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Abstract

The direct conversion of one differentiated cell fate into another
identity is a process known as Transdifferentiation. During
Transdifferentiation, cells pass through intermediate states that
are not well understood. Given the potential application of
transdifferentiation in regenerative medicine and disease
modeling, a better understanding of intermediate states is
crucial to avoid uncontrolled conversion or proliferation, which
pose a risk for patients.
Researchers have begun to analyze the transcriptomes of
donor, converting and target cells of Transdifferentiation with
single cell resolution to compare transitional states to those
found along the path of development. Here, we review exam-
ples of Transdifferentiation in a range of model systems and
organisms. We propose that cells pass either through a mixed,
unspecific intermediate or progenitor-like state during Trans-
differentiation, which, to varying degrees, resemble states
seen during development.
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Introduction
The direct conversion of one differentiated cell fate
into another identity is a process known as trans-
differentiation (Td). It has been hypothesized, however,
that most, if not all, converting cells go through an in-
termediate state and that the ‘direct’ aspect of Td is not
as clear-cut as previously thought [27]. During Td, cells
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were thought to pass through transitional states resem-
bling those seen during development. For many exam-
ples of Td this holds true as, for instance, fibroblasts

undergoing Td to neurons pass a progenitor-like state
which, at the level of their gene expression profile, partly
resembles a state seen during normal development [41].
Transitional states that are different to those in devel-
opment also occur. For example, during pancreatic alpha-
to beta-cell conversion, mixed-state cells express
markers for both alpha- (glucagon) and beta-cells
(insulin) following beta-cell ablation in vivo [40].

Understanding the states that cells pass through during
Td is crucial given its potential application in regener-

ative medicine and disease modeling. However, one
important question pertaining is whether cells pass
through an intermediate state and, whether such cells
could undergo uncontrolled conversion or proliferation
and pose a risk for patients. To answer this, researchers
have begun to analyse the transcriptomes of donor,
converting and target cells to explore the mechanisms of
Td. By doing so, one can also identify the barriers that
prevent Td and, if conversion is occurring, the degree to
which the original fate is lost. These efforts have been
greatly assisted by the development of single cell RNA-

sequencing (RNA-seq) technologies. Studies can now
compare transitional states occurring during Td to those
found along the path of development at a single cell
level.

Here, we review several key examples of Td that were
studied in a range of model systems and organisms. We
propose that cells pass either through a mixed, unspe-
cific intermediate or progenitor-like state during the
course of Td, which, to varying degrees, resemble states
seen during development (Figure 1).

It is important to note that the Td transition states
defined here broadly reflect a complex process and cells
undergoing Td may lie at the intersection of these
definitions. The nature and complexity of transitional
states observed during Td are likely to be influenced by
donor- and target-cell types, as well as the environ-
mental context. We also briefly discuss the role of ter-
minal selector transcription factor(s) (TFs) and
highlight the need to carefully assess the degree to
which the original fate is turned off during Td. Overall,
our understanding of Td at the single-cell level will be

crucial for characterising transitional states observed
during Td.
www.sciencedirect.com
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Figure 1

Converting cells can deviate from the path of development. Cells undergoing Td can pass through (A) mixed ‘MX’ (B) unspecific intermediate ‘UI’ or (C)
progenitor-like ‘PG’ transition states. Figures are modified versions of the Waddington landscape [4].
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Mixed states during Td
With the concomitant loss of one fate and the gain of
another, a converting cell will pass through a mixed state
where both fates are present. How a cell navigates this
change in identity, and emerges as a differentiated cell
with a new fate, is quite remarkable given the fact that
this state would be likely absent during development.

Moreover, many Td events are initiated by only a single
or fewTFs which initiate a program leading to target fate
acquisition. For example, expression of Mef2c, Gata4
and Tbx5 (MGT) leads to Td of mouse cardiac fibro-
blasts to induced cardiomyocytes (iCMs) via several
states defined by Liu et al., as intermediate fibroblast,
pre-iCM and iCM [19]. Single-cell transcriptome anal-
ysis suggests that the pre-iCM state is unstable and
represents a ‘mixed’ state where both cardiomyocyte and
fibroblast-specific markers are expressed [19]. This
observation was mirrored at the protein level. After in-

duction of mouse fibroblast to iCM conversion upon
MGT expression [36], a mild decrease, of fibroblast-
specific genes Col1a1 and Col1a2 was observed at the
48e72 h time point [36]. If these cells access develop-
mental programs to achieve conversion, one would
expect to detect markers for a progenitor-like state.
During fibroblast to iCM conversion, the early cardiac
progenitor marker Isl1 and the pan-cardiovascular pro-
genitor marker Mesp1 were not activated, suggesting
that Td did not pass through a progenitor-like state [11].
However, in other cases of Td, a mixed state with
precursor-like properties exists. For instance, endoge-

nous ‘hybrid’ CD4þ T cells produce cytokines charac-
teristic of different lineages and, from these cells,
multiple cell fates arise as reviewed elsewhere [20].

Interestingly, a mixed state during Td might be the
result of a mechanism where the original fate is switched
off passively. That is, as the new fate is established, cells
fail to maintain the original fate and it ‘fades’ away over
time. This likely occurs because the gene expression
www.sciencedirect.com
program of the target fate dominantly recruits the
transcriptional machinery to genes specific to its own
fate. To address this hypothesis and tease apart mech-

anisms of Td, mixed states must be characterized in
more detail with single-cell resolution.

Unspecific intermediate states during Td
During Td, cells may lose their original identity prior to
acquiring a new fate and this can be interceded by an
intermediate state that does not resemble donor nor
target fates. Unspecific intermediate states may display

aspects of stemness, but do not revert completely to a
stemcell-like state. In thenematodeCaenorhabditis elegans,
cells can be traced easily due to its transparent body and
highly invariant lineage. In-depth characterization of an
endogenousTdeventhas begun in the Jarriault laboratory
where a post-mitotic and functionally differentiated
epithelial Y cell of the rectum disengages from the rectal
tube, migrates and finally converts to a motor neuron
termed PDA [13,48]. During Td, the Y cell de-
differentiates, passes through an intermediate state and
then redifferentiates into a motor neuron termed PDA.

The observed intermediate state does not show marker
expression for either the rectal Y (LIN-26) nor the
neuronal PDA fate (cog-1) [34]. To test whether these
cells reverted to a bona fide pluri or multipotent state,
they were challengedwith transient expression of the cell
fate-inducers hlh-1 (muscle), end-1 (endoderm), lin-26
(epithelial) and unc-30 (GABAergic neurons), but no
detour to a new identity was observed [34]. Interestingly,
it was later shown that NODE (Nanog and Oct4-
associated deacetylase) activity was required for Y cell-
to-PDA Td in C. elegans [15]. The homologs of NODE

complex members, including CEH-6/Oct4 and SOX-2/
Sox, are known pluripotency factors in mammals [39]. It
is therefore possible, that intermediate cells observed
during Y cell-to-PDA Td have reverted to a progenitor-
like state with restricted potential, but are distinct from
bona fide progenitor-like intermediates.
Current Opinion in Systems Biology 2018, 11:18–23
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20 Development and differentiation
Another interesting example is the CCAAT/enhancer
binding protein alpha (CeBPa) induced conversion of
pre-B cells into macrophages. During this Td, cell-
surface marker combinations that are characteristic for
hematopoietic stem and progenitor cells, such as c-Kit
and FMS-like tyrosine kinase 3, were essentially not
observed and expression of pluripotency factors Oct4,
Nanog and Sox2 was not detected [5]. Cells undergoing

pre-B cell-to-macrophage Td show expression of genes
specific for the B cell (Cd19) and macrophage (Mac1)
fates being present and, therefore, also display aspects
of a mixed transitional state [5,46].

The question of whether, and to what degree, the
original fate must first be erased prior to acquisition of
the target cell fate may depend on how similar the donor
and target cell fates are. Regardless of how alike donor
and target cells are, transdifferentiating cells may have
to travel along strict development-like paths to achieve

conversion. Intermediate states, however, may be
distinct from those found during development and
unique to Td.
Progenitor-like states during Td
To achieve Td, converting cells may revert to a progen-
itor state with partial or complete pluripotency before
following developmental paths for redifferentiation.
Pluripotent-like states can be induced by exogenous
expression of the Yamanaka factors OCT4, SOX2, KLF4
and MYC (OSKM) [39]. Interestingly, use of OCT4 was
shown to increase the efficiency of directly reprogram-

ming fibroblasts to blood cells through enhancing the
induction of haematopoietic progenitor states [38]. In
some instances, partial reversion to a progenitor-like
state may be sufficient for re-differentiation. For
example, Ascl1-induced conversion of mouse embryonic
fibroblasts (MEFs) into induced neuronal (iN) cells
shows a continuum of intermediate states [41]. Using
single cell RNA-seq, Treutlein and colleagues compared
cells at intermediate positions along the MEF-to-iN
trajectory with neural precursor cell (NPC) bulk tran-
scriptomic data. They found that several NPC markers

including Gli3, Sox9,Nestin, Fabp7,Hes1 but not canonical
NPC marker genes such as Sox2 and Pax6, were
expressed in converting cells [41]. Their data suggests a
state which is distinct from donor and target cell fates
that has similarities to a progenitor-like state, in this
case, NPCs. However, the observed state also deviates
from the NPC state seen during development as ca-
nonical NPC marker genes are missing [41]. In further
support of a progenitor-like state resembling the natural
one seen during development, Ascl1 was found to bind
the same sites as in neural progenitor cells during

fibroblast to induced neuronal (iN) conversion [45].

A progenitor-like state resembling developing neurons
was also observed in vivo during the TF-induced
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conversion of germ cells into neuron-like cells in
C. elegans. Following knockdown of the histone chap-
erone LIN-53 (homolog of CAF-1p48/RBBP7 in mam-
mals) and overexpression of the Zn-finger TF CHE-1,
germ cells undergoing conversion to neurons express the
bHLH gene hlh-2/Daughterless thereby indicating a
state of immature neurons [18,30]. This in vivo Td
phenomenon further suggests that cells can follow a

development-like path to achieve identity conversion.

During regeneration, cells might transdifferentiate to
replace lost cells and tissues and, like in the examples
below, undergo dedifferentiation, proliferation and
redifferentiation to do so. Limb regeneration is possible
following amputation in the salamander Ambystoma
mexicanum (axolotl) [17]. The blastema, a mass of un-
differentiated cells from which a new limb is formed,
was shown to contain cells in a progenitor-like state with
restricted potential [17]. Using CRISPR-derived line-

age tracing, it was recently suggested that axolotl limb
regeneration recapitulates development of the original
limb [8]. However, an important factor for limb regen-
eration, kazald1, is not expressed in the progenitor cells
of the developing limb bud suggesting a Td-specific
path [1].

For zebrafish heart regeneration, cardiomyocytes have
been suggested to follow a path distinct from cardiac
development to convert into heart muscles [14].
Converting cardiomyocytes lose characteristic features

such as the sarcomere, and expression of sarcomeric
genes including ventricular myosin heavy chain (vmhc),
suggesting reversion to a progenitor-like state. However,
markers for precardiac mesoderm, RNAs of nkx2.5 and
hand2, were not significantly upregulated [14,37].

Transdifferentiating pigment epithelial cells of the
dorsal iris pass through a progenitor-like state during
regeneration of the lens upon lentectomy in newts
[7,32,42,47]. During lens regeneration, pluripotency
factors Sox2 and Klf4 [22] and the oocyte-type linker
histone B4, which is expressed during oogenesis and

early embryogenesis, are detected [21]. However,
converting cells demonstrate constrained potential as
they still form lens tissue when transplanted in other
regions of the newt [12,26,33]. These results suggest
that transdifferentiating cells can follow development-
like paths to achieve regeneration, as previously
mentioned [42].

The regenerative capabilities of plants exemplify
another transition through a progenitor-like state during
cellular conversion. Following excision of the root mer-

istem from Arabidopsis, which contains the stem cell
niche and supporting cells (quiescent center (QC)),
endodermal cells acquired a progenitor-like state prior
to replacing the lost tissue [6]. Single cell tran-
scriptomics of a population of ‘stele’ cells from uncut
www.sciencedirect.com
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and regenerating roots showed that converting cells lost
their stele identity and expressed a mixture of distal
identities, including QC, columella and epidermal,
before generating progenitors with distinct identities.
Additionally, the mixed-identity cells express genes
characteristic of the hypophysis, a precursor cell, which
gives rise to progenitors for the QC and columella as
studied [3,6,29], and previously reviewed [10].

For the in vivo examples above, progenitor-like transition
states do not appear to fully recapitulate a stem cell-like
state and, instead, show restricted potential (Figure 2).
Limiting the potential of these intermediate states
in vivo may ensure that no unexpected cell types are
formed, thereby ensuring robust Td. For therapeutic
applications of Td, providing an in vivo-like context with
appropriate intrinsic and extrinsic signals, may constrain
deleterious transition states during Td to a point that it
would be considered robust and, therefore, safe.
Constraining transitional states during Td
Environmental context has a significant impact on Td.
By recreating aspects of the in vivo environment during
development, transitional states observed during Td

may be constrained and Td efficiency improved. As
mentioned in previous reviews, some reprogramming
strategies include exposing cells to the in vivo niche and
environment which provide additional inputs to aid
maturation [9,27]. For example, mouse myotubes were
endowed with the regenerative-like capabilities of the
newt after being exposed to an ‘extract isolated from
Figure 2

A summary of the different modes of Td. Transdifferentiating cells may
pass through mixed ‘MX’, unspecific intermediate ‘UI’ or progenitor-like
‘PG’ transition states. Figure is a modified version of the Waddington
landscape [4].
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regenerating newt limbs’. Following exposure, the
myotubes showed reduced expression of muscle-
specific genes, myoblast determination (MyoD) and
myogenin, and started proliferation [25]. Additionally,
the robustness of inducing cardiomyocyte-like cells by
GMToverexpression is improved in vivo compared with
in vitro conditions [11,31].

The environmental context also includes a cell’s history.
During Y cell-to-PDA neuron conversion in C. elegans,
the number of neighboring cells did not affect Td,
however, Notch signalling (lin-12) is required at the time
of Y cell specification, but not when Td occurs per se
[13]. Understanding which aspects of the cellular
environment and history regulate Td in vivo will be of
great importance to overcome the current limitations of
Td including low efficiency, fate immaturity and
incomplete suppression of the original identity.
Understanding development to improve
cellular maturation in Td
In a global sense, specification and differentiation
during Td are similar to that observed during develop-
ment. This is particularly clear during later stages of Td

where, similar to development, transcriptional programs
initiated during earlier stages are strengthened and
morphological changes occur. For instance, a ‘maturation
stage’ was observed during MEF to iN induction where
synapse-related genes were switched on [41]. During
development, completing cellular differentiation often
involves terminal selectors, TFs that activate expression
of cell-type-specific genes. It isn’t surprising, therefore,
that terminal selectors also play a key role in Td. The
terminal selector UNC-3 is required for Y cell-to-PDA
Td in C. elegans, as redifferentiation fails in unc-3
mutant animals [34]. Ectopic UNC-3 expression also

initiates the conversion of germ cells into cholinergic
neurons in C. elegans [43]. As mentioned before, the
terminal selector CHE-1 is sufficient to induce the
neuronal fate in germ cells and drives neuronal matu-
ration during both Td and normal development [43,44].
Understanding the role of terminal selectors during
development, with particular focus on those involved in
both specification and maturation, may improve current
or enable novel modes of Td.

Failure to activate the appropriate developmental gene

regulatory networks during Td and to deactivate the
specific gene expression program of the differentiated
cell can result in immature or off-target identities and
incomplete suppression of the original fate. In this
context, the increased efficiency during MEF to iN
conversion by combining the neuron fate-inducing TF
Ascl1 with the Myt1-like (Mytl1) TF, is based on Mytl1-
mediated suppression of fibroblast and myocyte genes
[23,41]. Furthermore, enhanced reprogramming of
Current Opinion in Systems Biology 2018, 11:18–23
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human and mouse fibroblast cultures to cardiomyocytes
can be achieved when, in combination with GMT plus
Mesp1 and Myocd (GMTMM) or GMT, respectively,
the micro RNA miR-133 is overexpressed, which re-
presses fibroblast gene expression [28]. Hence,
suppressing the original donor cell identity can improve
Td, which is an important aspect that needs to be
considered when aiming to increase efficiency of suc-

cessful cell fate conversion.
Concluding remarks
Conversion factors engage developmental gene regula-
tory networds to induce Td, however, Td can deviate

from development and use Td-specific mechanisms. For
instance, in Drosophila, the conversion of imaginal disc
cells to wing cells by wingless (leg-to-wing) and eye-to-
wing Td by winged eye, may utilise a common Td-
specific gene set including dilp8, upd and Mmp1, which
are not expressed during normal differentiation of the
converted region [16,24].

An alternative path to acquire a new fate might be
treaded upon by removal of specific factors that act as
reprogramming barriers, such as chromatin remodelers.

Depleting barrier genes may assist different reprog-
ramming events, without a change in cellular state, by
mimicking an artificial but permissive epigenetic land-
scape. Returning to a ‘precursor state of chromatin’ or-
ganization which resembles that of developing cells may
favour reprogramming, as previously hypothesized [9].
Such instances may be the knockdown of lin-53 (CAF-
1p48/RBBP4) in order to reprogram germ cells to neu-
rons in C. elegans [43] and depletion of CAF-1 during
reprogramming of MEFs to induced pluripotent stem
(iPS) cells or iNs [2].

Another recently discovered natural Td event, which
depends on the sex of the animal, might represent an
additional path of cell fate conversion. Td of a specific
glial cell, known as AMso in C. elegans, into a neuron,
occurs solely in sexually maturing males. Further
investigation may reveal through which states and paths
the AMso glial cells pass in order to successfully convert
to a neuron [35].

Here, we have used Td to describe a range of cellular
conversion events whilst acknowledging that the ‘direct’

aspect, formerly associated with Td, may need rede-
fining as mentioned elsewhere [27]. Overall, Td is a
complex process and our understanding of transitional
states at the single-cell level is still limited. The envi-
ronmental context and higher order contexts such as
gender, age and other physiological conditions may
impact on the process of cellular conversion.
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