary conditions were employed with a box measuring 93x93x169 Å, which contained 15,708
protein atoms, 133,482 solvent atoms, and 252 ions. Simulations were performed with Acellera ACEMD [54]
using the CHARMM36 forcefield [55]. Details of the simulation are as follows: NPT ensemble, temperature
310 K, Langevin thermostat, Berendsen barostat at 1 atm, holonomic restraints on hydrogen bonds, hydrogen
mass scaled by factor of 4, timestep 4 fs, PME electrostatics, grid spacing 1 Å, cutoff 9 Å, switching at 7.5
Å. The simulation box was equilibrated for 10 ns under the NVT ensemble and then 10 ns with the NPT
ensemble before a long production run of 3 µs.

8.2 Coarse-grained simulations of a filament

We used a well characterized structure-based model (SBM) (often termed a Gō-model) [56] to simulate a
17-dimer filament. The filament representation is single-bead-per-residue and residues close together in the
native configuration (that is, part of the native contact map) are given attractive interactions. The contact
map is determined by the Shadow criterion [57]. All other pairwise interactions are strictly repulsive. The
native state (Fig. 3) was created by connecting 17 dimers together using identical interfaces 1 and 3. The
coordinates of the dimer and of the tetrameric interface were taken from the crystal structure of the tetramer
[11]. Topology files compatible with GROMACS 4.5 [58] were created using the SMOG v2.0 software package
[40] with the provided SBM calpha+gaussian template, which implements the 0.5 Å width Gaussian contact
model of Lammert et al. [56]. The temperature in the simulation (1.05 reduced units, GROMACS temperature
126 K) was chosen such that the ensemble average root mean square deviations averaged over all Cα atoms
matched between a tetramer simulated with the SBM and the explicit solvent model described above.

The twist angle correlation length along the filament follows Eq. 17 under two assumptions: 1) a small
twist with h� r and 2) the filament is wrapped around a rigid tube. The native filament has h = 1.6 nm, and
thermal fluctuations do not drive h greater than 3 nm, thus, the first assumption is valid. The validity of the
second assumption is assured by strongly constraining the radius of the filament. One residue per monomer
(Leu652) is constrained via the potential, Econstraint = k(

√
x2 + y2 − rc)

2, where k = 1000 kBT/nm2 and
rc = 15 nm. rc is chosen to be consistent with the native filament’s radius (17 nm from the z-axis to a dimer’s
center of mass). An additional consequence of the constraint is that it maintains the filament orientation
(i.e. n̂1 in Fig. 1). The twist angle correlation converged within 3 × 108 timesteps as there was no apparent
difference between calculations using either the first half or the second half of a trajectory containing 6× 108

timesteps.

8.3 Mesoscopic polymer simulations

The equations of motion were implemented in an in-house version of the GROMACSv4.5.3 molecular dynamics
package. All interaction potentials besides the harmonic nearest-neighbor interaction were implemented by
adding code to handle the elastic forces. Internally, the units for energy were kB × (310 K), length nm, and
time µs. The energies are discussed in detail in Section 5, and the forces are worked out in the Supplementary
Material. The elastic constants for the dynamin filament were set to those shown in Table 1. The membrane
tension γ and stiffness χ took various values. The discretized membrane contained disks of width dM = 4
nm, and the interaction distance between a membrane disk and the filament was a = 8.5 nm. The filament
beads were separated by d0 = 5.6 nm. The interaction parameters were drep = 9 nm, εint = 10 kBT and
εrep = 1 kBT, but the dynamics was not sensitive to choice of them. Simulations of long filaments contained
N = 200 beads, where each bead corresponds to a dynamin dimer. With an average separation between beads
of d0 = 5.6 nm, the total length of such a filament is 1.12 µm when measured along the filament, but, due to
helical wrapping, only 100-300 nm when measured along the tube axis depending on the pitch.
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The mobility for motion of filament beads over the membrane tube was Γ = 1 nm2/µs/kBT , i.e. similar to
that of single lipids within the membrane. The mobility coefficient for the membrane was ΓM = 1 nm3/µs/kBT.
The boundary conditions for the membrane tube were that the radii of the first three and the last three discs
were fixed to be the equilibrium radius Req of the bare membrane tube. The filament never reached the ends
of the membrane.

For each system snaphot, the middle pitch was calculated by taking the average pitch of the central 21
beads (approximately a full turn). The local pitch for bead i is calculated using the approximate relationship

pi = 2π
τi

κ2i + τ2i
≈ 2πri∆zi

d0
, (60)

which is valid for ∆zi � d0. The middle membrane tube radius for a given minimum energy shape was taken
as Rmin + a, where Rmin is the narrowest membrane disk along the tube.

8.3.1 Minimal-energy shapes

In an equilibrium state, lipid flows in the membrane are absent and such a state cannot be affected by them.
The equilibrium shapes correspond to a minimum of the energy. Therefore, such calculations can be expedited
by running simulations where the membrane tube obeys a simplified evolution equation

dR

dt
= −ΓM

δE

δR(z)
, (61)

rather than Eq. (48). Note that the boundary conditions are still the same; the membrane tube has the
equilibrium bare radius Req at its ends. The equation of motion for the filament remains unchanged.

For each simulation, the system was initialized as a filament with the pitch of 15 nm wrapped around a
membrane tube with the equilibrium bare radius Req. A simulation carried out for 1× 108 time steps at a low
temperature (∼ 0.05 kBT) and followed by 1× 107 time steps at T = 0 was sufficient to reach the minimum.
This corresponds to roughly 15 minutes on a single core. Small thermal noise was introduced because, in the
complete absence of thermal fluctuations, the system sometimes became trapped in local minima characterized
a membrane bulge and a large pitch bounded on either side by filament with small pitch (similar to the barriers
described in ref. [30]).

8.3.2 Thermal fluctuations

Each simulation was initialized at a minimmal energy shape. The membrane flows were treated as described
in Section 5.3 and the boundary membrane disks were held at a fixed radius Req. Each simulation was run
for a total of 1× 109 time steps where the time step was set to 0.002. This corresponds to roughly 2 days on
a single core. The actual simulated duration can be estimated by using the mobility, which gives that 2× 106

time units corresponded to 2 seconds.
To determine mean-squared fluctuations, each snapshot yielded a single radius and pitch value for the

averaging. The convergence was verified by checking that the averages and the mean-squared fluctuations
agreed between the first half of the trajectory and the second half of it. The pitch was calculated as described
above, but the radius determination was changed to be an average over the radii of the same central 21 beads
used to calculate the pitch. Supplementary Movie 3 shows a 150 ms excerpt from simulations for three different
membrane tensions.

Supplementary Movie 2 was run under the same conditions, except that the initial condition was a uniform
tube of radius Req and only weak thermal fluctuations were introduced (T = 15 K).
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[34] Schöneberg, J.; Lehmann, M.; Ullrich, A.; Posor, Y.; Lo, W.-T.; Lichtner, G.; Schmoranzer, J.; Haucke,
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