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A C/EBPα–Wnt connection in gut homeostasis and
carcinogenesis
Julian Heuberger1,*, Undine Hill1,*, Susann Förster1, Karin Zimmermann1, Victoria Malchin1, Anja A Kühl4, Ulrike Stein2,3,
Michael Vieth5, Walter Birchmeier1, Achim Leutz1,6

We explored the connection between C/EBPα (CCAAT/enhancer-
binding protein α) and Wnt signaling in gut homeostasis and
carcinogenesis. C/EBPα was expressed in human and murine
intestinal epithelia in the transit-amplifying region of the crypts
and was absent in intestinal stem cells and Paneth cells with
activated Wnt signaling. In human colorectal cancer and murine
APCMin/+ polyps, C/EBPα was absent in the nuclear β-catenin–
positive tumor cells. In chemically induced intestinal carcino-
genesis, C/EBPα KO in murine gut epithelia increased tumor
volume. C/EBPα deletion extended the S-phase cell zone in
intestinal organoids and activated typical proliferation gene
expression signatures, including that of Wnt target genes. Ge-
netic activation of β-catenin in organoids attenuated C/EBPα
expression, and ectopic C/EBPα expression in HCT116 cells
abrogated proliferation. C/EBPα expression accompanied
differentiation of the colon cancer cell line Caco-2, whereas
β-catenin stabilization suppressed C/EBPα. These data suggest
homeostatic and oncogenic suppressor functions of C/EBPα in
the gut by restricting Wnt signaling.
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Introduction

The Wnt signaling pathway is activated in more than 80% of co-
lorectal cancer (CRC) cases, mostly produced by mutations of the
tumor suppressor gene APC (adenomatous polyposis coli). APC loss
prevents the degradation of β-catenin, the intracellular mediator of
Wnt signaling, and results in enhanced β-catenin translocation into
the nucleus and subsequent activation of the Wnt target genes that
promote proliferation (Fearon & Vogelstein, 1990; Sieber et al, 2000;
Fodde & Smits, 2001; McCart et al, 2008; Kwong & Dove, 2009).

Cell differentiation induced by the transcription factor C/EBPα
(CCAAT/enhancer-binding protein α) is negatively correlated with

canonical Wnt signaling (Kang et al, 2007; Kawai et al, 2007). In an
adipogenic precursor cell line, activated Wnt signaling prevented
C/EBPα-induced differentiation (Kawai et al, 2007). Wnt signaling
activation with recombinant Wnt3a or the glycogen synthase kinase
3β (GSK3β) inhibitor CHIR99021 in stromal progenitor ST2 cells
reduced C/EBPα expression (Kang et al, 2007) and caused a shift
from adipogenic to osteoblastic cell fate, whereas transgenic re-
expression of C/EBPα rescued the adipogenic differentiation pro-
gram (Kawai et al, 2007). In the HL7702 hepatic cell line, transgenic
β-catenin expression repressed endogenous C/EBPα expression
(Wang et al, 2013), suggesting that the antagonism of C/EBPα and
Wnt signaling might represent a more general mechanism in pro-
liferation versus differentiation control and raises the possibility of
an oncogene/tumor suppressor relationship.

Although C/EBPα expression was previously detected in the
intestinal epithelium, little is known about C/EBPα-dependent
proliferation control or tumor suppressor functions in the gut and
its relationship to canonical Wnt signaling (Oesterreicher et al, 1998;
Silviera et al, 2012). In the present study, we combined the histo-
pathological analysis of human colon cancer with experimental
chemical tumorigenesis, conditional murine genetics in organoid
cultures, and cell biological data to explore the role of a connection
between Wnt signaling and C/EBPα in the gut. Our data reveal C/
EBPα and canonical Wnt signaling as opponents in epithelial
growth control and suggest a tumor suppressor function of C/EBPα
in the mammalian gut.

Results

C/EBPα expression in normal intestinal epithelia and CRC tissue

To address C/EBPα function and its relationship with Wnt sig-
naling in colorectal carcinogenesis, we examined normal and
cancerous human colon tissues by immunohistochemistry (IHC)
(Fig 1). The samples comprised biopsies of normal epithelium (n = 18),
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4Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
5Klinikum Bayreuth, Institute for Pathology, Bayreuth, Germany 6Institute of Biology, Humboldt University of Berlin, Berlin, Germany

Correspondence: aleutz@mdc-berlin.de
*Julian Heuberger and Undine Hill shared first authorship

© 2018 Heuberger et al. https://doi.org/10.26508/lsa.201800173 vol 2 | no 1 | e201800173 1 of 11

on 2 January, 2019life-science-alliance.org Downloaded from 
http://doi.org/10.26508/lsa.201800173Published Online: 26 December, 2018 | Supp Info: 

http://crossmark.crossref.org/dialog/?doi=10.26508/lsa.201800173&domain=pdf
https://orcid.org/0000-0001-8259-927X
https://orcid.org/0000-0001-8259-927X
https://doi.org/10.26508/lsa.201800173
mailto:aleutz@mdc-berlin.de
https://doi.org/10.26508/lsa.201800173
http://www.life-science-alliance.org/
http://doi.org/10.26508/lsa.201800173


spontaneous colorectal adenoma (n = 8), and spontaneous co-
lorectal adenocarcinoma (n = 11). In the normal human colon
epithelium, C/EBPα was expressed in the nuclei in the transient
proliferation zone and differentiated cells, but was largely absent in
cells at the base of the crypts (Fig 1A). Histopathological evaluation
of biopsies wasmeasured as the percentage of the C/EBPα-positive
area, and expression intensity of C/EBPαwas scored as negative (0),
weak (1), moderate (2), or strong (3) (Table S1).

Adenomas and adenocarcinomas versus normal epithelium
showed differential expression of C/EBPα (Fig 1B–D and Table S1).
Expression intensities varied in adenoma and carcinoma from
strong to weak, with a trend toward reduced C/EBPα expression
levels in adenoma and carcinoma (Table S1). Reduction in C/EBPα
expression in the neoplasm versus adjacent non-neoplastic is
demonstrated in Fig 1E (dotted line indicates the border of can-
cerous tissue). There was a pronounced reduction in the area of
C/EBPα expression. In the normal colon epithelium, C/EBPα was
expressed in 80–100% of the analyzed area. In contrast, in ade-
nomas the C/EBPα expression region was reduced to 60‒80% of the
neoplastic compartment. In adenocarcinomas, C/EBPα expression
areas ranged from 100% down to 5% of cancerous lesions. Overall,
the expression areas were significantly reduced in adenocarcinoma
compared to normal epithelium (Fig 1F). To address whether the
diversity in C/EBPα expression involves Wnt signaling activity, we
examined C/EBPα and nuclear β-catenin expression by immuno-
fluorescence (IF) in colorectal adenoma and adenocarcinoma. In
both, C/EBPα expression was observed in distinct areas of the
neoplastic compartments that expressed low levels of β-catenin. In
contrast, C/EBPα expression strongly decreased or was absent in
cells with high nuclear β-catenin expression (Fig S1). These findings
support the idea that activated Wnt signaling and C/EBPα ex-
pression in gut cells are mutually exclusive.

We first examined the status of activated Wnt signaling and
C/EBPα expression in mouse gut to address their relationship in a
model system that is amenable to experimental oncogenesis and
targeted genetics. Immunostaining of sections of the small in-
testine of 15-wk-old C57BL/6 and Lgr5 reporter mice showed
C/EBPα expression in transit-amplifying (TA) cells in the crypt (Fig
2A). C/EBPα was weakly expressed in Lgr5-positive stem cells at the
bottom of the crypts (Fig 2A, arrowheads), but was absent in
lysozyme-positive Paneth cells and terminally differentiated cells
of the villus. Expression levels in the crypt were quantified from IF
images comparing Lgr5-stem cells and other crypt cells of the
region 1 to +5 cell, 6 to +8 cell, and 9 to +12 cells (Fig S2). In vivo EdU
(5-ethynyl-29-deoxyuridine) labelling of S-phase cells confirmed
that C/EBPα expression was present in proliferating TA cells. How-
ever, cells labeled with EdU had the lowest C/EBPα expression,
implying that C/EBPα-positive cells enter S-phase less frequently (Fig
2B). It therefore appears that C/EBPα is expressed in cells committed
to differentiation and may restrict proliferation in the TA zone.

C/EBPα expression is decreased in APCMin/+ adenoma

APCMin/+ mice develop intestinal polyps and adenomas because of
a deficient β-catenin destruction complex that causes β-catenin
stabilization (Su et al, 1993). We used APCMin/+ mice to examine
whether oncogenic activation of Wnt signaling decreased C/EBPα
expression. There was enhanced β-catenin expression in the polyp
cells, and in particular, in cells in the invading adenomatous tissue,
but not in the adjacent normal/healthy tissue with differentiated
goblet cells (Fig 3A), reminiscent of that observed in human colon
cancer (Figs 1 and S1). Serial sections revealed strongly reduced
C/EBPα expression in the adenomatous tissue, in particular at the
basal areas of polyps that had the highest levels of nuclear

Figure 1. C/EBPα expression in the normal human
colon and colorectal carcinoma.
(A) C/EBPα IHC on paraffin sections of healthy human
colon. C/EBPα is expressed in the nuclei of colonic
crypt cells in the TA zone; there is low or no expression
in cells at the crypt base. (B–D) C/EBPα IHC on paraffin
sections of human colorectal adenocarcinoma
biopsies with different C/EBPα expression levels as
indicated. (E) Border between healthy tissue
(moderate C/EBPα expression) and adjacent
cancerous tissue (dotted line, weak C/EBPα
expression). (F) Quantification of C/EBPα-expressing
areas in normal tissue, adenoma (low-grade
intraepithelial neoplasia/dysplasia), and
adenocarcinomas (Adeno CA) as indicated.
Mann–Whitney test, P-values above; data are listed in
Table S1. Scale bars indicated in (A) and (D): 100 μm.
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β-catenin (Fig 3, inset, right of dotted line). However, adjacent to the
adenomatous tissue C/EBPα expression was detected in normal
cells that had lower levels of nuclear β-catenin (Fig 3, inset, left of
the dotted line). Quantitative RT–PCR (qRT–PCR) of micro-dissected
adenoma tissue and the neighboring healthy/normal intestinal
tissue of APCMin/+ mice confirmed 75% reduction in C/EBPα ex-
pression in adenomatous tissue with elevated Wnt signaling (Fig 3C).
Double IF staining confirmed mutually exclusive expression of
C/EBPα and β-catenin (Fig S3, upper panel). In addition, Ki67-positive
proliferative cells in the cancerous lesions did not express C/EBPα
(Fig S3, lower panel). These data show that Wnt-activated and
proliferative cells in tumor lesions in both humans and mice do not
express C/EBPα.

Wnt signaling down-regulates C/EBPα in intestinal organoids

To assess whether Wnt/β-catenin signaling down-regulates C/EBPα
expression, we examined the intestinal organoids from β-CatEx3flox/+-
Villin-CreERT2 mice, which express stabilized gain-of-function (GOF)
β-catenin after 4-OHT (4-hydroxytamoxifen)–induced Cre-mediated
recombination. Organoids with elevated β-catenin exhibited an
increase in Wnt target gene expression after the induction of
recombination, as determined by qRT–PCR for Axin2 and the Wnt-
dependent stem cell marker Lgr5 (Fig 4A). C/EBPα expression was
severely reduced in GOF β-catenin organoids, as assessed by
histological staining (Fig 4B) and after the induction of recombination
protein blotting (Fig 4C). Collectively, the data from the APCMin/+ mice
and β-catenin GOF organoids showed that increased Wnt signaling
reduces C/EBPα expression andpresents the possibility that reduced
C/EBPα expression may permit tumor progression.

C/EBPα restricts tumor growth in murine colitis-associated
cancer

To explore the function of C/EBPα in tumor progression, mice with
conditional loss-of-function alleles of C/EBPα (C/EBPαFlox/Flox-VilinCreERT2)
were compared to controls (C/EBPαFlox/Flox) in a chemically induced
intestinal azoxymethane–dextran sodium sulfate (AOM-DSS)
colitis-associated carcinogenesis model (Bollrath et al, 2009).
After tamoxifen-induced C/EBPα depletion, tumorigenesis was
induced by exposure to the colonotropic mutagen AOM and
subsequent administration of the luminal toxin DSS. AOM causes
β-catenin stabilization and nuclear translocation by inducing
missense mutations in exon 3 of β-catenin (Greten et al, 2004).
Fifteen weeks after AOM-DSS treatment, all mice developed on
average 10 colitis-associated low-grade dysplasia in the distal colon,
mostly confined to the mucosa and in some cases focal submucosal
invasion with mild mucosal or partial minimal submucosal invasion.
C/EBPα was entirely depleted in the dysplasias of the conditional

Figure 3. Low C/EBPα expression in adenoma of APCMin/+ mice with high
β-catenin levels.
(A) IF of β-catenin (green) and MUC2 (red, goblet cell marker) in adenoma sections
of APCMin/+ mice (scale bar: 100 μm). (B) IHC of C/EBPα (brown) on consecutive
sections to (A). C/EBPα expression is greatly reduced in adenoma with high
β-catenin levels. (C) Relative Cebpa mRNA expression in micro-dissected
adenoma compared to normal surrounding intestinal tissue (n = 12).

Figure 2. C/EBPα expression in TA cells of the small intestinal crypt in mice.
(A) C/EBPα IHC on paraffin sections; (left) double IHC of C/EBPα (brown) with
lysozyme (Paneth cell marker, purple); (right) IHC of C/EBPα (brown) and Lgr5-GFP
(purple) of Lgr5 reporter mice. (Top right) C/EBPα IHC. C/EBPα is not expressed
in the high-Wnt Lgr5 stem cells and Paneth cells. C/EBPα expression is
restricted to the TA cells. (B) Double IF staining of C/EBPα (red) and EdU-labeled
S-phase cells (green); (ii) inset, as shown on the right with higher magnification.
Scale bars: 20 μm.

C/EBPα–Wnt connection in colon cancer Heuberger et al. https://doi.org/10.26508/lsa.201800173 vol 2 | no 1 | e201800173 3 of 11

https://doi.org/10.26508/lsa.201800173


mutants; however, the control adenomatous lesions likewise had
reduced C/EBPα expression (Fig 5A). Remarkably, dysplasia with
conditional loss of C/EBPα had significantly increased size in the
distal part of the colon, while overall numbers of adenomatous
lesions remain unchanged (Fig 5B). Colitis and immune cell in-
filtration were indistinguishable between control and C/EBPα
mutants (Fig S4A and B). The C/EBPα-depleted colitis-associated
low-grade dysplasia had high nuclear β-catenin levels, although
not significantly, as compared to the control (Fig 5C, quantifi-
cation Fig S4C). Collectively, AOM-DSS–induced colitis-associated
carcinogenesis increases Wnt signaling and reduces C/EBPα
expression. C/EBPα depletion further promotes tumor growth in
colitis-associated and Wnt signaling-dependent cancer.

C/EBPα controls proliferation in intestinal organoids

To identify the C/EBPα-regulated genes, we examined the intestinal
organoid cultures from C/EBPαFlox/Flox-VilinCreERT2 (conditional
C/EBPα KO) and C/EBPαFlox/Flox (control) mice. While the control
organoids had regular structures after 4-OHT administration, such
as extended arms and rounded luminal parts, the homozygous
C/EBPα KO organoids grew faster, shown by individual tracked
organoids over a period of 4 d and measured by the increase in cell
number (Fig 6A and B). EdU labelling of S-phase cells revealed that
C/EBPα-depleted organoids had extended proliferative zones in
comparison with the controls, where proliferative cells were found
exclusively in the crypt-like structures (Fig 6C). RNA was isolated
from C/EBPα KO and control organoids and processed for RNA
sequencing. Gene set enrichment analysis (GSEA) (Mootha et al,
2003; Subramanian et al, 2005) was performed on the differentially
expressed genes in the C/EBPα KO and control organoids. The three
top-enriched “hallmark” gene sets included targets for the MYC, E2F
and G2M checkpoint genes (Fig 6D). Also, Wnt target genes were
significantly enriched by testing for a gene set from APC-mutant
mice (Fig 6D). We identified several differentially regulated genes
that participate in cell proliferation and that are controlled by Wnt

signaling, including cyclin D1 (Ccnd1), Ccne, Myc, Cdk2, Axin2, E2f4,
Macc1, Bambi, and Cd44. The data reveal that C/EBPα is involved in
regulating genes controlling cell proliferation in intestinal epi-
thelia. Among the down-regulated genes in C/EBPα KO organoids,
we found Ptk6 (protein tyrosine kinase 6) that has been shown to
negatively regulate Wnt signaling in the gastrointestinal tract by
interfering with the interaction between β-catenin and Cdc73 of the
Paf1C transcriptional elongation complex (Shi et al, 1997; Palka-
Hamblin et al, 2010; Kikuchi et al, 2016). We confirmed a reduction in
Ptk6 expression upon loss of C/EBPα by qRT–PCR of independent
C/EBPα KO organoids (Fig 6E). Collectively, our data suggest that
C/EBPα restricts β-catenin signaling and proliferation in intestinal
organoid cultures.

Caco-2 cells down-regulate C/EBPα after activation of canonical
Wnt signaling

We examined C/EBPα expression in human CRC cell lines (LoVo,
SW480, LIM1215, HCT116, SW620, HCA7, DLD1, Caco-2). C/EBPα ex-
pressionwas low infive of the eightmost commonly usedhumanCRC
cell lines. C/EBPα expression was highest in the Caco-2 cells, which
are amenable to differentiation in vitro (Fig S5A). Treatment of Caco-2
cells with the GSK3β inhibitor CHIR99021 stabilized β-catenin, as
assessed by increased Axin2 expression and concomitantly reduced
Cebpa expression (Figs 7A and S5B). As densely grown Caco-2 cells
spontaneously differentiate into enterocytes (Pinto et al, 1983;
Rousset, 1986; Hidalgo et al, 1989), we monitored C/EBPα expression
at different growth states. C/EBPα levels were highest at the onset of
differentiation at day 8. C/EBPα expression subsequently declined
over a 15-d period (Fig 7B). These findings support the idea that
C/EBPα participates in controlling cell differentiation.

HCT116 cells expressed a low level of C/EBPα (Fig S5A). To assess
the role of C/EBPα in a Wnt-activated CRC cell line, we generated
a stable conditional C/EBPα expression HCT116 cell line that ex-
presses C/EBPα following doxycycline administration (Fig S5C).
Activation of the Cebpa transgene reduced the clonogenicity of the

Figure 4. Intestinal organoids with increased Wnt
signaling have reduced C/EBPα expression.
β-CatEx3flox/+-Villin-CreERT2 small intestinal organoid
culture. β-Catenin stabilization was induced by single-
day administration of 4-OHT (800 nM) in culture. (A)
qRT–PCR comparing Wnt target gene expression in
control and GOF β-catenin organoids (n = 3, unpaired t
test, two-tailed, Axin2: *P = 0.0234; Lgr5: **P = 0.0054). (B)
IF of β-catenin (green) and C/EBPα (red) in control and
GOF β-catenin small intestinal organoids. (C) Western
blot analysis of control and GOF β-catenin protein
lysates probed for C/EBPα and β-catenin; loading
control is tubulin.
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HCT116 cells and impaired colony growth (Fig 7C and D). Taken
together, our data reveal that C/EBPα and canonical Wnt signaling
are opponents in epithelial growth control and suggest a tumor
suppressor function of C/EBPα in Wnt-dependent tumorigenesis in
the mammalian gut.

Discussion

CRC is a major burden on health systems worldwide. In recent years,
great progress has been made toward elucidating the underlying

mechanisms of colon carcinogenesis. Yet, more parts of the puzzle
related to signaling, gene regulation, and proliferation control need to
be understood in the exploration of novel pharmacological and
genetic targets for treating CRC (Vogelstein et al, 2013; Tape, 2017).
Here, we show that C/EBPα is expressed in normal gut tissue but is
absent in Wnt-activated human CRC cells and murine APCMin/+

polyps. Our data support the premise that (i) high C/EBPα and high
Wnt expression states are inversely correlated, (ii) C/EBPα reduces
oncogene dependent growth, and (iii) C/EBPα plays a tumor-
suppressive role in carcinogenesis. Therefore, the data show that
C/EBPα has a critical function in CRC pathogenesis and suggests a
regulatory Wnt–C/EBPα axis in the gut.

CRC is initiated by gatekeeper mutations such as the Wnt sig-
naling component APC. Current hypotheses suggest that cancerous
lesions progress from adenoma to carcinoma by acquiring addi-
tional sequential mutations over time. This involves genetic al-
terations that inactivate tumor suppressor genes and activate
oncogenes (Fearon, 2011). However, a compilation of tissue-specific
suppressors of tumorigenesis is far from complete and C/EBPαmay
qualify as one of them (Flodby et al, 1996; Schuster & Porse, 2006;
Koschmieder et al, 2009; Lourenco & Coffer, 2017). Besides genetic
changes, the activity or expression of other non-mutated regulators
is altered. We observed reduced C/EBPα expression in an APCMin/+

mouse model and in human CRC specimens, where C/EBPα was
only detected in cells with absent or low oncogenic β-catenin
expression. C/EBPα expression was inversely correlated with cells
with tumor propagating potential. Adenomas and adenocarci-
nomas showed areas of absence of C/EBPα expression in most
cases and in particular in the more advanced tumor stages. Low
C/EBPα levels have been observed in breast cancer (Gery et al,
2005), and there is epigenetic silencing in acute myelogenous
leukemia (Hackanson et al, 2008) which together with our data
suggest a general role of C/EBPα as a tumor suppressor gene.

Our histopathological data show that C/EBPα expression and
high Wnt/β-catenin signaling are mutually exclusive in intestinal
cancer. The experimental and genetic evidence from the mouse gut
and organoids contributes mechanistic evidence for the inverse
relationship between C/EBPα and activated Wnt signaling, in
agreement with the observations of others in adipogenesis and
osteoblastogenesis (Kang et al, 2007; Kawai et al, 2007). Our data
argue for a feedforward loop of reduced C/EBPα expression in Wnt-
dependent tumorigenesis.

Using an AOM-DSS colitis-associated cancer model, we provide
further evidence for the relation between tumor size and C/EBPα
expression; the C/EBPα–Wnt regulatory axis might be the un-
derlying mechanism. C/EBPα loss primes for high Wnt suscepti-
bility, while Wnt/β-catenin signaling activation with AOM/DSS
induces tumorigenesis (Greten et al, 2004). We anticipate that low
levels or absence of C/EBPα increase the risk of inflammatory
bowel disease or severe inflammation in evolving colitis-associated
cancer. Besides the severity of inflammation and genetic alter-
ations, epigenetic factors such as DNA methylation contribute to
the development of colitis-associated cancer, as observed by
epigenome-wide changes. DNA methyltransferases control gene
expression by methylating the cytosine pyrimidine ring in the CpG-
rich regions of regulatory genomic units (Ventham et al, 2016;
Emmett et al, 2017). In osteogenesis and adipogenesis and in acute

Figure 5. Loss of C/EBPα promotes tumorigenesis in the AOM/DSS colitis-
associated cancer model.
(A) C/EBPα IHC of paraffin sections from control and C/EBPα-depleted (mutant)
adenoma; bottom panels show magnified insets. (B) Quantification of tumor
numbers (left) and tumors >5 mm (right) in control and C/EBPα-depleted colons
(in the mutants, one tumor was >10 mm) (two-tailed Mann–Whitney test) n
(individual mouse) = 7, P = 0.0245). (C) H&E staining (top) and IHC (bottom) of
β-catenin in control and C/EBPα-depleted (mutant) adenoma. Scale bars: 100 μm.
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myelogenous leukemia, hypermethylation of the CpG islands at the
proximal promoter region of CEBPA silences C/EBPα transcrip-
tionally (Jost et al, 2009; Gao et al, 2015). A study of DNA methylation
differences also reported reduced C/EBPα in patients with colon
cancer (Silviera et al, 2012). Together, these data suggest that in-
flammation initiates epigenetic changes, including DNA methylation,
that reduce C/EBPα expression. Reduced C/EBPα expression in-
creases the risk of developing cancer and colitis-associated cancer.

A previous developmental study of intestines from newborn and
neonatal C/EBPα-null mice, which die within 8 h after birth by
hypoglycemia, revealed no essential role in the morphological
maturation of the early developing intestine (Oesterreicher et al,
1998; Wang et al, 2013). However, fetal and adult intestines exhibit
strong differences in morphology and gene expression (Crosnier
et al, 2006; Nigmatullina et al, 2017). Wnt/β-catenin–dependent
stem cells in the intestinal crypt compartment continuously renew
the fully developed intestinal epithelium. The progeny proliferate
and differentiate in the transient proliferation zone of the crypt and
continuously renew the intestinal epithelial barrier (Leblond &
Walker, 1956; Potten & Loeffler, 1990; Korinek et al, 1998; Gregorieff
et al, 2005; de Lau et al, 2007). C/EBPα expression was very low or
absent in the Wnt-dependent intestinal Lgr5 stem cells and Wnt-
dependent Paneth cells, but was expressed in the cells of the
transient proliferation zone. Therefore, C/EBPα may participate in
decreasing the Wnt response, controlling TA zone proliferative

expansion, and regulating timely differentiation. This premise is
supported by the observation of the Wnt–C/EBPα antagonism in
Caco-2 cells that increased Wnt activity reduces C/EBPα expression
in the cells, which triggers the Wnt–C/EBPα feedforward loop. We
provide genetic evidence that C/EBPα participates in controlling
proliferation and the cell cycle regulatory genes. Hyperplasia and
adenoma formation occur also via the loss of APC in cells with
normally reduced transcriptional Wnt response (Powell et al, 2012;
Metcalfe et al, 2014). Therefore, preceding low C/EBPα expression
may promote Wnt-dependent cancer initiation, proliferation, and
tumor progression. Based on organoid cultures, our data support a
mechanism, in which C/EBPα participates in the regulation of
Wnt/β-catenin signaling by controlling expression of Ptk6. Ptk6 is
expressed in intestinal crpyts and promotes apoptosis by inhibiting
prosurvival signaling in response to DNA damage (Haegebarth et al,
2009). Ptk6 phosphorylates Cdc73 (parafibromin, a component of
the RNA polymerase II–associated Paf1C complex) to negatively
regulate β-catenin/TCF transcription (Shi et al, 1997; Palka-Hamblin
et al, 2010; Kikuchi et al, 2016). Ptk6 expression is reduced in human
adenocarcinoma, and reduction in Ptk6 also promotes the growth
of xenografts (Mathur et al, 2016). In conclusion, C/EBPα might
attenuate Wnt/β-catenin signaling and impact on cancer cell
proliferation by controlling expression of Ptk6.

Tight control of Wnt responsiveness is critical for regulating crypt
compartment proliferation and differentiation. The distance to Wnt

Figure 6. Analysis of C/EBPα-depleted organoids.
Comparison of control and C/EBPα-depleted small
intestinal organoid cultures. C/EBPα KO was induced
over 2 consecutive days by administration of 800 nM
4-OHT. (A) Brightfield images of individual tracked
control and mutant organoids over a period of 4 d. (B)
Measurement of total cell number increase in control
and mutant Organoids over a period of 4 d (two-tailed,
unpaired t test, n = 9, P < 0.05). (C) Whole-mount IF of
EdU-labeled S-phase cells of control (upper) and
C/EBPα-depleted (lower) small intestinal organoids.
(D) GSEA of RNA sequencing expression data of control
and C/EBPα-depleted small intestinal organoids:
C/EBPα depletion results in enhanced expression of
the E2f, Myc, and Apc target genes and G2M checkpoint
genes. KO: C/EBPα-depleted. (E) Quantitative
normalized PCR analysis of Ptk6 gene expression in 5
WT and C/EBPα KO organoids with two primer sets, as
indicated (two-tailed, unpaired t test, n = 5, P < 0.005).
Scale bars: 200 μm.
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ligand–producing cells in the lower part of the crypt and active BMP
signaling prevent Wnt activation in epithelial cells of the villi
(Crosnier et al, 2006). BothWnt signaling and C/EBPα expression are
low in differentiated epithelial cells of the villi. C/EBPα appears to
be dispensable in fully differentiated cells, where Wnt does not
control its expression. Loss of C/EBPα expression in the villus cells
is likely to occur by epigenetic mechanisms, potentially by DNA
methylation, as observed in leukemic cells, which also demon-
strates the central importance of C/EBPα expression in other
neoplasms (Bennett et al, 2007; Hackanson et al, 2008; Jost et al,
2009; Lu et al, 2010; Lin et al, 2011; Di Ruscio et al, 2013; Gao et al,
2015). In conclusion, we show that the loss of C/EBPα expression is a
crucial step in the initiation and growth of colorectal neoplasms
and is in line with the findings in other tumor entities.

Materials and Methods

APCMin/+ mice and tissue preparation

C57BL/6J-ApcMin/J mice were purchased from Jackson Laboratories.
C/EBPa floxed mice originate from Claus Nerlov, Ex3-β-catenin
floxed fromMakoto M Taketo (Harada et al, 1999), VillinCreERT2 from
Sylvi Robine (el Marjou et al, 2004), and Lgr5-GFP reporter mice from
Hans Clevers (Barker et al, 2007). All mice were housed in in-
dividually ventilated cages in a specific pathogen–free mouse fa-
cility at the Max Delbrück Center for Molecular Medicine, Berlin. The
local government authority (Landesamt für Gesundheit und
Soziales Berlin [LaGeSo], Germany) approved the animal studies.
Colitis-associated tumorigenesis and depletion of C/EBPα was
induced by intraperitoneal injection of tamoxifen (50 mg/kg body
weight) on 5 consecutive days, 7 d later by 1× intraperitoneal

injection of 12,5 mg/kg azoxymethane, and 3 intervals of 1 wk of 2%
DSS in drinking water. The mice were euthanized by cervical dis-
location at protocol defined time points or when they showed signs
of disease, and the organs were quickly dissected, flushed with cold
PBS, and fixed overnight in 4% formalin for paraffin embedding, or
stored in RNAlater (Ambion) for RNA extraction. To assess mac-
roscopic tumors in the intestine (>0.5 mm), the intestinal tract was
removed immediately after euthanasia, divided into four segments
comprising the duodenum, jejunum, ileum, and colon, opened
longitudinally, rinsed with cold PBS, and examined under a dis-
section microscope.

Intestinal organoid culture, fixation, and paraffin embedding

Intestinal organoid culture was performed as described previously
(Sato et al, 2009; Heuberger et al, 2014). Briefly, jejunal crypts were
isolated by filtration (70 μm) and centrifugation (400 g/3 min) of
selected fractions after mechanical dissociation (shaking) of the
villi and crypts after 5-min incubation at room temperature with
8mM and 2mM EDTA and at 25-min rotation at 4°C, respectively. We
embedded 400 crypts in 50 μl Matrigel (BD, 356231) and cultured
them in DMEM/F12 medium (12634; Life Technologies) supple-
mented with N2 and B27 (17502-040 and 17504-044, respectively;
Life Technologies), mNoggin (Cat. No. 250-38, final concentration
100 ng/ml; PeproTech), mEGF (mouse epidermal growth factor, PMG
8041, final concentration 50 ng/ml; Life Technologies), hrSpo1 (human
rSpo1, Cat. No. 120-38, final concentration 100 ng/ml; PeproTech), and
acetylcysteine (A9165, final concentration 1.25 mM; Sigma-Aldrich).
Cre-mediated recombination was induced by administering 800 nM
4-OHT for 2 consecutive days.

Growth of individual organoids was tracked with a Leica DIM6000
microscope equipped with an NPlan 10× NA 0.25 objective and a

Figure 7. C/EBPα in CRC cell lines.
(A)mRNA expression of CEBPA and theWnt target AXIN2
in Caco-2 cells upon activation of Wnt signaling by
inhibition of GSK3β. There is an inverse correlation
between C/EBPα expression and Wnt signaling activity
(AXIN2). (B) C/EBPα (red) expression levels at different
Caco-2 cell differentiation steps. (C) Colony formation
assay of control and doxycycline (300 ng/ml)-induced
C/EBPα-expressing HCT116 cells. (D) Quantification
of colony number and size showing that C/EBPα
expression reduces clonogenicity and colony growth
(**P < 0.01).
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motorized LMT200 V3 High precision Scanning Stage to relocate
multiple times previously stored positions. Growth of organoids by
total cell numbers was measured with the NucleoCounter NC-200
from Chemotec. Defined cell numbers of organoids were seeded
and cultured for 4 d. Cells of organoids were harvested directly from
the Matrigel using buffer A100 (4 min incubation and repeated
trituration) and buffer B according to themanufacturer’s description.

Fixation and sectioning
Organoids containing Matrigel were disintegrated by trituration and
transferred to 5 ml of cold DMEM/F12 medium. After centrifugation,
the organoids were resuspended for 3 h in 4% PFA/PBS. The fixative
was exchanged with PBS, and the organoids were embedded in 2%
agarose/PBS and transferred to 70% ethanol, followed by paraffin
embedding. Paraffin sections (5–10 μm) were obtained for histo-
logical analysis.

RNA extraction, cDNA, and real-time qRT–PCR

Total RNA was isolated from cells and tissues using GeneMATRIX
Universal RNA Purification Kit (Roboklon) according to the manu-
facturer’s instructions. A DNase I digest was included. RNA con-
centrations were quantified with a NanoDrop spectrophotometer
(Thermo Fisher Scientific). Total RNA (1 μg) was reverse-transcribed
with oligo(dT) primers using SuperScript II enzyme (Thermo Fisher
Scientific) according to the manufacturer’s instructions. PCR was
performed using a primer/probe-based TaqMan system with the
housekeeper run in duplex in the same well. Standard protocols
and settings were used. The primer/probe mixes used were for
murine Cebpa Mm00514283_s1 and murine β-actin (Actb). Relative
mRNA expression values were calculated using the ΔΔCt (com-
parative threshold cycle) method.

RNA sequencing and GSEA

RNA was isolated and processed for RNA sequencing. RNA quality
control was performed using BioAnalyzer (Agilent). Sequencing li-
braries were prepared using a TruSeq Stranded mRNA kit (Illumina).
Paired-end sequencing (2 × 75 nt) was performed using an Illumina
HiSeq 4000 system (TruSeq PE Cluster kit, TruSeq 300 cycle kit). We
obtained 32.9–40.8 M (37.1 ± 2.6) sequencing reads per sample. Read
quality was controlled using FastQC software (Andrews, 2010) fol-
lowed by Bowtie 2 (v. 2.2.9)-based mapping (Langmead & Salzberg,
2012) and RSEM (v. 1.2.31)-based quantification (Li & Dewey, 2011).
Differential expression analysis was performed using the DESeq2
(v.1.14.1) package in R (Love et al, 2014).

The Molecular Signature Database MSigBD (Liberzon et al, 2011)
metagene sets “hallmark” and “curated (C2)”were used to apply the
camera tool (Wu & Smyth, 2012) on the voom-transformed (Law
et al, 2014) count data using a limma-based (Smyth, 2005) ranking
metric. Gene sets with an adjusted P-value < 0.05 were considered
significant. The full results are displayed in Supplemental Materials.

CRC and colorectal adenoma tissues

We obtained tissue sections from subjects with spontaneous in-
testinal adenoma (n = 8) and/or CRC (n = 11) plus matched (same

patient) and non-matched normal mucosa (n = 18). The study re-
ceived a positive ethics vote from the Friedrich-Alexander- Uni-
versität Erlangen-Nürnberg Ethics Commission. TableS1 shows the
clinicopathological data.

IHC and IF

C/EBPα IHC and IF were performed on 5-μm formalin-fixed,
paraffin-embedded tissue sections. All incubation steps were
performed at room temperature unless stated otherwise. The
sections were deparaffinized (2 × 10 min in Histo-Clear II, National
Diagnostics) and hydrated in a descending ethanol series (2 min
each in 2 × 100%, 85%, 70%, 50%, and 30% ethanol in double-
distilled water [ddH2O], ddH2O). Antigen retrieval was performed by
15-min incubation in pre-heated citrate buffer (pH 6.0) in a mi-
crowave, with boiling intervals. Sections were cooled to room
temperature for 20 min and washed in PBS-T (Tween 20, 0.02%). If
HRP-based detection was performed later, endogenous peroxi-
dases were blocked by 10-min incubation with 5%H2O2 inmethanol.
After washing (PBS-T, 2 × 5 min), the sections were incubated with
10% normal serum (from the animal used to generate the sub-
sequently used secondary antibody/ies) in PBS-T. For C/EBPα
brightfield IHC, endogenous avidin/biotin blocking was performed
as described in the kit manufacturer’s manual (Abcam). All anti-
bodies (C/EBPα, D56F10, Cell Signaling Technology, 1:100; mucin 2
[MUC2], H-300, Santa Cruz, 1:100; β-catenin, Clone14, BD Trans-
duction Laboratories, 1:200; Ki67 for mouse clone TEC-3, for human
clone MIB1, both Dako; GFP, Abcam, 1:400) were incubated at 4°C
overnight in SignalStain antibody diluent (Cell Signaling Technol-
ogy). After washing (3 × 5min, PBS-T), the specimens were incubated
for 1 h with Alexa488- or Alexa594–coupled anti-mouse, anti-rat,
and/or anti-rabbit secondary antibodies (1:1,500; Invitrogen) for IF,
or with a biotin-coupled anti-rabbit secondary antibody (111-065-
003, 1:500; Jackson Laboratories) for C/EBPα brightfield IHC. After
washing (3 × 5 min, PBS-T), IF sections were counterstained with
DAPI, washed again (3 × 5 min, PBS-T), and mounted in fluorescent
mounting medium (Dako). For brightfield C/EBPα staining, a
HRP–streptavidin complex (dianova) was incubated at 2 μg/ml in
PBS-T for 30min, followed by another round of washing. The protein
was visualized by 3–5-min treatment with FAST DAB (Sigma-Aldrich);
the reaction was stopped in ddH2O, followed by counterstaining
with Mayer’s hematoxylin (Carl Roth). After rinsing with tap water
and transfer through an ascending ethanol series and Histo-Clear II
treatment (2 × 5 min), the sections were mounted using Omnimount
(National Diagnostics).

Cell culture

Caco2 and Hct116 cell were cultured in DMEM, 5% serum, Penstrep
(Life Technologies).

Caco-2 cells were treated with 3 nM CHIR99021 (Tocris) for the
indicated time. Hct116 cells were stably transduced with pInducer21-
C/EBPα lentiviral particles, fluorescence-activated cell sorted for
GFPhigh cells, and C/EBPα expression was induced by doxycycline.
pInducer21-C/EBPα was constructed by LR-clonase reaction (Invi-
trogen Life Technologies) with pENTR2B-hC/EBPα and pInducer21
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(Meerbrey, 2011). Lentiviral particles were produced in 293TN cells co-
transfected with psPAX2, pMD2.G, and pInducer21-C/EBPα.

Dataset Availability

Gene expression data supporting the conclusions of this research
article are available under GEO accession number GSE123925.

Supplementary Information

Supplementary Information is available at https://doi.org/10.26508/lsa.
201800173.
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