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Abstract

Biological, clinical, and pharmacological research now often involves analyses of genomes, transcriptomes,
proteomes, and interactomes, within and between individuals and across species. Due to large volumes, the
analysis and integration of data generated by such high-throughput technologies have become computa-
tionally intensive, and analysis can no longer happen on a typical desktop computer.
In this chapter we show how to describe and execute the same analysis using a number of workflow

systems and how these follow different approaches to tackle execution and reproducibility issues. We show
how any researcher can create a reusable and reproducible bioinformatics pipeline that can be deployed and
run anywhere. We show how to create a scalable, reusable, and shareable workflow using four different
workflow engines: the Common Workflow Language (CWL), Guix Workflow Language (GWL), Snake-
make, and Nextflow. Each of which can be run in parallel.
We show how to bundle a number of tools used in evolutionary biology by using Debian, GNU Guix,

and Bioconda software distributions, along with the use of container systems, such as Docker, GNU Guix,
and Singularity. Together these distributions represent the overall majority of software packages relevant for
biology, including PAML, Muscle, MAFFT, MrBayes, and BLAST. By bundling software in lightweight
containers, they can be deployed on a desktop, in the cloud, and, increasingly, on compute clusters.
By bundling software through these public software distributions, and by creating reproducible and

shareable pipelines using these workflow engines, not only do bioinformaticians have to spend less time
reinventing the wheel but also do we get closer to the ideal of making science reproducible. The examples in
this chapter allow a quick comparison of different solutions.

Key words Bioinformatics, Evolutionary biology, Big data, Parallelization, MPI, Cloud computing,
Cluster computing, Virtual machine, MrBayes, Debian Linux, GNUGuix, Bioconda, CWL, Common
Workflow Language, Guix Workflow Language, Snakemake, Nextflow

Maria Anisimova (ed.), Evolutionary Genomics: Statistical and Computational Methods, Methods in Molecular Biology, vol. 1910,
https://doi.org/10.1007/978-1-4939-9074-0_24, © The Author(s) 2019

Availability: All included software, scripts, and Docker images are based on free and open-source software and
can be found at https://github.com/EvolutionaryGenomics/scalability-reproducibility-chapter.

723

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MDC Repository

https://core.ac.uk/display/300327694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9074-0_24&domain=pdf
https://doi.org/10.1007/978-1-4939-9074-0_24
https://github.com/EvolutionaryGenomics/scalability-reproducibility-chapter


1 Introduction

1.1 Overview In this chapter, we show how to create a bioinformatics pipeline
using four workflow systems: CWL, GWL, Snakemake, and Next-
flow. We show how to put them together, so you can adapt it for
your own purposes while discussing in the process the different
approaches. All scripts and source code can be found on GitHub.
The online material allows a direct comparison of how such work-
flows are assembled with their syntax.

Due to large volumes, the analysis and integration of data
generated by high-throughput technologies have become compu-
tationally intensive, and analysis can no longer happen on a typical
desktop computer. Researchers therefore are faced with the need to
scale analyses efficiently by using high-performance compute
clusters or cloud platforms. At the same time, they have to make
sure that these analyses run in a reproducible manner. And in a
clinical setting, time becomes an additional constraint, with moti-
vation to generate actionable results within hours.

In the case of evolutionary genomics, lengthy computations are
often multidimensional. Examples of such expensive calculations
are Bayesian analyses, inference based on hidden Markov models,
and maximum likelihood analysis, implemented, for example, by
MrBayes [1], HMMER [2], and phylogenetic analysis by maximum
likelihood (PAML) [3]. Genome-sized data, or Big Data [4, 5],
such as produced by high-throughput sequencers, as well as grow-
ing sample size, such as from UK Biobank, the Million Veterans
Program, and the other large genome-phenome projects, are
exacerbating the computational challenges, e.g., [6].

In addition to being computationally expensive, many imple-
mentations of major algorithms and tools in bioinformatics do not
scale well. One example of legacy software requiring lengthy com-
putation is Ziheng Yang’s CodeML implementation of PAML
[3]. PAML finds amino acid sites that show evidence of positive
selection using dN/dS ratios, i.e., the ratio of nonsynonymous and
synonymous substitution rate. For further discussion see also
Chapter. 12. Executing PAML over an alignment of 100 sequences
may take hours, sometimes days, even on a fast computer. PAML
(version 4.x) is designed as a single-threaded process and can only
exploit one central processing unit (CPU) to complete a calcula-
tion. To test hundreds of alignments, e.g., different gene families,
PAML is invoked hundreds of times in a serial fashion, possibly
taking days on a single computer. Here, we use PAML as an
example, but the idea holds for any software program that is CPU
bound, i.e., the CPU speed determines program execution time. A
CPU bound program will be at (close to) 100% CPU usage. Many
legacy programs are CPU bound and do not scale by themselves.
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Most bioinformatics (legacy) programs today do not make effective
use of multi-core computers

The reason most bioinformatics software today does not make
full use of multicore computers or GPUs is because writing such
software is difficult. (See also the text box below for a further
treatment of this topic; see Box 1.)

A common parallelization strategy in bioinformatics is to start
with an existing nonparallel application and run it by dividing data
into independent units of work or jobs which run in parallel and do
not communicate with each other. This is also known as an “embar
rassingly parallel” solution, and we will pursue this below.

1.2 Parallelization in

the Cloud

Cloud computing allows the use of “on-demand” CPUs accessible
via the Internet and is playing an increasingly important role in
bioinformatics. Bioinformaticians and system administrators previ-
ously had to physically install and maintain large compute clusters
to scale up computations, but now cloud computing makes it
possible to rent and access CPUs, GPUs, and storage, thereby
enabling a more flexible concept of on-demand computing
[7]. The cloud scales and commoditizes cluster infrastructure and
management and, in addition, allows users to run their own
operating system, usually not true with existing cluster and GRID
infrastructure (a GRID is a heterogeneous network of computers
that act together). A so-called hypervisor sits between the host
operating system and the guest operating system, and it makes
sure they are clearly separated while virtualizing host hardware.
This means many guests can share the same machine that appears
to the users as a single machine on the network. This allows
providers to efficiently allocate resources. Containers are another
form of light virtualization that is now supported by all the main
cloud providers, such as Google, Microsoft, Rackspace OpenStack,
and Amazon (AWS). Note that only OpenStack is available as free
and open-source software.

An interesting development is that of portable batch systems
(PBS) in the cloud. PBS-like systems are ubiquitous in high-
performance computing (HPC). Both Amazon EC2 andMicrosoft
Cloud offer batch computing services with powerful configuration
options to run thousands of jobs in the cloud while transparently
automating the creation and management of virtual machines and
containers for the user. As an alternative, Arvados is an open-source
product specifically aimed at bioinformatics applications that makes
the cloud behave as if it is a local cluster of computers, e.g., [8].

At an even higher level, MapReduce is a framework for
distributed processing of huge datasets, and it is well suited for
problems using large number of computers [9]. The map step takes
a dataset and splits it into parts and distributes them to worker
nodes. Worker nodes can further split and distribute data. At the
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reduce step, data is combined into a result, i.e., it is an evolved
scatter and gather approach. An API is provided that allows pro-
grammers to access functionality. The Apache Hadoop project
includes a MapReduce implementation and a distributed file system
[10] that can be used with multiple cloud providers and also on
private computer clusters. Another similar example is the Apache
Spark project based on resilient distributed datasets (RDD)—a
fault-tolerant collection of elements that can be accessed and oper-
ated on in parallel.

The advantage of such higher-level systems is that they go well
beyond hardware virtualization: not only the hardware infrastruc-
ture but also the operating system, the job scheduler, and resource
orchestration are abstracted away. This simplifies data processing,
parallelization, and the deployment of virtual servers and/or con-
tainers. The downside is that users have less control over the full
software stack and often needs to program and interact with an
application programmers interface (API).

Overall, in the last decade, both commercial and noncommer-
cial software providers have made cloud computing possible. Bioin-
formaticians can exploit these services.

1.3 A Pipeline for the

Cloud

To create a bioinformatics pipeline, it is possible to combine remote
cloud instances with a local setup. Prepare virtual machines or
containers using similar technologies on a local network, such as a
few office computers or servers, and then use these for calculations
in the cloud when an analysis takes too long. The cloud computing
resources may, for instance, support a service at peak usage, while
regular loads are met with local infrastructure (i.e., burst compute).
New ideas can be developed and pre-evaluated using modest
in-house setups and then scaled to match the most demanding
work.

Cloud services can be used for burst computing – enabling local
clusters to be much smaller – as small as a single computer

In the following sections, we will provide instructions to deploy
applications, and we will show how the use of workflow systems and
reproducible environments can greatly simplify running scalable
workflows on different environments, including the cloud.

1.4 Parallelization of

Applications Using a

Workflow

In case of embarrassingly parallel applications, programs are run
independently as separate processes which do not communicate
with each other. This is also a scatter and gather approach, i.e.,
inputs split into several jobs are fed into each process by the user.
Job outputs are collected and collated. In bioinformatics, such tasks
are often combined into computational pipelines. With the PAML
example, each single job can be based on one alignment, potentially
giving linear speed improvements by distributing jobs across multi-
ple CPUs and computers. In other words, the PAML software, by
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itself, does not allow calculations in parallel, but it is possible to
parallelize multiple runs of PAML by splitting the dataset. The
downside of this approach is the deployment and configuration of
pipeline software, as well as the management and complexity of
splitting inputs and the collecting and collating of outputs. Also,
pipelines are potentially fragile, because there is no real interprocess
communication. For example, it is hard to predict the conse-
quences of a storage or network error in the middle of a week- or
month-long calculation.

Even for multithreaded applications that make use of multiple
CPUs, such as BLAST and MrBayes, it is possible to scale up
calculations by using a workflow. For example, MrBayes-MPI ver-
sion 3.1.2 does not provide between-machine parallelization and is
therefore machine bound, i.e., the machine’s performance deter-
mines the total run time. Still, if one needs to calculate thousands of
phylogenetic trees, discrete jobs can be distributed across multiple
machines. A similar approach is often used for large-scale BLAST
analyses over hundreds of thousands of sequences.

A pipeline typically consists of linear components, where one
software tool feeds into another, combined with a scattering of jobs
across nodes and a gathering and collation of results.

In existing compute clusters, to distribute work across nodes,
portable batch system (PBS) schedulers are used, such as Slurm
[11]. Many pipelines in bioinformatics are created in the form of
Bash, Perl, or Python scripts that submit jobs to these schedulers.
Such scripted pipelines have the advantage that they are easy to
write and adaptable to different needs. The downside is that they
are hard to maintain and not very portable, since the description of
the environment and the software packages are not part of these
scripts, reducing or completing preventing the reproducibility of a
certain analysis in a different context. This has led to the current
state of affairs in bioinformatics that it is surprisingly hard to share
pipelines and workflows. As a result much effort is spent reinvent-
ing the wheel.

Most existing bioinformatics pipelines cannot easily be shared and
reproduced

In recent years, a number of efforts have started to address the
problem of sharing workflows and making analyses reproducible.
One example is the Common Workflow Language (CWL), a speci-
fication for describing analysis workflows and tools in a way that
makes them portable and scalable across a variety of environ-
ments—from workstations to cluster, cloud, and HPC environ-
ments. CWL is a large bioinformatics community effort. Different
platforms support CWL, including Arvados, Galaxy, and Seven
Bridges [8].
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A second workflow language is the Guix Workflow Language
(GWL) built on top of the GNUGuix software deployment system.
GWL aims to provide a deterministic and bit-reproducible analysis
environment.

A third workflow language and orchestrator, Nextflow, allows
scalable and reproducible scientific workflows to run seamlessly
across multiple platforms from local computers to HPC clusters
and the cloud, offering a concise and expressive DSL to describe
complex workflows. Nextflow is routinely used in organizations
and institutes, such as the Roche Sequencing, the Wellcome Trust
Sanger Institute, and the Center for Genomic Regulation (CRG)
Nextflow workshop.

Forth there is Snakemake, another widely used workflow man-
ager system, written in Python and inspired by GNU Make. It
allows for the composition of workflows based on a graph of rules
whose execution is triggered by the presence, absence, or modifica-
tion of expected files and directories.

It is interesting to note that all these workflow languages and
systems originated in bioinformatics. It suggests that in this rapidly
growing field, the increasing computational needs and moreover
the diverse demands made more formal solutions a necessity. It also
suggests that existing workflow engines used in astronomy and
physics, for example, have different requirements.

Box 1: Understanding Parallelization
Parallel computing is related to concurrent computing. In
parallelized computing, a computational task is typically bro-
ken down in several, often many, very similar subtasks that can
be processed independently and whose results are combined
afterward, upon completion, i.e., a simple scatter and gather
approach. In contrast, in distributed computing, the various
processes often do not address related tasks; or when they do,
the separate tasks may have a varied nature and often require
some interprocess communication during execution. The lat-
ter is also a hallmark of supercomputing where compute
nodes have high-speed connections.

In the bioinformatics space, we usually discuss embarrass-
ingly parallel computing which means similar tasks are
distributed across multiple CPUs without interprocess com-
munication. This can be among multiple cores within a single
processor, a multiprocessor system, or a network of compu-
ters, a so-called compute cluster.

Even so, parallel multicore programming easily becomes
complex. Typically, parallel programming has to deal with
extra data and control flow; it has to deal with deadlocks,

(continued)
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Box 1: (continued)
where depending tasks wait for each other forever and, with
race conditions, where tasks try to modify a shared resource
(e.g., a file) at the same time resulting in a loss of data or an
undetermined condition. This introduces additional com-
plexity in software development, bug hunting, and code
maintenance. Typically it takes more time to debug such
code than to write it.

Writing programs that fully utilize multi-core architectures is hard

Not only is parallel programming intrinsically complicated;
programmers also have to deal with communication overheads
between parallel threads. MrBayes, for example, a program for
calculating phylogenetic trees based on Bayesian analysis, comes
with MPI support. MPI is a message-based abstraction of paralle-
lization, in the form of a binary communication protocol imple-
mented in a C programming library [12]. In some cases the
parallelized version is slower than the single CPU version. For
example, the MPI version calculates each Markov chain in parallel,
and the chains need to be synchronized with each other, in a
“scatter and gather” pattern. The chains spend time waiting for
each other in addition to the communication overheads introduced
by MPI itself. Later MrBayes adopted a hybrid use of coarse-
grained OpenMPI and fine-grained use of pthreads or OpenMP
leading to improved scalability, e.g., [13].

Another example of communication overhead is with the sta-
tistical programming language R [14], which does not have native
threading support built into the language. One possible option is to
use an MPI-based library which only allows coarse-grained paralle-
lization from R, as each parallelized R thread starts up an R
instance, potentially introducing large overheads, both in commu-
nication time and memory footprint. For a parallelized program to
be faster than its single-threaded counterpart, these communica-
tion overheads have to be dealt with.

Parallelization in R is coarse-grained with large overhead

The need for scaling up calculations on multi-CPU computers
has increased the interest in a number of functional programming
languages, such as Erlang [15], Haskell [16], Scala [17], and Julia
[18]. These languages promise to ease writing parallel software by
introducing a higher level of abstraction of parallelization, com-
bined with immutable data, automatic garbage collection, and
good debugging support [5, 19]. For example, Erlang and Scala
rely on Actors as an abstraction of parallelization and make
reasoning about fine-grained parallelization easier and therefore
less error prone.
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Actors were introduced and explored by Erlang, a computer
language originally designed for highly parallelized telecommuni-
cations computing. To the human programmer, each Actor appears
as a linear piece of programming and is parallelized without the
complexity of locks, mutexes, and semaphores. Actors allow for
parallelization in a manageable way, where lightweight threads are
guaranteed to be independent and each has a message queue,
similar to MPI. Actors, however, are much faster, more intuitive,
and, therefore, probably, safer than MPI. Immutable data, when
used on a single multi-CPU computer, allows fast passing of data by
reference between Actors. When a computer language supports the
concept of immutability, it guarantees data is not changed between
parallel threads, again making programming less error prone and
easier to structure. Actors with support for immutable data are
implemented as an integral part of the programming language in
Erlang, Haskell, Scala, Elixir, and D [20].

Another abstraction of parallelized programming is the intro-
duction of goroutines, part of the Go programming language
[21]. Where MPI and Actors are related to a concept of message
passing and mail boxes, goroutines are more closely related to Unix
named pipes. Goroutines also aim to make reasoning about paral-
lelization easier, by providing a pipe where data goes in and results
come out, and this processing happens concurrently without use of
mutexes, making it easier to reason about linear code. Goroutines
are related to communicating sequential processes (CSP), the orig-
inal paper by TonyHoare in 1978 [22]. Meanwhile, recent practical
implementations are driven by the ubiquity of cheap multicore
computers and the need for scaling up. A Java implementation of
CSP exists, named JCSP [23], and a Scala alternative named CSO
[24]. Go made goroutines intuitive and a central part of the
strongly typed compiled language.

Erlang, Elixir, Haskell, Scala, Julia, Go andD are languages offering
useful abstractions and tools for multi-core programming

It is important to note that the problems, ideas, and concepts of
parallel programming are not recent. They have been an important
part of computer science theory for decennia. We invite the reader
interested in parallel programming to read up on the languages that
have solid built-in support high-level parallelization abstractions, in
particular, Scala [17], Go [21], and D [20].

1.4.1 GPU Programming Another recent development is the introduction of GPU comput-
ing or “heterogeneous computing” for offloading computations.
Most GPUs consist of an array of thousands of cores that can
execute similar instructions at the same time. Having a few
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thousand GPU cores can speed up processing significantly. Pro-
gramming GPUs, however, is a speciality requiring specialized
compilers and communication protocols, and there are many con-
siderations, not least the I/O bottleneck between the main mem-
ory and the GPU’s dedicated RAM [5]. Even so, it is interesting to
explore the use of GPUs in bioinformatics since they come with
almost every computer today and clusters of GPU can increasingly
be found in HPC infrastructure and in the cloud, alike. With the
advent of “deep neural networks” and the general adoption of
machine learning techniques for Big Data, GPUs have become a
mainstream technology in data mining.

2 Package Software in a Container

Container technologies, such as Docker and Singularity, have
gained popularity because they have less overhead than full virtual
machines (VMs) and are smaller in size [24]. Containers are fully
supported by the major cloud computing providers and play an
important role for portability across different platforms.

Adoption of container solutions onHPC has been problematic,
mostly because of security concerns. Singularity [26] offers a
decentralized environment encapsulation that works in user space
and that can be deployed in a simpler way since no root privileges
are required to execute tools provided with Singularity. That is,
Singularity containers can be created on a system with root privi-
leges but run on a system without root privileges—though it
requires some special kernel support. Docker containers can be
imported directly in Singularity, so when we present how to build
Docker container images in the following sections, the reader
should be aware that the same images can also be used with Singu-
larity. Singularity is slowly being introduced in HPC setups [27].

GNU Guix also has support for creating and running Linux
containers. One interesting benefit is that, because the software
packaging system is read-only and provides perfect isolation, con-
tainers automatically can share specific software running on the
underlying system, making running containers even lighter and
extremely fast.

In this section we discuss three popular software distribution
systems for Linux: Debian GNU/Linux (Debian), GNUGuix, and
Conda can be used together on a single system allowing access to
most bioinformatics software packages in use today. In this section
we bundle tools that can be deployed in a Docker image, which can
run on a single multicore desktop computer and a compute cluster
and in the cloud.
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2.1 Debian Med Debian (http://www.debian.org) is the oldest software distribution
(started 1993) mentioned here with the largest body of software
packages. Debian targets a wide range of architectures and includes
a kernel plus a large body of other user software including graphical
desktop environments, server software, and specialist software for
scientific data processing. Overall Debian represents millions of
users and targets most platforms in use today, even though it is
not the only packaging system around (RPM being a notable
alternative, for RedHat, Fedora, OpenSuSE, and CentOS).

Debian Med is a project within Debian that packages software
for medical practice and biomedical research. The goal of Debian
Med is a complete open system for all tasks in medical care and
research [28]. With Debian Med over 400 precompiled bioinfor-
matics software programs are available for Linux, as well as some
400 R packages. Proper free and open-source software (FOSS) can
easily be packaged and distributed through Debian. Debian and its
derivatives, such as Ubuntu andMint, share the deb package format
and have a long history of community support for bioinformatics
packages [28, 29].

2.1.1 Create a Docker

Image with Debian

Using the bio packages already present in Debian, it is straightfor-
ward to build a Docker container that includes all the necessary
software to run the example workflows. Here is the code for creat-
ing the Docker image (see also [30]). We created a pre-built Docker
image which is available on Docker Hub [31].

Essentially, write a Docker script:

FROM debian:buster

RUN apt-get update && apt-get -y install perl clustalo paml

ADD pal2nal.pl /usr/local/bin/pal2nal.pl

RUN chmod +x /usr/local/bin/pal2nal.pl

And build and run the container:

docker build -t scalability_debian -f Dockerfile.debian

2.2 GNU Guix GNU Guix (https://www.gnu.org/software/guix/) is a package
manager of the GNU project that can be installed on top of other
Linux distributions and represents a rigorous approach toward
dependency management [32]. GNU Guix software packages are
uniquely isolated by a hash value computed over all inputs, includ-
ing the source package, the configuration, and all dependencies.
This means that it is possible to have multiple versions of the same
software and even different variants or combinations of software,
e.g., Apache web server with SSL and without SSL compiled on a
single system.
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As of November 2017, GNU Guix provides over 6500 soft
ware packages, including a wide range of dedicated scientific soft-
ware for bioinformatics, statistics, and machine learning

2.2.1 Create a Docker

Image with GNU Guix

GNUGuix has native support for creating Docker images. Creating
a Docker image with GNU Guix is a one liner:

guix pack -f docker -S /bin=bin paml clustal-omega

which creates a reproducible Docker image containing PAML and
Clustal Omega [33], including all of their runtime dependencies.
Guix makes it very easy to write new package definitions using the
Guile language (a LISP). If you want to include the definition of
your own packages (that are not in Guix main line), you can include
them dynamically. This is how we add pal2nal [34] in below GWL
workflow example (see Subheading 3.3 below).

2.3 Conda Conda (https://conda.io/docs/) is a cross-platform package man-
ager written in Python that can be used to install software written in
any language. Conda allows the creation of separate environments
to deploy multiple or conflicting packages versions, offering a
means of isolation. Note that this isolation is not as rigorous as
that provided by GNU Guix or containers. The Bioconda [35]
(https://bioconda.github.io/) project provides immediate access
to over 2900 software packages for bioinformatics, and it is main-
tained by an active community of more than 200 contributors.

2.3.1 Create a Docker

Image with Bioconda

A Docker container can be created starting from the “Miniconda”
image template, which is based on Debian. The Docker instruc-
tions are comparable to those of Debian above:

FROM conda/miniconda3

RUN conda config --add channels conda-forge

RUN conda install -y perl=5.22.0

RUN conda install -y -c bioconda paml=4.9 clustalo=1.2.4

wget=1.19.1

ADD pal2nal.pl /usr/local/bin/pal2nal.pl

RUN chmod +x /usr/local/bin/pal2nal.pl

Note that we provide the version numbering of the packages. If
you want to build this container, you can use the Dockerfile
provided in the GitHub repository [30] and then run:

docker build -t scalability .

We also added a pre-built container image on Docker
Hub [31].

Conda can also be used outside any container system to install
the software directly on a local computer or cluster. To do that first
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install the Miniconda package https://conda.io/miniconda.html,
and then you can create a separate environment with the necessary
software to run the workflows. Following is an example to set up a
working environment:

conda create -n scalability

source activate scalability

conda config --add channels conda-forge

conda install -y perl=5.22.0

conda install -y -c bioconda paml=4.9 clustalo=1.2.4

wget=1.19.1

wget http://www.bork.embl.de/pal2nal/distribution/pal2nal.

v14.tar.gz

tar xzvf pal2nal.v14.tar.gz

sudo cp pal2nal.v14/pal2nal.pl /usr/local/bin

sudo chmod +x /usr/local/bin/pal2nal.pl

Note that we use Miniconda here to bootstrap Bioconda.
Bioconda can be bootstrapped in other ways. One of them is
GNU Guix which contains a Conda package.

2.4 A Note on

Software Licenses

All above packaging systems use free and open-source software
(FOSS) released under a permissible license, i.e., a license permit-
ting the use, modification, and distribution of the source code for
any purpose. This is important because it allows software distribu-
tions to distribute all included software freely. Software that is made
available under more restrictive licenses, such as for “academic
nonprofit use only,” cannot be distributed in this way. An example
is PAML that used to have such a license. Only when it was changed
PAML got included into Debian, etc. Also, for this book chapter,
we asked the author of pal2nal to add a proper license. After adding
the GPLv2, it became part of the Debian distribution; see also
https://tracker.debian.org/pkg/pal2nal. This means that above
Docker scripts can be updated to install the pal2nal Debian
package.

When you use scientific software, always check the type of
license under which it is provided, to understand what you can or
cannot do with it. When you publish software, add a license along
with your code, so others can use it and distribute it.

Typical licenses used in bioinformatics are MIT (Expat) and
BSD, which are considered very permissive, and also GPL and the
Apache License, which are designed to grant additional protections
with regard to derivative works and patentability. Whenever possi-
ble, free software licenses such as mentioned above are encouraged
for scientific software. Check the guidelines of your employer and
funding agencies.
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3 Create a Scalable and Reusable Workflow

3.1 Example

Workflow

We have created a number of examples to test a scalable and
reproducible workflow, the full code, and examples that are avail-
able on GitHub [30]. In this case putative gene families of the
oomycete Phytophthora infestans are tested for evidence of positive
selection. P. infestans is a single-cell pathogen, which causes late
blight of potato and tomato. Gene families under positive selection
pressure may be involved in protein–protein interactions and are
potentially of interest for fighting late blight disease.

As an example the P. infestans genome data [36] was fetched
from http://www.broadinstitute.org/annotation/genome/phyto
phthora_infestans/MultiDownloads.html, and predicted genes
were grouped by \name{blastclust} using 70% identity (see also
Chapter. 21). This resulted in 72 putative gene families listed on
the online repository on GitHub [30].

The example workflow aligns amino acid sequences using Clus-
tal Omega, creates a neighbor joining tree, and runs CodeML from
the PAML suite. The following is one example to look for evidence
of positive selection in a specific group of alignments:

clustalo -i data/clusterXXXXX/aa.fa --guidetree-out=data/

clusterXXXXXX/aa.ph > data/clusterXXXXXX/aa.aln

pal2nal.pl -output paml data/clusterXXXXX/aa.aln data/clus-

terXXXXX/nt.fa > data/clusterXXXXX/alignment.phy

cd data/clusterXXXXX

Codeml ../paml0-3.ctl

First we align amino acid with Clustal Omega, followed by
translation to a nucleotide alignment with pal2nal. Next we test
for evidence of positive selection using PAML’s \name{Codeml}
with models M0–M3. Note that the tools and settings used here are
merely chosen for educational purposes. The approach itself here
may result in false positives, as explained by Schneider et al.
[37]. Also, PAML is not the only software that can test for evidence
of positive selection, for example, the HyPhy molecular evolution
and statistical sequence analysis software package contains similar
functionality and uses MPI to parallelize calculations [38]. PAML is
used here because it is a reference implementation and is suitable as
an example how a legacy single-threaded bioinformatics application
can be parallelized in a workflow.

In the next section, different workflow systems are presented
that can be used to run the described analysis: in a scalable and
reproducible manner, locally on a desktop, on a computer cluster,
or in the cloud. All the code and data to run these examples is
available on GitHub [30]. To load the code on your desktop, clone
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the git repository locally. The examples can be executed from the
repository tree:

git clone https://github.com/EvolutionaryGenomics/scalabil-

ity-reproducibility-chapter.git

3.2 Common

Workflow Language

Common workflow language (CWL, http://www.commonwl.
org/) is a standard for describing workflows that are portable across
a variety of computing platforms [39]. CWL is a specification and
not a software in itself though it comes with a reference implemen-
tation which can be run with Docker containers. CWL promotes an
ecosystem of implementations and supporting systems to execute
the workflows across multiple platforms. The promise is that when
you write a workflow for, e.g., Arvados, it should also run on
another implementation, e.g., Galaxy.

Given that CWL takes inspiration from previously developed
tools and GNUMake in particular [40], the order of execution in a
CWL workflow is based on dependencies between the required
tasks. However unlike GNU Make, CWL tasks are defined to be
isolated, and you must be explicit about inputs and outputs. The
benefits of explicitness and isolation are flexibility, portability, and
scalability: tools and workflows described with CWL can transpar-
ently leverage software deployment technologies, such as Docker,
and can be used with CWL implementations from different ven-
dors, and the language itself can be applied to describe large-scale
workflows that run in HPC clusters, or the cloud, where tasks are
scheduled in parallel across many nodes.

CWL workflows are written in JSON or YAML formats. A
workflow consists of blocks of steps, where each step in turn is
made up of a task description that includes the inputs and outputs
of the task itself. The order of execution of the tasks is determined
automatically by the implementation engine. In the GitHub repos-
itory, we show an example of a CWL workflow to describe the
analysis over the protein alignments. To test the workflow, you
will need the CWL reference runner implementation:

pip install cwlref-runner

and then to run the example from the repository tree:

CWL/workflow.cwl --clusters data

To run the CWL workflow on a grid or cloud multi-node
system, we can install another CWL implementation, this one
built upon the toil platform [41]:

pip install toil[cwl]

toil-cwl-runner CWL/workflow.cwl --clusters data
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CWL comes with extra tooling, such as visualization of CWL
workflows (Fig. 1). See view.commonwl.org for more examples.

3.3 Guix Workflow

Language

The Guix Workflow Language (GWL) extends the functional pack-
age manager GNU Guix [32] with workflow management capabil-
ities. GNU Guix provides an embedded domain-specific language
(EDSL) for packages and package composition. GWL extends this
EDSL with processes and process composition.

In GWL, a process describes the computation, for example,
running the clustalo program. A workflow in the GWL describes
how processes relate to each other. For example, the Codeml
program can only run after both clustalo and pal2nal finished
successfully.

The tight coupling of GWL and GNU Guix ascertains that not
only the workflow is described rigorously but also the deployment
of the programs on which the workflow depends.

To run the GWL example, you need to install GNU Guix
(https://www.gnu.org/software/guix/manual/html_node/
Binary-Installation.html) and the GWL installed on your com-
puter. Once GNU Guix is available, installing GWL can be done
using:

guix package -i gwl

Workflow Inputs

nucleotides proteins

nucleotides clustal

protein_alignment

sequences

codeml

nucleotides alignment

Workflow Outputs

dN/dS results proteins alignment guide tree

pal2nal tree

multi_sequence

Fig. 1 Workflow automatically generated from the CWL schema displays how
PAML’s Codeml receives inputs from two sources and outputs the dN/dS infor-
mation. A workflow engine figures out that it has to run clustal first, followed by
pal2nal and Codeml as a linear sequence. For each input, the job can be
executed in parallel
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The example can be run using:

cd scalability-reproducibility-chapter/GWL

guix workflow -r example-workflow

GWL also implements execution engines to offload computa-
tion on compute clusters, allowing it to scale. The process engines
can use the package composition capabilities of GNU Guix to
create the desirable form of software deployment—be it installing
programs on the local computer or creating an application bundle,
a Docker image, or a virtual machine image.

Running our example on a cluster that has Grid Engine:

guix workflow -r example-workflow -e grid-engine

GNU Guix + GWL can ensure full reproducibility of an analy-
sis, including all software dependencies—all the way down to glibc.
GNU Guix computes a unique string, a hash, on the complete set
of inputs and the build procedure of a package. It can guarantee
that a package is built with the same source code, dependency
graph, and the same build procedure, and produces identical out-
put. In GWL for each process and workflow, a hash is computed of
the packages, the procedure, and the execution engine. By compar-
ing hashes it is not only possible to compare whether the workflow
is running using the exact same underlying software packages, and
using the same procedures, but also the full graph of dependencies
can be visualized. To obtain such an execution plot:

guix package -i graphviz

guix workflow -g example-workflow | dot -Tpdf > example-

workflow.pdf

Note that, unlike the other workflow solutions discussed here,
GWL does not use the time stamps of output files. The full depen-
dency graph is set before running the tools, and it only needs to
check whether a process returns an error state. This means that
there are no issues around time stamps and output files do not have
to be visible to the GWL engine.

3.4 Snakemake Snakemake [42] is a workflow management system that takes inspi-
ration from GNU Make [40], a tool to coordinate the compilation
of large programs consisting of interdependent source files
(https://snakemake.readthedocs.io/en/stable/).

Snakemake provides a DSL that allows the user to specify
generator rules. A rule describes the steps that need to be per-
formed to produce one or more output files, such as running a
shell script. These output files may be used as inputs to other rules.
The workflow is described as a graph in which the nodes are files
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(provided input files, generated intermediate files, or the desired
output files) and the edges are inferred from the input/output
interdependencies of connected rules.

When a user requests a certain file to be generated, Snakemake
matches the file name against concrete or wildcard rules, traverses
the graph from the target file upward, and begins processing the
steps for every rule for which no new output file is available.
Whether or not an output file is considered new depends on its
time stamp relative to the time stamp of prerequisite input files. In
doing so, Snakemake only performs work that has not yet been
done or for which the results are out of date, just like GNU Make.
Snakemake can be configured to distribute jobs to batch systems or
to run jobs on the local system in parallel. The degree of paralleliza-
tion depends on the dependencies between rules.

Snakemake is written in Python and allows users to import
Python modules and use them in the definition of rules, for exam-
ple. It also has special support for executing R scripts in rules, by
exposing rule parameters (such as inputs, outputs, concrete values
for wildcards, etc.) as an S4 object that can be referenced in the R
script.

Snakemake provides native support for the Conda package
manager. A rule may specify a Conda [35] environment file describ-
ing a software environment that should be active when the rule is
executed. Snakemake will then invoke Conda to download the
required packages as specified in the environment file. Alternatively,
Snakemake can interface with an installation of the Singularity
container system [26] and execute a rule within the context of a
named application bundle, such as a Docker image.

To run the Snakemake workflow, you need to install Snakemake
(example showed with Conda):

conda install -y -c bioconda snakemake=4.2.0

And then to run the example from the repository tree:

cd Snakemake

snakemake

3.5 Nextflow Nextflow [43] is a framework and an orchestration tool that enables
scalable and reproducible scientific workflows using software con-
tainers (https://www.nextflow.io/). It is written in the Groovy
JVM programming language [44] and provides a domain-specific
language (DSL) that simplifies writing and deploying complex
workflows across different execution platforms in a portable
manner.

A Nextflow pipeline is described as a series of processes, where
each process can be written in any language that can be executed or
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interpreted on Unix-like operating systems (e.g., Bash, Perl, Ruby,
Python, etc.). A key component of Nextflow is the dataflow pro-
gramming model, which is a message-based abstraction for parallel
programming similar to the CSP paradigm (see [23]). The main
difference between CSP and dataflow is that in the former, pro-
cesses communicate via synchronous messages, while in the latter,
the messages are sent in an asynchronous manner. This approach is
useful when deploying large distributed workloads because it has
latency tolerance and error resilience. In practical term the dataflow
paradigm uses a push model in which a process in the workflow
sends its outputs over to the downstream processes that waits for
the data to arrive before starting their computation. The commu-
nication between processes is performed through channels, which
define inputs and outputs for each process. Branches in the work-
flow are also entirely possible and can be defined using conditions
that specify if a certain process must be executed or not depending
on the input data or on user defined parameters.

The dataflow paradigm is the closest representation of a pipe-
line idea where, after having opened the valve at the beginning, the
flow progresses through the pipes. But Nextflow can handle this
data flow in a parallel and asynchronous manner, so a process can
operate on multiple inputs and emit multiple outputs at the same
time. In a simple workflow where, for instance, there are 100 nucle-
otide sequences to be aligned with the NCBI NT database using
BLAST, a first process can compute the alignment of the
100 sequences independently and in parallel, while a second process
will wait to receive and collect each of the outputs from the
100 alignments to create a final results file. To allow workflow
portability, Nextflow supports multiple container technologies
such as Docker and Singularity and integrates natively with Git
and popular code sharing platforms, such as GitHub. This makes
it possible to precisely prototype self-contained computational
workflows, tracking also all the modifications over time and ensur-
ing the reproducibility of any former configuration. Nextflow
allows executing workflows across different computing platforms
by supporting several cluster schedulers (e.g., SLURM, PBS, LSF
and SGE) and allowing direct execution on the Amazon cloud
(AWS), using services, such as AWS Batch or automating the crea-
tion of a compute cluster in the cloud for the user.

To run the Nextflow example, you need to have Java 8 and a
Docker engine (1.10 or higher) installed. Next install Nextflow
with:

curl -s https://get.nextflow.io | bash

Run the example from the repository tree:
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./nextflow run Nextflow/workflow.nf -with-docker evolutionar-

ygenomics/scalability

To save the graph of the executed workflow, it is sufficient to
add the option “-with-dag workflow.pdf.” The same example can
also be run without Docker if the required packages have been
installed locally following the Bioconda or Guix examples. In this
case you can omit the “-with-docker” instruction. To run the
example on a compute cluster or in the cloud, it is sufficient to
specify a different executor (e.g., sge or awsbatch) in the Nextflow
configuration file and ensure that those environments are config-
ured to properly work with the Docker container.

4 Discussion

In this chapter we show how to describe and execute the same
analysis using a number of workflow systems and how these follow
different approaches to tackle execution and reproducibility issues.
It is important to assess underlying design choices of these solu-
tions and also to look at the examples we provide online. Even
though it may look attractive to opt for the simplest choices, it may
be that the associated maintenance burden may be cause for regret
later.

The workflow tools introduced in this chapter offer direct
integration of software packages. The overall advantage of the
bundling software approach is that when software deployment
and execution environment are controlled, the logic of the analysis
pipeline can be developed separately using descriptive workflows.
This separation allows communities to build best practice shareable
pipelines without worrying too much about individual system
architectures and the underlying environments. An example is the
effort by the Global Alliance for Genomics and Health (GA4GH,
https://www.ga4gh.org) to develop and share best practice analysis
workflows with accompanying container images [45].

In this chapter we also discussed the scaling up of computations
through parallelization. In bioinformatics, the common paralleliza-
tion strategy is to take an existing nonparallel application and divide
data into discrete units of work, or jobs, across multiple CPUs and
clustered computers. Ideally, running jobs in parallel on a single
multicore machine shows linear performance increase for every
CPU added, but in reality it is less than linear [46]. Resource
contention on the machine, e.g., disk or network I/O, may have
processes wait for each other. Also, the last, and perhaps longest,
running job causes total timing to show less than linear perfor-
mance, as the already finished CPUs are idle. In addition to the
resource contention on a single machine, the network introduces
latencies when data is moved around.
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Running the example workflow in the cloud has similar perfor-
mance and scalability compared to running it on a local infrastruc-
ture, after adjusting for differences in hardware and network
speeds. Cloud computing is an attractive proposition for scaling
up calculation jobs and storing data. Cloud prices for virtual servers
and data storage have decreased dramatically, and the possibility of
using spot or preemptible instances (i.e., virtual servers that can be
priced down to 70% or 80% the normal price but that can be shut
down in any moment by the cloud provider) is making cloud
computing solutions competitive for high-performance and scien-
tific computing. Cloud essentially outsources hardware and related
plumbing and maintenance. Sophisticated tooling allows any
researcher to run software in the cloud. We predict an increasing
number of groups and institutes will move from large-scale HPC
clusters toward tight HPC cluster solutions that can handle contin-
uous throughput with burst compute in the cloud.

Reproducibility is a prime concern in science. Today several
solutions are available to address reproducibility concerns. Systems
such as Docker and Singularity are built around bundling binary
applications and executing them in a container context. Advanced
package managers such as Conda or Guix allow the user to create
separate software environments where different application versions
can be deployed without collisions while ensuring control and
traceability over changes and dependencies. All these solutions
represent a different approach to address the reproducibility chal-
lenge while also offering a different user experience and requiring
different setups to work properly. For instance, container-based
systems such as Docker and Singularity are not always a viable
option in HPC environments since they may require updates to
the existing computing infrastructure. Also, HPC operating system
installations may include kernel versions that do not allow for the
so-called user namespaces, a fundamental component among the
many kernel features that together allow an application to run in an
isolated container environment. Another downside of containers is
that it is hard to assess what is in them—they act like a black box.
When creating containers with above Docker scripts, it depends on
the time they are assembled what goes in. A Debian or Conda
update between creating containers, for example, may include a
different software version therefore a different dependency graph.
Only GNU Guix containers provide a clear view on what is
contained.

Containers provide isolation from the underlying operating
system. On HPC environments it may be required to run software
outside a container. While applications built with Guix or Conda
can be run in isolation when container support is available, they do
not require these features at runtime. As a package manager Conda,
neither depends on container features nor on root privileges, but it
pays for this convenience with a lack of both process isolation and
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bit-reproducibility [47]. GNUGuix, meanwhile, provides the most
rigorous path to reproducible software deployment. In order to
guarantee that packages are built in a bit-reproducible fashion and
share binary packages, Guix requires to store packages in the direc-
tory /gnu/store. There are several work-arounds for this; one of
them is by using containers, and another is by mounting /gnu/
store from a host that has built privileges for that directory. A third
option is to build packages targeted at a different directory, but this
loses the bit-reproducibility and the convenience of binary installs.
A fourth option is to provide relocatable binary installation
packages that can be installed in a user available directory, similar
to what Bioconda does. Such packages exist for sambamba, gemma,
and the D-compiler.

Finally, each combination of these packaging and workflow
solutions occupies a slightly different region in the solution space
for the scalability and reproducibility challenge. Fortunately, the
packaging tools can be used next to each other without interfer-
ence, thereby providing a wealth of software packages for bioinfor-
matics. Today, there is hardly ever a good reason to build software
from source.

5 Questions

1. Using one of the packaging or container systems described
(e.g., Conda, Guix, or Docker), prepare a working environ-
ment to run the examples. Now try to run the workflows using
the tools presented and appreciate the different approaches to
execute the same example.

2. Compare the different syntaxes used by the tools to define a
workflow and explore how each tool describes the processes
and the dependencies in a different way.

3. Use the Amazon EC2 calculation sheet, and calculate how
much it would cost to store 100 GB in S3, and execute a
calculation on 100 “large” nodes, each reading 20 GB of
data. Do the same for another cloud provider.
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