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Abstract

Single cell RNA-seq (scRNA-seq) experiments suffer from a range of characteristic
technical biases, such as dropouts (zero or near zero counts) and high variance.
Current analysis methods rely on imputing missing values by various means of local
averaging or regression, often amplifying biases inherent in the data. We present
netSmooth, a network-diffusion based method that uses priors for the covariance
structure of gene expression profiles on scRNA-seq experiments in order to smooth
expression values. We demonstrate that netSmooth improves clustering results of
scRNA-seq experiments from distinct cell populations, time-course experiments,
and cancer genomics. We provide an R package for our method, available at:
https://github.com/BIMSBbioinfo/netSmooth,
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Introduction

Single cell RNA sequencing (scRNA-seq) enables profiling
of single cells’ transcriptomes at unprecedented through-
put and resolution. It has enabled previously impracti-
cal, studies of cell type heterogeneity, differentiation, and
developmental trajectories [[1]]. However, the adaptation
of RNA sequencing techniques from bulk samples to sin-
gle cells did not progress without challenges. Typically,
only a fraction of a cells transcriptome may be captured
by the experiment, leading to so called "drop-out" events
where a gene gets a false O (or near 0) count in some cell.
The dropout rate is related to the population level expres-
sion of a gene leading to many false zero counts for lowly
expressed genes, and artificially low counts for highly ex-
pressed ones [2]]. Furthermore, the drop-out rate could be
related to the biology of the cell type, as some cell types
transcribe fewer genes than others, which will appear as
drop-out events [2]]. When summed over many samples,
transcript counts from single cells resemble those of bulk
experiments [[3], but across individual cells there is signif-
icant variation. This makes analysis more difficult than in
bulk RNA sequencing experiments.

Computational methods designed to deal with these is-
sues treat dropout events as missing data points, whose
values may be imputed based on non-missing data points
(observed measurements). The proportion of O counts per
gene, a proxy for its technical dropout rate, is a function of
the population-wise mean expression of that gene [4} 2]].
This observation has led researchers to treat O counts as
dropout candidates to be imputed.

CIDR [5] attempts to impute missing values based on
the predicted mean expression of a gene, given its em-
pirical dropout rate (0-count). scImpute [|6]] estimates
dropout likelihoods per gene and per sample, and assigns
each gene in each sample a status as a dropout candi-
date. Genes might be considered likely dropouts even
with nonzero expression, and 0-count genes might not
be considered likely dropouts, based on their population-
wide expression distributions. It then uses a regularized
linear model to predict the expression of dropout genes
based on the expression of likely non-dropouts in all other
cells. MAGIC [[7] performs local averaging after building
a topological graph of the data, updating the expression
value of all genes in all cells to their local neighborhood
average.

All of the methods mentioned above use measured in-
formation in the data in order to impute the missing in-
formation within the same data. As such, they amplify
whatever biases are present in a dataset; similar cells pre-
imputation will become more similar after imputation, as
expression profiles of non-dropout genes will drive simi-
larities in imputed dropped-out genes. Further, all meth-
ods except MAGIC only impute unobserved expression
events (Os or near Os), while the dropout phenomenon
actually affects the whole transcriptome. Hence, imputa-
tion methods for scRNAseq should also adjust non-0 ex-
pression measurements in order to recover the true signal.
We present a method, called netSmooth, that uses prior
knowledge to temper noisy experimental data. RNA se-

quencing experiments produce counts data as a proxy
for gene activity, which is not known a-priori, especially
for experiments profiling unknown cell types. However,
decades of molecular biology research have taught us
much about the principles of gene interaction. Interact-
ing genes are likely to be co-expressed in cells [|8] [9],
and as such, protein-protein interaction (PPI) databases
[[10, [17]] describe genes’ propensity for co-expression. We
developed a graph-diffusion method on PPI networks for
smoothing of gene expression values. Each node in the
graph (a gene) has an associated gene expression value,
and the diffusion presents a weighted averaging of gene
expression values among adjacent nodes in the graph,
within each cell. This is done iteratively until conver-
gence, strengthening co-expression patterns which are ex-
pected to be present. Incorporation of prior data from
countless experiments in the preprocessing of scRNA-seq
experiments improves resistance to noise and dropouts.
Similar network based approaches have been used to ex-
tract meaningful information from sparse mutational pro-
files [[12} [13]], and indirectly on gene expression data by
diffusing test statistics on the network to discover regu-
lated gene candidates [[14]]. We propose diffusion of gene
expression values directly on the network as a method for
data denoising and imputation. Furthermore, the param-
eters of this proposed method could be optimized using
clustering robustness metrics. We applied our method to
a variety of single cell experiments and compared its per-
formance to other selected imputation methods scImpute
and MAGIC. These methods represent the latest and di-
vergent ways of imputing the scRNA-seq data.

We also made available an R package providing the
necessary functionality to use our method on other
data. It is available on GitHub: https://github.com/
BIMSBbioinfo/netSmoothl

Results

Overview of the method

The intuition behind the netSmooth algorithm is that gene
networks encoding co-expression patterns can be used to
smooth scRNA-seq data, pushing its coexpression patterns
in a biologically meaningful direction. We demonstrate
this using protein-protein interaction networks, which are
predictive of coexpression [|9]]. We produced a PPI graph
of high-confidence interactions based on the PPI database
STRING [10].

There are 2 inputs to the method: (1) a gene expression
matrix, N genes by M cells, and (2) a graph where genes
are nodes, and edges indicate genes which are expected
to be co-expressed. The edges may be weighed, indicating
the strength or direction of a relationship; an edge weight
of 2 indicates stronger expected co-expression than an
edge weight of 1, and an edge weight of —1 indicates neg-
ative expected co-expression, such as one gene being a
repressor for another. The expression profile of each cell
is then projected onto the graph, and a diffusion process
is used to smooth the expression values, within each sam-
ple, of adjacent genes in the graph (Figure[1). In this way,
post-smoothing values of genes represent an estimate of

Page 2 of


https://github.com/BIMSBbioinfo/netSmooth
https://github.com/BIMSBbioinfo/netSmooth
http://dx.doi.org/10.1101/234021
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint first posted online Dec. 13, 2017; doi: http://dx.doi.org/10.1101/234021. The copyright holder for this preprint (which was
not peer-reviewed) is the author/funder. It is made available under a CC-BY-ND 4.0 International license.

DRAFT ARTICLE

activity levels based on reads aligned to that gene, as well
as those aligned to its neighbors in the graph. Thus, a
gene with a low read count (possible technical drop-out),
whose neighbors in the graph are highly expressed, will
get a higher value post smoothing. The rate at which
expression values of genes diffuse to their neighbors is
degree-normalized, so that genes with many edges will
affect their neighbors less than genes with more specific
interactions. The diffusion is done using a "random walks
with restarts" (RWR) process [[13]], where a conceptual
random walker starts in some node in the graph, and at
each iteration moves to a neighboring node with a proba-
bility determined by the edge weight between the nodes,
or, with some probability, restarts the walk from the orig-
inal node. The network-smoothed value is the stationary
distribution of this process. The RWR process has one free
parameter, the restart rate. A low value for the restart
rate allows diffusion to reach further in the graph; a high
restart rate will lead to more local diffusions. For more
details see the Methods section.

Network smoothing improves cell type identifi-
cation from single-cell RNA-seq

We first assess netSmooth on a dataset of 1645 mouse
hematopoietic stem/progenitor cells (HSPCs) assayed us-
ing flow cytometry as well as scRNA-seq [[15]]. The cells
are FACS-sorted into 12 common HSPC phenotypes. This
presents an atlas of the hematopoiesis process at a single
cell resolution, showing the differentiation paths taken
by E-SLAM HSCs as they differentiate to E, GM, and L
progenitors. The authors of this study demonstrate that
upon clustering the data, some clusters corresponds to cell
types. However, the clusters are not noise free and do not
fully recapitulate cell type identity. We obtained cluster-
ings of the cells from the normalized counts, as well as
after application of netSmooth, MAGIC [7]], and scImpute
[6]], using a robust clustering procedure based on the clus-
terExperiment R package [[16]] (See Methods). After clus-
tering, we used the edgeR-QLF test [[17] to identify genes
that are differentially expressed in any of the discovered
clusters. Figure[2h,b shows that after network-smoothing,
we are able to identify clusters with a more pronounced
differential expression profile. Further, many more of the
genes identified as differentially expressed between the
clusters (without smoothing) seem to have low and unin-
formative expression values overall. MAGIC and scImpute
also improve this pattern (Figure [2k,d). MAGIC seems to
do the strongest transformation to the data, as seen in
lower dimension embeddings (Figures[S2] [S3).

As this dataset has cells with labels independent of the
RNAseq (FACS-sorted phenotypes), it presents us with
an opportunity to compare the gene expression levels
(as measured by RNAseq), to a meaningful phenotypic
variable, i.e. the cell type. The cell type discrimination
of a clustering result is compared using a cluster purity
metric and and the adjusted mutual information (AMI).
The cluster purity measures how cell-type specific clus-
ters are by comparing homogeneity of the external la-
bels (FACS-defined cell types), within clusters provided

by scRNA-seq data. AMI is a chance-adjusted information-
theoretic measure of agreement between two labellings.
This method accounts for artificially high mutual infor-
mation between external labels and clusters when there
are high number of clusters (See Methods for details on
metrics). We also measured number of cells in robust
clusters as quantitative metric. The robust clustering pro-
cedure allows cells to be omitted (not be assigned to a
cluster) if they cannot be placed in a cluster across mul-
tiple clustering methods and/or parameters (See Meth-
ods). Only MAGIC is able to increase the proportion of
cells in this dataset which fall into robust clusters (Fig-
ure [3p), but only netSmooth leads to more biologically
meaningful clusters, in terms of purity and AMI (Figures
,c), demonstrating that netSmooth can assist in cell type
identification, and outperformed both MAGIC and scIm-
pute in this task. The higher clusterability following ap-
plication of MAGIC than netSmooth, might indicate that
MAGIC was overzealous in its transformation, squeezing
more cells into the same space. This might lead to more
robust clusters, but less reliable cell type identification.

Network smoothing improves capture of devel-
opmental expression patterns

Next, we test netSmooth on 269 isolated cells from mouse
embryos at different stages of pre-implantation develop-
ment between oocyte and blastocyst, as well as 5 liver
cells and 10 fibroblast cells [[18]]. The authors of this study
demonstrated that lower dimension embeddings capture
much of the developmental trajectory (Figure [4p, [S5p,
Figure [S4p). We then applied netSmooth, MAGIC, and
scImpute. Figure[dp shows the principal component anal-
ysis of netSmooth-processed data, and Figures [4c and
show the PCA plot following application of MAGIC and
scImpute, respectively. netSmooth and scImpute preserve
most of the variance structure of the data, while MAGIC
seems to push the data onto a completely different mani-
fold (Figure [4] Figure[S5). We used the robust clustering
procedure to obtain clusters, and computed the cluster
purity and AMI metrics. netSmooth enabled the cluster-
ing procedure to place more of the samples into robust
clusters (Figure ), and as in the hematopoiesis case,
netSmooth is able to assist in identifying the developmen-
tal stage or tissue that cells belong to better than the other
methods, as evidenced by the higher cluster purities (Fig-
ure[5p) and AMI (Figure [5k). Although MAGIC and scIm-
pute reduce the O-count genes further than netSmooth
(Figure [ST), they do not add as much clarity to the de-
velopmental stage signal inherent in the data. This shows
that imputing missing counts based on data from the same
experiment is not as powerful as including priors in the
quasi-imputation process netSmooth does.

Network smoothing improves identification of
glioblastoma tumors

Finally, we demonstrate applicability of netSmooth to can-
cer research. Patel et al. generated scRNA-seq data of 800
cells from 5 glioblastoma tumors and 2 cell lines [[19]].
Lower dimension embedding plots show that cells from
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Figure 1. The netSmooth algorithm takes a gene expression profile, and a gene network. The expression profile
of each sample is projected onto the network, where a diffusion process allows genes’ expression values to be
smoothed by their neighbors’. This is done for each cell independently of others. The end result is a network

smoothed gene expression matrix.

different tumors or cell lines generally group together, but
some are not wholly distinguishable from other tumors
(Figure [6p, [S7h, [S6R). Further, the two cell lines group
closer to each other than the other patient samples. Af-
ter applying netSmooth to the data, tumors become eas-
ier to distinguish in a lower dimensional embedding (Fig-
ure [6b), indicating that netSmooth improves assignment
of each cell to its tumor, cell line, or clone of origin. Again,
scImpute also leads to similar reduced dimension embed-
ding (Figure [Bd), while MAGIC distorted the data more
than the other methods (Figure @:). We used the robust
clustering procedure before and after netSmooth, MAGIC,
and scImpute. Only MAGIC increase the clusterabitliy of
the data (Figure ), but netSmooth leads to the most pure
clusters, in terms of tumor or cell line of origin (Figure([7p,
Figure 7).

Tumor or cell line of origin is an imperfect proxy for phe-
notypical variation in cancer cells, because some cells
cluster by cell type rather than tumor of origin, demon-
strating the heterogeneity in these glioblastoma tumors
and similarities across origins [[19]. Nevertheless, we
chose to compute cluster purity based on the cell origin
rather than other labels which might be assigned to them,
as it is the only ground truth variable that is independent
of the RNAseq experiment. Further, cells do group by ori-
gin (Figure[6] Figure[S6)), and identification of origin is an
interesting question in its own right in the field of cancer
genomics, particularly for heterogeneous tumors such as
these.

Sensitivity to the network

Next, we set out to ensure that the results are not an arti-
fact of the network structure, i.e. that the actual links be-
tween genes that we used in the network are important.
We expect netSmooth not to perform well when using net-
works with similar characteristics, but where edges do not
represent real interactions. To that effect, we constructed
20 random networks by keeping the same graph struc-
ture of the real PPI graph, but shuffling the gene names.

Thus, these random networks share all the characteris-
tics of the real network (degree distribution, community
structure), except for the true identity of the nodes. We
then used those networks as inputs to netSmooth and ran
the benchmarks as before on the hematopoiesis dataset.
Using random networks as an input to netSmooth gives
cluster purities distributed around a mode given by the
cluster purities of the raw data, while the cluster purities
given from using the real PPI network lie at the extreme
edge of the distribution (Figure ). Further, most ran-
dom networks result in fewer samples belonging to ro-
bust clusters (Figure ). These results demonstrate that
it is indeed the information contained in the PPI graph
enables netSmooth to transform the gene expression ma-
trix in a more biologically coherent direction, and that the
transformation we see can not be explained simply by the
network structure.

Using other networks with netSmooth

In addition to using an unweighed (where all edge
weights are 1), undirected (where all edge weights are
positive) network from string-db, we constructed other
gene networks and used them as inputs to netSmooth. We
created a directed gene network from only those edges
in string-db which are marked as activating or inhibit-
inﬂ We set the edge weights of the activating interac-
tions to +1, and —1 for the inhibiting interactions, al-
lowing gene expression values to be adjusted downwards
for genes whose known antagonists are highly expressed.
After smoothing, we set all negative smoothed expres-
sion values to 0. We also constructed a gene network
from string-db using only genes that are known to demon-
strate cell-type specific expression. In order to obtain a list
of genes with such cell-type specific expression patterns
from the Expression Atlas [20]], we used only the genes
which show a cell-type specific expression with a mean

IMost interactions in string-db do not specify the direction, or nature
of the interaction
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Figure 2. Cells were clustered using the robust clustering procedure, and the 500 most differentially expressed
genes (by edgeR-QLF test adjusted P value) in any of the discovered clusters are shown in a heatmap, as well as

cluster assignments and FACS-sorted cell types. A) raw (no imputation), B) after application of netSmooth, C)
missing values imputed using MAGIC D) missing values imputed using scImpute.
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Figure 3. A) The proportion of cells which were assigned to robust clusters. B) cluster purity (proportion of
dominant cell type) for the robust clusters. netSmooth produces the most pure clusters in terms of cell types. C)
AMI of the clustering results obtained after application of each of the methods. Only netSmooth increases the

AMI between the clustering and the cell types.

TPM of at least 1 in some cell type, and used the subset of
string-db network containing those genes as an input to
netSmooth. Both of those modified graphs perform sim-
ilarly to the undirected graph from string-db (Figure [9}
Figure[S8h, Figure[S8p), demonstrating that netSmooth is
able to use priors from different types of experiments in
order to improve clustering of scRNA-seq.

We also considered other sources for the gene network.
We constructed a gene network from HumanNet [21]],
a functional gene network where edges denote interac-
tions between two genes. We constructed a smoothing
graph by taking all edges from HumanNet, and produc-
ing a graph where all edge weights are set to 1. We
then used this graph as an input to netSmooth on the
glioblastoma dataset. It performs similarly to the net-
work from string-db (Figure[10} Figure[S8k), demonstrat-
ing that other sources for gene interactions may also be
used by netSmooth to improve clustering results of scRNA-
seq.

Optimizing the smoothing parameters by clus-
ter robustness

The netSmooth algorithm, given a gene network, has one
free parameter - the restart rate of the random walker,
(1 —a). Alternatively, a is the complement of the restart
rate. An a = 0 indicates a perfect restart rate and conse-
quently no smoothing; an a = 1 corresponds to a random
walk without restarts. Intermediate values for a result in
increasing levels of smoothing; the value of a determines
how far random walks will go on the graph before restart-
ing, or how far along the network a gene’s influence is al-
lowed to reach (See Methods). It is tempting to optimize
a with respect to the variable the experiment sets out to
measure, e.g. cluster purity. For instance, in the embry-
onic development dataset, we would choose a = 0.7 as
the value that produces the highest cluster purity (Figure
[11p). However, in many experiments the identity of the
samples is not known a-priori. Therefore, we propose a
data driven workflow to pick a sensible value for a.

One such data-driven statistic is the proportion of sam-
ples assigned to robust clusters; following application of

netSmooth, the robust clustering procedure is able to as-
sign more samples to statistically robust clusters. For all
three datasets, picking the a that gives the highest pro-
portion of cells in robust clusters, also gives the clusters
with the highest purity index (Figure [12). Importantly,
this metric is entirely data-driven and does not require ex-
ternal labels, making it feasible for any scRNA-seq study.
The results in the previous sections all use the value of a
picked to optimize proportion in robust clusters.

Discussion
Single cell RNA sequencing technology provides whole-
genome transcriptional profiles at unprecedented

throughput and resolution. However, high variance and
dropout events that happen in all current scRNA-seq
platforms complicate the interpretation of the data.
Methods that treat O counts as missing values and impute
them based on nonzero values in the data may amplify
biases in the data.

We presented netSmooth as a preprocessing step for
scRNA-seq experiments, overcoming these challenges by
the use of prior information derived from protein-protein
interactions or other molecular interaction networks. We
demonstrated that network smoothing assists in several
standard analyses that are common in scRNA-seq stud-
ies. This procedure enhances cell type identification in
hematopoiesis; it elucidates time series data and assists
identification of the developmental stage of single cells.
Finally, it is also applicable in cancer, improving identifi-
cation of tumor of origin for glioblastomas. In addition,
we showed that network smoothing parameter can be op-
timized by cluster robustness metrics, providing a work-
flow when there are no other external labels to distinguish
cells. We demonstrated that netSmooth can use prior in-
formation from different sources in order to achieve this.
We compared netSmooth with scImpute, a statistical
genome-wide imputation method, and MAGIC, a genome-
wide data smoothing algorithm, and demonstrated that
while scImpute and MAGIC reduce the drop-out phe-
nomenon more than netSmooth does, netSmooth outper-
forms them in amplifying the biological/technical vari-
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Figure 4. 2D PCA plots of the embryonic development dataset A) no preprocessing, B) after application of
netSmooth, C) after imputing missing values with scImpute, and D) after application of MAGIC
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Figure 5. The Embryonic development dataset. A) The proportion of cells which were assigned to robust clus-
ters. All three methods lead to better clusterability, with MAGIC having the strongest effect. B) cluster purity
(proportion of dominant cell type) for the robust clusters. netSmooth produces the most pure clusters in terms
of cell types. C) Adjusted mutual information of clusterings and cell types. Only netSmooth increases the AMI

over the non-preprocessed data.

ability ratio. netSmooth provides clusters that are more
homogeneous and have higher adjusted mutual informa-
tion (AMI) with respect to cell types. Although, in some
cases data processed by MAGIC produces more robust
clusters, the clusters returned after MAGIC processing do
not have higher AMI or cluster purity. Higher robustness
achieved by MAGIC processing might be due to the fact
that the algorithm reinforces local structures too much in
the data and producing artificially similar expression pro-
files between cells.

Finally, netSmooth is a versatile algorithm that may be in-
corporated in any analysis pipeline for any experiment
where the organism in question has a high quality PPI
network available. Although not shown, the algorithm is
applicable to any omics data set that can be constructed
as a genes-by-samples matrix, such as proteomics, SNPs
and copy number variation. In addition, most of the com-
putational load of network smoothing can be done "off-
line". As such it scales well with the number of cells,
which is likely to increase in future scRNA-seq experi-
ments. We have made available an R package to that end,
which is available on GitHub: https://github.com/
BIMSBbioinfo/netSmoothl

Methods and data

The data sets

The hematopoiesis dataset was obtained from the
Gene Expression Omnibus [22]]. The embryonic [18]
and glioblastoma datasets were obtained from con-
quer [123]], a repository of uniformly processed scRNA-seq
datasets.

The random walks with restarts process

The netSmooth algorithm takes a graph G = {V, E} where
V = {gene;} is the set of genes, and E = {(i — j)}
is the set of edges between genes. The edge weights are
degree-normalized, so that each gene’s outgoing edges’
weights sum to 1. We then define a process of random
walk with restarts as in [[13]], on the PPI graph, where a

conceptual random walker starts on a node in the graph
(a gene/protein) and at each step walks to an adjacent
node with the probability determined by the a times the
edge weight. Further, at each step, there is a probability
of (1 — a) that the walker restarts to its original node.
Mathematically, given a graph defined by an adjacency
matrix Apy ], Where A;; is the edge weight between gene
i and gene j (and O for unconnected genes), and a vector
fimx17> where £ is the probability that the walker is at
node i at step t, the process is defined by

ffl =aAft+ (1 —a)f°.

This process is convergent, and the stationary distribution
is given by

fe=0Q-a)I—ald)'fO.

Hence, the random walk with restarts process is a diffu-
sion process defined on the PPI graph, or through the dif-
fusion kernel (smoothing kernel)

K{=(1-a)I—aA)’

where (1 — a) is the restart probability, and A is the
(column normalized) adjacency matrix of the PPI graph.
Consequently, we define the network-smoothed expression
profile

Esm =K X E ’

where Epy,yj is the normalized count values of the M
genes in the N cells.

The clustering procedure

Clustering analysis features prominently in scRNA-seq
analyses; whether recapitulating known results or discov-
ering new cell types, clustering cells by their gene expres-
sion profiles is commonly used to identify distinct popula-
tions. While some approaches directly take into account
the zero-inflation of scRNA-seq data [[5]], other studies use
traditional methods [[18]]. There is no standard method
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Figure 6. t-SNE plots of the glioblastoma dataset A) no preprocessing, B) after application of netSmooth, C),
using MAGIC, and D) after application of scImpute.
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Figure 7. Imputation performance for the glioblastoma dataset. A) The proportion of cells which were assigned
to robust clusters. netSmooth, MAGIC, and scImpute all increased the proportion of cells that are assigned
to robust clusters, with MAGIC leading, netSmooth in second place, and scImpute in third. B) cluster purity
(proportion of dominant cell type) for the robust clusters. netSmooth produces the most pure clusters in terms
of tumor or cell line of origin. C) AMI of the clustering results obtained after application of each of the methods.
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Figure 8. Performance of netSmooth with randomized networks. A) The median cluster purity achieved with the
random networks. The real network outperforms the random ones, which result in cluster purities distributed
around the purity given without using netSmooth. B) The proportion of samples assigned to robust clusters using
the random networks as well as the real one. While all networks result in fewer samples robustly clustered (in
the hematopoiesis dataset), the real network outperforms most random networks.
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Figure 10. Cluster purities after applying netSmooth
with different input networks. Raw refers to no
smoothing, string-db is the same as the results shown
in previous sections, and HumanNet refers to a gene
network constructed from the HumanNet database.

for clustering single cell RNAseq data, as different stud-
ies produce data with different topologies, which respond
differently to the various clustering algorithms.

In order to avoid optimizing different clustering routines
for the different datasets we benchmark on, we have im-
plemented a robust clustering routine based on clusterEx-
periment [[16]], a framework for robust clustering based on
consensus clustering of clustering assignments obtained
from different clustering algorithms, different parameters
for these algorithms, and different views of the data. The
different views are different reduced dimensionality pro-
jections of the data based on different techniques. Thus,
no single clustering result will dominate the data, and
only cluster structures which are robust to different anal-
yses will prevail. The procedure we implemented using
the framework is as follows:

1. Perform different dimensionality reduction tech-
niques on the data

o PCA on the 500 most variable genes

— with 5 components
— with 15 components
— with 50 components

o Alternatively to PCA, t-SNE on the 500 most
variable genes

— with 2 dimensions
— with 3 dimensions

e Select the most variable genes

— 100 most variable genes
— 500 most variable genes
— 1000 most variable genes

2. On each reduced dimension view of the data, per-
form PAM clustering with K ranging from 5 to 10

3. Calculate the co-clustering index for each pair of
samples (the proportion of times the samples are
clustered together, in the different clustering results
based on the different reduced dimensions and clus-
tering parameters above)

4. Find a consensus clustering from the co-clustering
matrix. This is done by constructing a dendrogram
using average linkage, and traversing down the tree
until a block with a self-similarity of at least 0.6, and
a minimum size of 20 samples emerges. (instead of
using cutree).

5. Perform hierarchical clustering of the cluster
medioids, with similarities based on expression of
the 500 most variable genes

6. Perform a DE analysis between clusters that are adja-
cent in the hierarchy from (5), and merge them if the
proportion of genes that are found to be significantly
differentially expressed between them (adjP < .05)
is less than than 0.1.
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alpha values, shows that picking the alpha with the highest proportion in robust clusters also picks the alpha
with the highest cluster purity. A) hematopoietic stem/progenitor cells B) embryonic cells, C) glioblastomas.
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Using only the 500 most variable genes insures the biolog-
ical variation will dominate the technical variation, and
enhances the reproducibility of t-SNE [[24]].

Importantly, samples that at step (4) don’t have a high
enough affinity to any emerging cluster, will not be
assigned to any cluster. The clustering is performed
using the clusterExperiment::clusterSingle
and clusterExperiment::clusterMany func-
tions, the consensus -clustering is obtained using
the clusterExperiment: : combineMany func-
tion, and the cluster merging (steps 5 and 6) using
the clusterExperiment: :makeDendrogram and
clusterExperiment: :mergeClusters  functions.
For more details, see [[16]].

Choice of dimensionality reduction technique in
the clustering procedure

In step (1) above, we cluster cells in a lower dimension
embedding using either PCA [25]] or t-SNE [26], in a
dataset-dependent manner. Different single cell datasets
respond better to different dimensionality reduction tech-
niques which are better able to tease out the biological
cluster structure of the data. In order to pick the right
technique algorithmically, we compute the entropy in a
2D embedding. We obtained 2D embeddings from the
500 most variable genes using either PCA or t-SNE, binned
them in a 20x20 grid, and computed the entropy using
the discretize and entropy functions in the entropy R
package [27]]. The entropy in the 2D embedding is a mea-
sure for the information captured by it. For the clustering
procedure, we pick the embedding with the highest infor-
mation content. For the hematopoiesis and glioblastoma
datasets, this is t-SNE, while for the embryonic develop-
ment dataset it is PCA (Table[I)). This method may be used
to pick any dimensionality reduction technique other than
the ones mentioned here, which might be more suitable
for other analyses.

Table 1. Entropy in 2D lower dimension embeddings

Dataset PCA Entropy t-SNE Entropy
Hematopoiesis 4.96 5.03
Embryonic cells 4.09 3.94
Glioblastoma 4.87 5.06

Cluster purity and adjusted mutual information
The cluster purity metric displayed above refers to the
proportion of the samples in a cluster which are of the
dominant cell type in that cluster. The purity for cluster i
is given by

2

JjeC;

1, if label; = dom,
0, otherwise

Purity;, =
n;

where C; = {j|cell; € cluster;}, label; is the cell type of
cell;, n; = |C;| is the number of cells in cluster i, and

dom; = argmax Z

e 0, otherwise

{1, if label; =1

is the dominant cell type in cluster C;.

In addition to the cluster purity metric, we computed the
Adjusted Mutual Information (AMI) [28]], an information
theoretic measure of clustering accuracy which accounts
for true positives (two cells of the same type in the same
cluster) being caused by chance. The AMI between a clus-
tering C and the true labels L is given by

MI(L,C)—E[MI(L,C)]
max(H(L),H(C))—E[MI(L,C)]’

AMI(L,C) =

where MI(a, b) is the mutual information between la-
bellings a and b, H(a) is entropy of clustering a, and E[ -]
denotes the expectation.

We do not compare the clusterings using the Rand index,
as that measure penalizes for so-called false negatives (two
cells of the same cell type but in different clusters), which
is undesirable as cells from the same cell type might be
rightly split into several clusters when a novel cell type is
identified.

Construction of the smoothing kernel

The PPI graph from which the diffusion kernel was de-
rived was constructed using data from string-db [[10]]. For
each pair of proteins, string-db provides a combined in-
teraction score, which is a score indicating how confident
we can be in the interaction between the proteins, given
the different kinds of evidence string-db collates. We sub-
set the links to only those above the 90th percentile of
combined interaction scores, only keeping the 10% most
confident interactions. For mouse that is 1,020,816 inter-
actions among 17013 genes. For human, 852,722 inter-
actions among 17467 genes.

MAGIC and scilmpute parameters

For all the results presented in this paper, sciImpute was
run using the default parameters (drop_thre = 0.5).
For MAGIC, we used values for the diffusion time param-
eter (T = {1,2,4,8,16}). Unlike netSmooth, for MAGIC
the proportion of samples in robust clusters and the clus-
ter purities were anti-correlated; thus we picked the one
that gave the best cluster purities as the best MAGIC pa-
rameter. The chosen T values are given in Table

Table 2. Opitimal diffusion time values for MAGIC.

Dataset Optimal T
Hematopoiesis 1
Embryonic cells 4
Glioblastoma 2
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the netSmooth R package

The analysis for this paper was done using the companion
netSmooth R-package, which is available online: https:
//github.com/BIMSBbioinfo/netSmooth,
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Figure S1. The proportion of genes with 0 counts is a proxy for technical dropouts. A) no preprocessing, B) after
application of netSmooth, C), using scImpute, and D) after application of MAGIC.
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Figure S2. PCA plots of the HSPC dataset A) no preprocessing, B) after application of netSmooth, C), using
scImpute, and D) after application of MAGIC.
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Figure S3. t-SNE plots of the HSPC dataset A) no preprocessing, B) after application of netSmooth, C), using
scImpute, and D) after application of MAGIC.
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Figure S4. single cells from the embryonic development dataset were clustered using the robust clustering
procedure, and the 500 most differentially expressed genes (by edgeR-QLF test adjusted P value) in any of
the discovered clusters are shown in a heatmap, as well as cluster assignments and cell types. A) raw (no
imputation), B) after application of netSmooth, C) missing values imputed using scImpute D) after application
of MAGIC
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Figure S5. t-SNE plots of the embvryonic development dataset A) no preprocessing, B) after application of
netSmooth, C), using scImpute, and D) after application of MAGIC.
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Figure S6. single cells from the glioblastoma dataset were clustered using the robust clustering procedure,
and the 500 most differentially expressed genes (by edgeR-QLF test adjusted P value) in any of the discovered
clusters are shown in a heatmap, as well as cluster assignments and cell types. A) raw (no imputation), B) after
application of netSmooth, C) missing values imputed using scImpute D) after application of MAGIC
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Figure S7. PCA plots of the glioblastoma dataset A) no preprocessing, B) after application of netSmooth, C),
using scImpute, and D) after application of MAGIC.
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Figure S8. Cluter purity by smoothing parameter. A) for the hematopoiesis dataset with a directional (signed)
graph, where inhibitory interactions have a negative edge weight. B) For the hematopoiesis dataset using a gene
network with only genes that have a cell-type specific expression in any cell type. C) In the glioblastoma dataset
using a gene network from HumanNet.

Page 22 of


http://dx.doi.org/10.1101/234021
http://creativecommons.org/licenses/by-nd/4.0/

