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ABSTRACT

eggNOG is a public database of orthology relation-
ships, gene evolutionary histories and functional an-
notations. Here, we present version 5.0, featuring a
major update of the underlying genome sets, which
have been expanded to 4445 representative bacte-
ria and 168 archaea derived from 25 038 genomes,
as well as 477 eukaryotic organisms and 2502 vi-
ral proteomes that were selected for diversity and
filtered by genome quality. In total, 4.4M ortholo-
gous groups (OGs) distributed across 379 taxonomic
levels were computed together with their associ-
ated sequence alignments, phylogenies, HMM mod-
els and functional descriptors. Precomputed evolu-
tionary analysis provides fine-grained resolution of
duplication/speciation events within each OG. Our
benchmarks show that, despite doubling the amount
of genomes, the quality of orthology assignments
and functional annotations (80% coverage) has per-
sisted without significant changes across this up-
date. Finally, we improved eggNOG online services

for fast functional annotation and orthology predic-
tion of custom genomics or metagenomics datasets.
All precomputed data are publicly available for down-
loading or via API queries at http://eggnog.embl.de

INTRODUCTION

Identifying orthologs, those sequences diverging from a
common ancestry after a speciation event, constitutes a fun-
damental task in molecular and evolutionary biology. Com-
pared to paralogs, which are sequences diverged after a du-
plication event, orthologs are more prone to retain their an-
cestral function (1,2), even at long evolutionary timescales
(3). Therefore, differentiating between these two subtypes
of homology relationships is crucial to produce accurate
functional predictions (2,4,5). It is also essential for proper
analysis in, for example, phylogenetics and comparative ge-
nomics (6) or the study of cell-type evolution (7). Hence,
several databases have been developed over the years that
provide precomputed orthology predictions using differ-
ent approaches and operational definitions (8—13). Most of
those resources, including eggNOG, are part of the interna-
tional consortium Quest for Orthologs (14), were standard-
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ized benchmarking approaches (15) and reference datasets
are developed and shared.

eggNOG (evolutionary genealogy of genes: Non-
supervised Orthologous Groups) is a public resource in
which thousands of genomes are analyzed at once to
establish orthology relationships between all their genes.
Compared to similar databases, eggNOG focuses on
providing: (i) comprehensive functional annotations for
the inferred orthologs, (ii) predictions across thousands of
genomes covering the three domains of life and viruses,
and 1iii) hierarchical resolution of orthology assignments
and fine-grained relationships (i.e. in-paralogies) based on
phylogenetic analysis. For that, a species-aware clustering
algorithm based on the concept of triangulation of best
reciprocal hits (16) is applied to identify Orthologous
Groups (OGs): sets of homologous sequences that started
diverging from the same speciation event. As orthology
relationships vary depending on the assumed reference
speciation event (outgroup)—with increasing resolution
toward the tips of the tree of life—since its inception in
2008 (17), eggNOG computes orthology predictions at
different taxonomic levels. All OGs from all taxonomic
levels are then functionally annotated and analyzed using
phylogenetic methods, which allows users to further explore
the history of speciation and duplication events within each
OQG, infer pairwise orthology relationships between specific
species, or trace functional changes therein.

Here, we describe eggNOG v5.0, including the follow-
ing improvements over previous versions: (i) a major up-
grade of the underlying databases, featuring one of the most
comprehensive selection of prokaryotic, eukaryotic and vi-
ral genomes available; (ii) updates in the online service for
custom (meta-)genome annotation, now including options
for fast orthology prediction and improved computational
power via cloud computing and (iii) better visualization op-
tions of OGs and their associated functional data.

UPDATES AND ADDITIONS SINCE PREVIOUS RE-
LEASE

Genomes update

eggNOG 5.0 has increased the number of genomes used for
inferring orthology from 2031 core organisms to 5090. Vi-
ral proteomes have also been upgraded, increasing from 352
to 2502 proteomes collected from Uniprot and filtered by
completeness (those with less than three proteins after in
silico cleaving of polyproteins were discarded). In order to
select best representative prokaryotic genomes, we used the
Specl species delineation method (18) against a total set of
25 038 genomes retrieved from RefSeq (19), obtaining 4445
reference species. Similarly, 477 eukaryotic genomes were
collected from Ensembl (11) and other project-oriented re-
sources (see online methods at http://eggnog.embl.de/). In
all cases, genomes and proteomes were standardized and
checked for completeness and minimum quality before in-
clusion into the database. For instance, incomplete prokary-
otic genomes missing more than 4 out of 40 universal, single
copy, marker genes (20) were excluded, as well as genomes
that could not be assembled to fewer than 300 contigs or
genomes with an N50 of <10 000.

Taxonomic levels and non-supervised Orthologous Groups

An Orthologous Group (OG) is defined as a cluster of
three or more homologous sequences that diverge from the
same speciation event (16,17). Different OGs could there-
fore be inferred depending on the speciation split consid-
ered, that is, implicitly, the taxonomic resolution one con-
siders. Older speciation events lead to larger OGs with more
in-paralogs (duplication events occurred after the specia-
tion) and higher functional divergence among their mem-
bers. By contrast, recent speciations lead to smaller and
usually more functionally specific sets of orthologs. For ex-
ample, this implies that vertebrate-specific OGs would yield
more fine-grained functional differentiation than OGs built
using all eukaryotic species.

In order to better reflect this taxonomic range and im-
prove the precision of eggNOG functional predictions, in
this version we have largely increased the number of pre-
defined taxonomic levels (speciation splits) for which OGs
are independently computed. In total, we applied the non-
supervised eggNOG clustering method described in Jensen
et al. (17) on 379 taxonomic levels, leading to 4.4M OGs
(compared to 107 levels and 1.9M OGs in the previous
version (21)). OGs were built using best reciprocal hits in-
formation derived from an all-against-all Smith-Waterman
matrix provided by the SIMAP project (22). In addition,
manually curated OGs available for the three domains of life
were integrated into the corresponding levels in eggNOG,
namely bacterial subset of COGs (23), archacal arCOGs
(24) and eukaryotic KOGs (25). Similarly, viral OGs were
updated using deeper taxonomic categories, now descend-
ing to the family level. The taxonomic distribution in
eggNOG v5.0, as well as the number of organisms, OGs
inferred, and functional annotation coverage per level is
shown in Figure 1.

Hierarchical consistency of OGs

Relationships between more rootward OGs and their nested
children OGs at more specific taxonomic levels were explic-
itly tracked and ascertained to be consistent, with excep-
tions only for mosic proteins with multi-domain combina-
tions, where individual domains might have evolved inde-
pendently (26,27). Hierarchical inconsistencies are the in-
evitable product of executing eggNOG’s clustering algo-
rithm independently at each taxonomic level. Given that the
set of species vary at each level, nested OGs might describe
slightly incompatible evolutionarily histories for the same
set of proteins. Solving those cases is particularly important
for third-party applications (e.g. STRING (28)), in which
information needs to be propagated across the hierarchy of
taxonomic levels. Therefore, from version 4.5, we apply a
post-processing step to ensure hierarchical consistency of
all nested OGs.

In this database update, we have improved our method-
ology by implementing a more accurate strategy based on
gene-tree reconciliation. Briefly, for each hierarchical incon-
sistency found, we subsample the proteins spanning the af-
fected OGs and perform gene-tree to species-tree reconcil-
iation. Each reconciled tree sample represents a vote to-
wards one of the conflicting evolutionary hypotheses. We
combine the reconciliations by majority voting to decide
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Figure 1. Taxonomic levels for which OGs have been independently computed based on (A) prokaryotic, (B) eukaryotic and (C) viral genomes. Names in
blue indicate new taxonomic levels with respect to previous eggNOG versions. Numbers indicate the the amount of OGs per level (red), number of species
covered (black) and functional annotation coverage (green).
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how to resolve the inconsistency. Given the large num-
ber of species in this version of eggNOG, we have how-
ever retained some size control heuristics, such as the rule
that COGs should not be merged. A full description of
the reconciliation method is available at https://github.com/
meringlab/og_consistency_pipeline.

Phylogenetics analysis

As in previous releases, all OGs in eggNOG v5.0 were ana-
lyzed using a comprehensive phylogenetic approach. Based
on recent benchmarks (29), we adapted our phylogenomic
strategy to the following steps: multiple sequence align-
ments inferred with Clustal Omega (30), soft alignment
trimming by removing columns with less than five aligned
residues, model testing using ModelFinder (31), maximum
likelihood trees computed with IqTree (32) and branch sup-
ports calculated using the ultrafast bootstrap method (33).
The full workflow was executed using the ETE toolkit v3.1.1
(34), which integrates the complete pipeline as a built in
gene-tree workflow (code name ‘eggnog50_full’). For ~57
000 OGs, due to the increasing gene family sizes, computa-
tion was not possible in this pipeline, so a fall-back method
was used where IqTree was executed with the less-sensitive
option ‘—fast’. All 4.4M trees were analyzed to infer speci-
ation and duplication events (i.e. in-paralogy relationships)
using the species overlap algorithm described in (35), lead-
ing to pairwise orthology tables (differentiating one-to-one
versus many-to-many relationships) for each OG.

Functional annotations

Orthologous Groups were functionally annotated using up-
dated versions of Gene Ontology (36), KEGG pathways
(37), SMART/PFAM domains (38) and expanded to CAZy
(39) and KEGG modules. Moreover, general free text de-
scriptions and COG functional categories were updated for
each OG using the automated text-mining and machine
learning-based pipeline described in (21). In short, OGs
were assigned text descriptions based on a heuristic to find
the most informative text substring from either names of as-
signed SMART domains, assigned Gene Ontology terms, or
common substrings in free text annotations from the source
gene databases. In total, 80% of all OGs were annotated us-
ing at least one functional source. Finally, we improved the
online visualization of functional annotations, which can
now be explored from an evolutionary point of view by plot-
ting functional descriptors together with the phylogenetic
tree and the duplication/speciation events inferred for each
OG (Figure 2).

Fast functional and orthology assignments for custom user
data

eggNOG v5.0 has also improved the underlying precom-
puted data used by the online version of eggNOG-mapper
(40), a tool for rapid annotation of custom (meta-)genomes.
Moreover, our online services are now cloud-enabled, per-
mitting intensive computations required by functional an-
notation of massive datasets to run on dedicated servers
with hundreds of CPUs available. We have also introduced a

new option for fast batch orthology assignments of custom
sets of sequences, which allows users to assign orthology
relationships between novel genes and all genomes repre-
sented in eggNOG.

BENCHMARK

The average quality of orthology predictions and functional
annotations was benchmarked in order to estimate the ef-
fect of adding novel genomes. Both orthobench?2 (41) and
the Quest For Orthologs (QFO) benchmark (15) were used.
Compared to eggINOG v4.5, we improved the performance
in the orthobench’s Bilaterian (from 72.1% to 73.1% F-
measure) and Gammaproteobacteria test (from 93.2% to
94.7% F-measure). On the other hand, the QFO benchmark
allowed us to evaluate the performance of both OG-based
predictions and fine-grained predictions. Results show a
clear tradeoff in the precision-recall ratio depending on the
strategy selected, which in turn reflects different use cases of
orthology assignments. OG-based predictions produced re-
sults with high recall values, predicting more than twice the
number of orthologous pairs with <10.6% drop in average
Schlicker similarity compared to the benchmark average in
the Enzyme Classification and Gene Onthology Conserva-
tion tests. This high recall pattern is in general preferred by
probabilistic prediction methods such as interolog inference
in the STRING database (28). By contrast, fine-grained pre-
dictions showed higher precision values, while maintaining
a similar recall as the previous EggNOG versions, which is
usually preferred for accurate functional transfers. In gen-
eral, for the majority of QFO benchmark tests, the per-
formance of eggNOG 5.0 was slightly better or stayed at
the Pareto line compared to previous eggNOG version (de-
tailed plots and results are available at http://orthology.
benchmarkservice.org). Taken together, this indicates that
the large increase of genomes had no major impact on the
quality of the inferred orthologous groups, suggesting the
eggNOG approach continues to scale well.

CONCLUSIONS AND PERSPECTIVES

By further streamlining and modernizing the automated
approach for the construction of eggNOG orthologous
groups, as well as synchronizing with improved or newly
developed source databases (e.g. proGenomes for the clas-
sification of high quality prokaryotic genomes, (42)), we
have been able to more than double core genome cover-
age for eggNOG, including extensive expansion of viral
gene families, largely without loss of quality of orthology
reconstruction or functional annotation. Due to a super-
vised increase of pre-defined taxonomic levels as basis for
OG calculation, we almost tripled to number of OGs to
4.4M. Version 5 of eggNOG should thus be a useful re-
source for ecological, evolutionary or medical -omics analy-
sis, also serving as an entry point for fast functional annota-
tion of newly sequenced genes, genomes and metagenomes.
We are currently working on conceptual and algorithmic
improvements to be able to continue to keep pace with a
vastly expanding number of organisms and meta-genomes
sequenced.
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