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SUMMARY

Multiple sclerosis is a complex neurological dis-
ease, with �20% of risk heritability attributable to
common genetic variants, including >230 identi-
fied by genome-wide association studies. Multiple
strands of evidence suggest thatmuch of the remain-
ing heritability is also due to additive effects of com-
mon variants rather than epistasis between these
variants or mutations exclusive to individual families.
Here, we show in 68,379 cases and controls that up
to 5% of this heritability is explained by low-fre-
quency variation in gene coding sequence. We iden-
tify four novel genes driving MS risk independently
of common-variant signals, highlighting key patho-
genic roles for regulatory T cell homeostasis and
regulation, IFNg biology, and NFkB signaling. As
low-frequency variants do not show substantial link-
age disequilibrium with other variants, and as coding
variants are more interpretable and experimentally
tractable than non-coding variation, our discoveries
constitute a rich resource for dissecting the pathobi-
ology of MS.

INTRODUCTION

Multiple sclerosis (MS; MIM 126200) is an autoimmune disease

of the central nervous system and a common cause of neuro-

logic disability in young adults (Compston and Coles, 2008). It

is most prevalent in individuals of northern European ancestry

and—in line with other complex, common disorders—shows

substantial heritability (Binder et al., 2016), with a sibling stan-

dardized incidence ratio of 7:1 (Westerlind et al., 2014). Over

the last 15 years, we have identified 233 independent, com-

mon-variant associations mediating disease risk by genome-

wide association studies (GWASs) of increasing sample size

(Andlauer et al., 2016; Australia and New Zealand Multiple Scle-

rosis Genetics Consortium, 2009; Baranzini et al., 2009; Bee-

cham et al., 2013; De Jager et al., 2009; International Multiple

Sclerosis Genetics Consortium et al., 2011, 2017; Jakkula

et al., 2010; Martinelli-Boneschi et al., 2012; Nischwitz et al.,

2010; Patsopoulos et al., 2011; Sanna et al., 2010; Burton

et al., 2007). In our most recent meta-analysis of 14,802 MS

cases and 26,703 controls, these effects—including 32mapping

to classical human leukocyte antigen (HLA) alleles and other vari-
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ation in the major histocompatibility (MHC) locus (International

Multiple Sclerosis Genetics Consortium et al., 2017; Moutsianas

et al., 2015; Patsopoulos et al., 2013)—account for 7.5% of h2g,

the heritability attributable to additive genetic effects captured

by genotyping arrays, with a total of 19.2% of h2g attributable

to all common variants in the autosomal genome (International

Multiple Sclerosis Genetics Consortium et al., 2017). MS is

thus a prototypical complex disease with a substantial portion

of heritability determined by hundreds of common genetic vari-

ants, each of which explain only a small fraction of risk (Sawcer

et al., 2014).

As with other common, complex diseaseswhere large GWASs

have been conducted, we find that although common variants

(minor allele frequency [MAF] > 5%) account for the bulk of trait

heritability, they cannot account for its entirety. Identifying the

source of this unexplained heritability has thus become a major

challenge (Manolio et al., 2009). Two hypotheses are frequently

advanced: some common variants show epistatic (i.e., non-

additive) interactions so that they contribute more risk in combi-

nation than each does alone, and a portion of risk is due to rare

variants that cannot be imputed via linkage disequilibrium to

common variants present on genotyping arrays and are there-

fore invisible to heritability calculations based on such arrays.

The only evidence we have found for epistatic interactions be-

tween common MS risk variants is between two HLA haplotype

families in the MHC locus (Moutsianas et al., 2015). This lack of

epistatic interactions is consistent with other common, complex

diseases, both of the immune system and beyond (Altshuler

et al., 2008). We have also found no evidence that mutations in

individual families drive disease risk in genome-wide linkage an-

alyses of 730 MS families with multiple affected members

(Sawcer et al., 2005). These results indicate that neither epistasis

between known risk variants normutations in a limited number of

loci are major sources of MS risk. They do not, however, pre-

clude a role for variants present in the population at low fre-

quencies, which cannot be imputed but are likely to individually

contribute moderate risk.

Here, we report our assessment of the contribution of low-

frequency variation in gene coding regions to MS risk. We con-

ducted a meta-analysis of 120,991 low-frequency coding

variants across all autosomal exons, including 104,218 non-syn-

onymous and 2,276 nonsense variants, which are more likely to

have a phenotypic effect. We analyzed a total of 32,367 MS

cases and 36,012 controls drawn from centers across Australia,

10 European countries, and multiple US states, which we geno-

typed either on the Illumina HumanExome Beadchip (exome

chip) or on a custom array (the MS chip), incorporating the
mber 29, 2018 ª 2018 The Author. Published by Elsevier Inc. 1679
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Figure 1. Rare-Coding Variants Are Associated to Multiple Sclerosis Risk in a Multi-cohort Study
(A–C) We analyzed 120,991 low-frequency non-synonymous coding variants across all autosomal exons in 32,367 MS cases and 36,012 controls drawn across

the International Multiple Sclerosis Genetics Consortium centers. We find evidence for association with both common variants with combinedMAF > 5% (A) and

with rare variants across the autosomes (B). We sourced samples from Australia, 10 European countries, and the United States (C).

See also Figures S2 and S3.
exome chip content (International Multiple Sclerosis Genetics

Consortium et al., 2017), and which satisfied our stringent quality

control filters (Figure S1 and Table S1). The exome array is a

cost-efficient alternative to exome sequencing, capturing

approximately 88% of low-frequency and rare-coding variants

present in 33,370 non-Finnish Europeans included in the Exome

Aggregation Consortium (MAFs between 0.0001 and 0.05; Fig-

ure S1), and <5% of the extremely rare alleles present at even

lower frequencies. Our studywaswell powered, with 80%power

to detect modest effects at low frequency (odds ratio [OR] = 1.15
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at MAF = 5%) and rare variants (OR = 1.5 at MAF = 0.5%) at a

significance threshold of p < 3.5 3 10�7 (Bonferroni correction

for the total number of variants genotyped).

RESULTS

We first assessed the contribution of individual variants to MS

risk by conducting a meta-analysis of association statistics

across 14 country-level strata (Figure 1 and Table S1). We

used linear mixed models to correct for population structure in



Table 1. Coding Variants Associated to Multiple Sclerosis Risk

Chr Position rsID Minor Allele MAF

Studies

Observed P Value OR LCI UCI Gene AA Change

14 88452945 rs11552556 A 3.9% 14 5.759E�14 0.95 0.93 0.97 GALC Synonymous D84D

19 10463118 rs34536443 G 4.1% 13 6.282E�13 0.95 0.93 0.97 TYK2 Missense P1104A

10 72360387 rs35947132 A 5.0% 14 1.043E�10 1.04 1.02 1.06 PRF1 Missense A91V

2 179315031 rs61999302 T 5.6% 12 6.467E�10 0.95 0.93 0.97 PRKRA Missense D33G

2 179315726 rs62176112 A 5.6% 12 6.633E�10 0.95 0.93 0.97 PRKRA Missense P11L

19 56487619 rs61734100 C 0.2% 9 1.925E�07 0.78 0.67 0.91 NLRP8 Missense I942M

12 48191247 rs148755202 T 1.4% 14 2.597E�07 0.94 0.91 0.98 HDAC7 Missense R166H

We analyzed 120,991 low-frequency non-synonymous coding variants across all autosomal exons in 32,367 MS cases and 36,012 controls drawn

from centers across Australia, 10 European countries, and multiple US states. Genome positions are relative to hg19. The two variants in PRKRA

are in linkage disequilibrium (R2 = 1, D‘ = 1 in the 1000Genomes European samples). These variants lie in common variant risk loci found in our previous

GWAS (International Multiple Sclerosis Genetics Consortium et al., 2017).
13 of these strata, estimated from the 16,066 common, synony-

mous coding variants present on the exome chip (i.e., variants

with MAF > 5% in our samples). We included population struc-

ture-corrected summary statistics for the remaining cohort (from

Germany), which has been previously described (Dankowski

et al., 2015). As expected, we saw a strong correlation between

effect size and variant frequency, with rarer alleles exerting larger

effects (Figure S2). We found significant association betweenMS

risk and seven low-frequency coding variants in six genes outside

the extended MHC locus on chromosome 6 (Table 1 and Fig-

ure S3). Two of these variants (TYK2 p.Pro1104Ala, overall MAF

4.1% in our samples; GALC p.Asp84Asp, overall MAF 3.9%) are

in regions identified by our latest MS GWAS and show linkage

disequilibrium with the common-variant associations we have

previously reported (International Multiple Sclerosis Genetics

Consortium et al., 2011). The remaining associations are novel,

with the variants neither in linkage disequilibrium nor physical

proximity to common variant association signals and thus not

imputable in our GWASs (Table S2).

We were struck by the observation that the minor allele is pro-

tective in six of the seven cases in Table 1, a trend we also

observe at less stringent significant thresholds (Figure S2). This

pattern is unusual in common-variant studies: for example, in

our most recent GWAS, 101/200 non-MHC effects showed

that the minor allele increases risk. To test if this phenomenon

is due to our strata containing more cases than controls, we

randomly resampled 4,000 affected and 4,000 unaffected sam-

ples in our three largest strata and calculated association statis-

tics as for our main analysis. In this symmetric design, we found

no bias toward protective minor alleles at even modest levels of

significance (Table S3). Thus, low-frequency variants do not

preferentially decrease MS risk rather than increase it.

Though we are able to identify individual low-frequency vari-

ants associated with MS risk, we recognize that we cannot

detect all such variants at genome-wide significance, even in a

study of this magnitude. We thus sought to quantify the overall

contribution of low-frequency coding variation to MS risk. We

used a restricted maximum-likelihood approach to model herita-

bility attributable to genotypic variation across the genome that

was initially developed for common-variant analyses (Yang

et al., 2011) and later shown to also performwell for rare variants,
as in the present case (Mancuso et al., 2016). In each of the 13

strata that comprise our data, we estimated the proportion of

heritability explained by common (MAF > 5%) and low-frequency

(MAF% 5%; Table S4) variants on the exome arrays (Yang et al.,

2011). We included genotype-derived principal components to

further control for population stratification. By meta-analyzing

these estimates across the twelve strata where the restricted

maximum likelihood model converged, we found that low-fre-

quency variants explain 11.34% (95% confidence interval

11.33%–11.35%) of the observed difference between cases

and controls (mean estimate 4.1%on the liability scale; Figure 2).

We further partitioned the low-frequency variants into intermedi-

ate (5% > MAF R 1%) and rare (MAF < 1%) and found that the

latter alone explain 9.0% (95% confidence interval 8.9%–

9.1%) on the observed scale (mean estimate 3.2% on the liability

scale; Figure 2). We note that six of the eight genome-wide

significant variants presented in Table 1 are of intermediate

frequency and thus are not included in the rare category. We

capture the majority, though not all, of known common risk var-

iants to some extent with the common variants on the exome

chip (Table S5); our analysis therefore adequately, though imper-

fectly, models this portion of the frequency spectrum. Our results

thus indicate that many more non-synonymous rare variants

contribute to MS risk but are not individually detectable at

genome-wide thresholds, even in large studies like ours.

In this study, we show that low-frequency coding variation

explains a fraction of MS risk that cannot be attributed to com-

mon variants across the genome. We capture most, but not all,

low-frequency missense variants (Figure S1), suggesting our

heritability estimates for low-frequency and rare variation are

conservative. This broadly agrees with previous reports that

such variants contribute to complex traits, including Alzheimer’s

disease (Sims et al., 2017) and schizophrenia (Purcell et al.,

2014), where heritability modeling similar to ours supports a

role for rare variants. Studies of quantitative phenotypes shared

by the entire population, such as height (Marouli et al., 2017),

serum lipid levels (Liu et al., 2017), and blood cell traits (Chami

et al., 2016; CHARGE Consortium Hematology Working Group,

2016) have also reported novel associations to low-frequency

coding variants outside the large number of known GWAS loci

in each trait. However, a meta-analysis of different type 2
Cell 175, 1679–1687, November 29, 2018 1681
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Figure 2. Rare Variants Explain a Substantial Portion of Multiple Sclerosis Heritability

We estimated the MS risk heritability explained by common variants (MAF > 5%) and low-frequency non-synonymous coding variation (MAF < 5%) in each of 13

cohorts genotyped on the exome chip using genome-wide complex trait analysis (GCTA; top). By meta-analyzing these estimates across cohorts, we found that

low-frequency variants explain 11.34% of heritability on the observed scale, which corresponds to 4.1% on the liability scale (right top). After dividing the low-

frequency variants into intermediate (5% > MAF > 1%) and rare (MAF < 1%; bottom), we found that the latter alone explains 9.0% heritability on the observed

scale (3.2% on the liability scale; bottom right). Meta-analysis confidence intervals are small and visually occluded by themean estimate plot characters. Cohorts

(abbreviations as in Table S1) are ordered by sample size, with the percentage of the overall sample size shown in each subplot title. We could not obtain es-

timates for either model for our Finnish cohort (see STARMethods; not shown), or for the three-component model for our Belgian cohort (bottom, top row, fourth

from left). Both cohorts are small, which may explain the failure to converge.
diabetes study designs found no associations outside common-

variant GWAS regions (Fuchsberger et al., 2016), though this

may be due to the heterogeneity of sample ascertainment and

study design. In aggregate, therefore, our results and these

past studies demonstrate that rare coding variants contribute a

fraction of common, complex trait heritability. These results

also agree with both theoretical expectation and empirical ob-

servations that low-frequency coding variants are under natural

selection and are unlikely to increase in frequency in the popula-

tion (Nelson et al., 2012; Schoech et al., 2017; Zeng et al., 2018).

Thus, some portion of disease-associated variants, and hence

the genes they influence, may not be detectable with conven-

tional GWAS designs.

The newly discovered genes have clear immunological func-

tions, confirming that MS pathogenesis is primarily driven by

immune dysfunction. The associated polymorphisms show

negligible linkage disequilibrium with other variants (Table S2),
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so the genes harboring them are likely to be relevant to disease.

PRF1 encodes perforin, a key component of the granzyme-

mediated cytotoxicity pathways used by several lymphocyte

populations. In addition to cytotoxic lymphocytes and natural

killer (NK) cells (House et al., 2015), perforin-dependent cytotox-

icity is also seen in CD4+FOXP3+ regulatory T cells (Tregs), which

show aberrant, T helper-like IFNg secretion inMSpatients (Dom-

inguez-Villar et al., 2011). The MS risk variant rs35947132

(p.Ala91Val) is associated with a decrease in target cell-killing ef-

ficiency and increases in IFNg secretion byNK cells (House et al.,

2015), which aligns with the aberrant Treg phenotype observed

in MS. This decreased cytotoxicity efficiency will prolong

average cell-cell interactions with target cells, and such

extended interactions are known to increase T cell-receptor-

mediated signaling and induce changes to T cell phenotypes,

especially secretion of IFNg and other cytokines (Constant

et al., 1995). Similarly, HDAC7 encodes the class II histone



deacetylase 7, which potentiates the repressive effects of

FOXP3, the master regulator governing naive CD4+ T cell devel-

opment into Tregs (Bettini et al., 2012; Li et al., 2007). It also reg-

ulates T cell survival during their development in the thymus

(Kasler et al., 2011). PRKRA encodes protein kinase interferon-

inducible double-stranded RNA-dependent activator; in

response to double-stranded RNA due to virus infection, it

heterodimerizes with protein kinaseR to inhibit EIF2a-dependent

translation, resulting in upregulation of nuclear factor kB (NFkB)

signaling, interferon production, and eventually, apoptosis

(Sadler and Williams, 2008). NFkB-mediated signaling is a core

feature of MS pathogenesis, which we have shown to be altered

by at least one MS-associated variant (Housley et al., 2015) and

may be the relevant mechanism for this gene. Finally, NLRP8 is

an intracellular cytosolic receptor active in innate immune re-

sponses; the Ile942Met MS risk variant rs61734100 is detected

only in individuals with European ancestry in ExAC, consistent

with the higher prevalence of MS in European ancestry

populations.

DISCUSSION

Broadly, therefore, our results show that low-frequency genetic

variation explains a portion of MS risk and that this variation im-

pacts genes not detectable by common-variant association

studies. Our heritability modeling demonstrates that more low-

frequency and rare-variant associations remain to be discov-

ered, though larger sample sizes will be required to increase

statistical power. Recent attention has focused on changes to

the adaptive immune system as pathogenic for MS, particularly

to functional changes in helper T cell subsets and B cells after

they have been released from the thymus and bone marrow,

respectively, into the peripheral blood stream. These processes

remain important to pathogenesis and are supported by a wealth

of data, including our own GWAS (International Multiple Scle-

rosis Genetics Consortium et al., 2017). However, two of the

four new genes we report (PRKRA and NLRP8) have clear func-

tions in innate immunity, and HDAC7 plays a central role in the

development of T cells in the thymus. Roles for both innate im-

mune function and thymic development in MS pathogenesis

are also supported by pathway analyses of our most recent

GWAS data (International Multiple Sclerosis Genetics Con-

sortium et al., 2017), an independent observation due to the

lack of linkage disequilibrium (LD) between the variants in this

study and those in our GWAS and the non-overlapping sample

collections. Our data thus expand the scope of immune function

relevant to MS pathogenesis.

The mechanisms whereby our newly discovered variants

alter MS risk will require detailed experimental dissection:

even when we can directly implicate specific genes and vari-

ants, these can have diverse consequences across multiple

cell types. For example, perforin 1 has key—and potentially

distinct—roles in cytotoxic T cells, regulatory helper T cells,

NK cells, and other cell types. Both the effects of the variant

on each of these functions and their relevance to MS pathogen-

esis will thus require demonstration, as is the case for the

genes central to IFNg biology, Treg function, and the NFkB

signaling pathway.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

We assembled a total of 76,140 samples (36,219 cases, 38,629 controls and 1,292 samples with missing phenotype information)

from across the International MS Genetics Consortium (IMSGC; Table S1). All individuals gave informed consent at enrolment,

and recruitment wasmonitored by research ethics boards inAustralia: University of Tasmania; BondUniversity; University of Sydney.

Belgium: Katholieke Universiteit, Leuven.Canada: McGill University, Montreal. Denmark: University of Copenhagen. Finland: Univer-

sity of Helsinki. France: Hôpital Pitié-Salpêtrière, Paris; Hôpital Neurologique Pierre Wertheimer, Bron; Université de Nantes.

Germany: University of Lübeck; Max Planck Institute of Psychiatry, Munich; Technische Universität München; Johannes Gutenberg

University-Medical Center, Mainz; Klinikums at Augsburg, Hanover and Großhadern Munich; Universitätsklinikums of Hamburg,

Erlangen, Gießen/Marburg, Leipzig, Köln, Münster, Heidelberg, Rostock, and Tübingen, the Universität Ulm. Greece: University of

Larissa. Italy: University of Eastern Piedmont, Novara; Ospedale Maggiore, Novara; San Raffaele Scientific Institute, Milan; University

of Milan.Netherlands: ErasmusMC, Rotterdam; VUUniversity Medical Center, Amsterdam.Norway: University of Bergen; University

of Oslo. Spain: Universitat Autònoma de Barcelona. Sweden: Karolinska Institutet, Stockholm. Switzerland: University Hospital Zur-

ich. United States of America: Yale University, New Haven CT; Brigham & Women’s Hospital, Boston MA; the University of Miami,

Miami FL; UCSF and USB San Francisco, CA; Kaiser Permanente Divison of Research, Oakland, CA; Johns Hopkins University Bal-

timore MD; Washington University St Louis, St Louis MO; Vanderbilt University Medical Center, Nashville TN; Brigham Young Uni-

versity, Provo, UT; Case Western Reserve University, Cleveland, OH; The University of Pennsylvania and the Children’s Hospital of

Philadelphia, PA; Columbia University Medical Center, New York, NY. United Kingdom: MRC Biostatistics Unit, Cambridge; Univer-

sity of Cambridge; Keele University; King’s College London; University of Oxford; and University College London.

METHOD DETAILS

We genotyped these either on the Illumina HumanExome Beadchip (exome chip) or on a previously described custom array (Inter-

national Multiple Sclerosis Genetics Consortium et al., 2017) including the exome chip content, both manufactured by Illumina Inc.

We called genotypes both with Illumina’s default algorithm, gencall, and zCall, specifically developed to call low-frequency variants

where all three groups of genotypes may not be observed (Goldstein et al., 2012).

An overview of our quality control process is shown in Figure S1; we used PLINK (Purcell et al., 2007) for all analyses unless other-

wise noted. Briefly, we first excluded samples with low genotyping rate, extreme heterozygosity rate, inconsistent genotypic and re-

corded sex; we also removed closely related samples, keeping the relative with least missing data. Next, we removed population

outliers by calculating genotype principal components using 16,066 common variants in linkage disequilibrium (r2 < 0.1) across

the exome. We used EIGENSOFT 6 (Price et al., 2006) and FlashPCA (Abraham and Inouye, 2014) for cohorts with more

than 10.000 individuals. We next removed variants with > 3% gencall missing data rate for variants with minor allele frequency
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MAF > 5%, or > 1% zCall missing data rate for variants with MAF < 5%.We also removed variants out of Hardy-Weinberg equilibrium

(p < 10�5). Next, we removed samples with high similarity in missing genotypes (‘‘identity by missingness’’) indicative of production

artifact, and samples with missing phenotype information. Finally, we again removed any remaining population outliers using projec-

tion principal component analysis. We calculated 30 principal components for 1,092 individuals in 1000 Genomes reference popu-

lations, again using the 16,066 common variants in linkage disequilibrium (r2 < 0.1) across the exome. We then projected the IMSGC

samples into this space and excluded individuals more than six standard deviations from loading means as previously described

(Price et al., 2006). We performed the projection and outlier detection and removal steps a total ten times to gradually remove

more subtle population outliers.

We compiled cases and controls into strata for analysis as shown in Table S1. In total, we removed 17,938/76,140 (24%) samples

either due to lowdataquality or aspopulationoutliers, leaving afinal dataset of 27,891casesand30,298controls in 13 strata (FigureS1

and Table S1). Separately, we included summary statistics from 4,476MS cases and 5,714 controls fromGermany, genotyped on the

exome chip as previously described (Dankowski et al., 2015), giving us a total of 32,367 MS cases and 36,012 controls for analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Exome chip coverage of ExAC variants
To assess how thoroughly the exome chip assesses low-frequency coding variation genome-wide, we compared it to the list of var-

iants reported by the Exome Aggregation Consortium, ExAC (Lek et al., 2016), in their data release version 1. We filtered their sum-

mary table of all ExAC variants (available at ftp://ftp.broadinstitute.org/pub/ExAC_release/release1/manuscript_data/ExAC.r1.sites.

vep.table.gz and last accessed 15November 2017) for nonsynonymous coding variants passing their quality control, with at least one

minor allele observed in non-Finnish European samples. We identified which of these variants are represented on the exome chip by

comparing genomic coordinates.

Univariate association analysis
We used mixed linear models for association analysis, as implemented in GCTA (Yang et al., 2011). In each of our 13 genotype-level

strata, we calculated genetic relatedness matrices from 16,066 common, noncoding variants (overall MAF > 0.05) in linkage equilib-

rium (all pairwise r2 < 0.1) present on the exome chip, and with these calculated univariate association statistics for each autosomal

variant present on the exome chip. To further control for population stratification, we also calculated genotypic principal components

with the 16,066 common variants, and included these as covariates to the association analysis. We also included genotypic sex and

chip type as covariates. We combined statistics across strata using inverse-variance-weighted meta-analysis, also as implemented

in GCTA (Yang et al., 2011). As the bulk of exome chip variants are not common and do not show appreciable linkage disequilibrium,

we controlled for multiple tests with a Bonferroni correction for the number of low-frequency variants, to give a genome-wide signif-

icance threshold of p < 3.583 10e-7 (0.05/139,764 variants with a combined MAF < 0.05 in controls and a heterogeneity index I2 < 50

in our meta-analysis).

Heritability estimation
WeusedGCTA to calculate the heritability attributable to groups of variants in each of our 13 genotype-level strata (Yang et al., 2011).

In each stratum, we ran two sets of models: a two-component model, estimating the heritability attributable to common and low-fre-

quency (MAF % 0.05) variants; and a three component model with rare (MAF % 0.01), intermediate (0.01 < MAF % 0.05), and com-

mon variants. In all strata, common variants are the set of 16,066 independent variants (overall MAF > 0.05) used for population

stratification calculations in the univariate analysis above. We computed genetic relatedness matrices for each component of

each model, then calculated narrow-sense heritability (h2) with 100 iterations of constrained restricted maximum likelihood

(REML) fitting, assuming a disease prevalence of 0.001. We also included the principal components of population structure

computed for the univariate analysis as covariates. As anticipated, several of the smaller cohorts presented fitting issues: no models

converged for FIN; both three-component and two-component fits for UCSF2, and the three-component model for GRE would not

converge under constraint and so were run without constraints; and the three-component model for BEL converged on two exactly

equally likely solutions after 10,000 iterations. For the latter, we chose the most conservative estimates of variance explained. We

combined these estimates with inverse variance-weighted meta-analysis.

DATA AND SOFTWARE AVAILABILITY

Meta-analysis summary statistics are available at http://imsgc.net/. Due to varying privacy laws across countries, some of our ge-

notype data are available from the European Genome-phenome Archive (deposited under accession EGAS00001003195), with

the remainder available directly from participating centers. A single request for all data access may be submitted to the IMSGC

Data Access Committee (dac@imsgc.net). Our QC and analysis pipeline is available at https://github.com/cotsapaslab/

IMSGCexomechip.
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Supplemental Figures
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Figure S1. Data Quality Overview, Related to STAR Methods

(A) QC process. We assembled 42 cohorts of data (either entire country-level collections or groups of samples processed as a batch; Table S1). We called

common variant genotypeswith the standard algorithm provided by Illumina (GenCall), and low-frequency variants with zCall, an algorithm specifically developed

to call these variants on the exome chip (Goldstein et al., 2012). We performed initial quality control on each cohort separately to account for variation between

batches and cohorts (upper gray region), then merged cohorts into 13 country-level strata. To ensure that these strata were uniform we then performed stringent

quality control on each stratum (lower gray region) to produce our final dataset.

(B) the exome chip captures a large fraction of ExAC (release version 1) low-frequency miss-sense variants. The exome chip captures the majority of variants

present in ExAC (Lek et al., 2016) down to aminor allele frequency�0.0005, belowwhich a large number of variants is observed (left). Thus, the overall coverage at

very rare alleles (5 3 10�4 > MAF > 1.5 3 10�5, corresponding to a single allele seen in 33,370 non-Finnish European individuals in ExAC) is low (right).
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Figure S2. Low-Frequency Variant Association Statistic Characteristics, Related to Figure 1

(A) effect sizes increase at low minor allele frequency. We conducted a meta-analysis of 120,991 low-frequency coding variants across all autosomal exons,

concentrating on non-synonymous variants which are more likely to have a phenotypic effect. We analyzed a total of 32,367 MS cases and 36,012 controls in

thirteen strata. Here, we show that estimates of effect size (b or log odds ratio, y axis) increase at low allele frequency (number of minor alleles present in control

samples, x axis). Becausemany low-frequency variants are not present in all cohorts, we stratify these data by number of cohorts in which a variant is polymorphic

(subplots). Rarer variants have larger estimated effect sizes and are present in fewer cohorts.

(B) forest plots for genome-wide significant low-frequency variants. Seven variants in six genes are significant in our analysis (p < 3.5 3 10�7, Bonferroni

correction for the total number of variants genotyped). Two of these (TYK2 p.Pro1104Ala andGALC p.Asp84Asp), are in linkage disequilibriumwith knownGWAS

hits. Studies are ordered by increasing sample size.
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Figure S3. Patterns of Association for Common and Rare Variants in Seven Genome-wide Significant Loci, Related to Figure 1

Plots are centered on the seven variants reported in Figure 1 and Table 1. Each show LD and association signal of low frequency variants (circles, this study), and

common variants from our most recent GWAS (squares, 14,802MS cases and 26,703 controls; International Multiple Sclerosis Genetics Consortium et al., 2017)

and the ImmunoChip meta-analysis (diamonds; Beecham et al., 2013). For GALC and TYK2, our most associated variants, rs11552556 and rs34536443

respectively, capture the common variant signals we have previously reported (panels A and G). For the remaining loci, our most associated variants show no LD

to other variants, with no evidence of association in our common variant studies (panels B-F).
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