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Abstract 

An essential step for understanding the transcriptional circuits that control development 

and physiology is the global identification and characterization of regulatory elements. 

Here we present the first map of regulatory elements across the development and 

ageing of an animal, identifying 42,245 elements accessible in at least one C. elegans 

stage. Based on nuclear transcription profiles, we define 15,714 protein-coding 

promoters and 19,231 putative enhancers, and find that both types of element can drive 

orientation-independent transcription. Additionally, hundreds of promoters produce 

transcripts antisense to protein coding genes, suggesting involvement in a widespread 

regulatory mechanism. We find that the accessibility of most elements is regulated 

during development and/or ageing and that patterns of accessibility change are linked to 

specific developmental or physiological processes. The map and characterization of 

regulatory elements across C. elegans life provides a platform for understanding how 

transcription controls development and ageing. 
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Introduction 

The genome encodes the information for organismal life. Because the deployment of 

genomic information depends in large part on regulatory elements such as promoters 

and enhancers, their identification and characterization is essential for understanding 

genome function and its regulation.  

Regulatory elements are typically depleted for nucleosomes, which facilitates 

their identification using sensitivity to digestion by nucleases such as DNase I or Tn5 

transposase, termed DNA accessibility (Sabo et al. 2006; Crawford et al. 2006; 

Buenrostro et al. 2013). In different organisms, large repertoires of regulatory elements 

have been determined by profiling DNA accessibility genome-wide in different cell types 

and developmental stages (Thomas et al. 2011; Kharchenko et al. 2011; Thurman et al. 

2012; Yue et al. 2014; Roadmap Epigenomics Consortium et al. 2015; Daugherty et al. 

2017; Ho et al. 2017). However, no study has yet investigated regulatory element usage 

across the life of an animal, from the embryo to the end of life. Such information is 

important, because different transcriptional programs operate in different periods of life 

and ageing. C. elegans is ideal for addressing this question, as it has a simple anatomy, 

well defined cell types, and short development and lifespan. A map of regulatory 

elements and their temporal dynamics would facilitate understanding of the genetic 

control of organismal life. 

Active regulatory elements have previously been shown to have different 

transcriptional outputs and chromatin modifications (Andersson 2015; Kim and 

Shiekhattar 2015). Transcription is initiated at both promoters and enhancers, with most 

elements having divergent initiation events from two independent sites (Core et al. 2008; 
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Kim et al. 2010; De Santa et al. 2010; Koch et al. 2011; Chen et al. 2013). However, 

promoters and enhancers differ in the production of stable transcripts. At protein-coding 

promoters, productive transcription elongation produces a stable transcript, whereas 

enhancers and the upstream divergent initiation from promoters generally produce short, 

aborted, unstable transcripts (Core et al. 2014; Andersson et al. 2014; Rennie et al. 

2017).  

Promoters and enhancers have also been shown to be differently enriched for 

specific patterns of histone modifications. In particular, promoters often have high levels 

of H3K4me3 and low levels of H3K4me1, whereas enhancers tend to have the opposite 

pattern of higher H3K4me1 and lower H3K4me3 (Heintzman et al. 2007, 2009). 

However, in human and Drosophila cell lines it was observed that H3K4me3 and 

H3K4me1 levels correlate with levels of transcription at regulatory elements, rather than 

whether the element acts as a promoter or an enhancer (Core et al. 2014; Henriques et 

al. 2018; Rennie et al. 2018). Further, analyses of genes that are highly regulated in 

development showed that their promoters lacked chromatin marks associated with 

activity (including H3K4me3), even when the associated genes are actively transcribed 

(Zhang et al. 2014; Pérez-Lluch et al. 2015). Therefore, stable elongating transcription, 

rather than histone modification patterns, appears to be the defining feature that 

distinguishes active promoters from active enhancers (reviewed in Andersson 2015; 

Andersson et al. 2015; Kim and Shiekhattar 2015; Henriques et al. 2018; Rennie et al. 

2018). 

Regulatory elements have not been systematically mapped and annotated in C. 

elegans. Promoter identification has been hampered because the 5’ ends of ~70% of 

protein-coding transcripts are trans-spliced to a 22nt leader sequence (Allen et al. 2011). 
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Because the region from the transcription initiation site to the trans-splice site (the 

“outron”) is removed and degraded, the 5’ end of the mature mRNA does not mark the 

transcription start site. To overcome this difficulty, previous studies identified 

transcription start sites for some genes through profiling transcription initiation and 

elongation in nuclear RNA or by inhibiting trans-splicing at a subset of stages (Gu et al. 

2012; Chen et al. 2013; Kruesi et al. 2013; Saito et al. 2013). In addition, two recent 

studies used ATAC-seq or DNAse I hypersensitivity to map regions of accessible 

chromatin in some developmental stages, and predicted element function by proximity to 

first exons or chromatin state (Daugherty et al. 2017; Ho et al. 2017).  

Towards building a comprehensive map of regulatory elements and their use 

during the life of an animal, here we used multiple assays to systematically identify and 

annotate accessible chromatin in the six C. elegans developmental stages and at five 

time points of adult ageing. Strikingly, most elements undergo a significant change in 

accessibility during development and/or ageing. Clustering the patterns of accessibility 

changes in promoters reveals groups that act in shared processes. This map makes a 

major step towards defining regulatory element use during C. elegans life. 
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Results and Discussion 

Defining and annotating regions of accessible DNA 

To define and characterize regulatory elements across C. elegans life, we collected 

biological replicate samples from a developmental time course and an ageing time 

course (Figure 1A). The developmental time course consisted of wild-type samples from 

each of the six developmental stages (embryos, four larval stages, and young adults). 

For the ageing time course, we used glp-1(e2144ts) mutants to prevent progeny 

production, as they lack germ cells at the restrictive temperature. Five adult ageing time 

points were collected, starting from the young adult stage (day 1) and ending at day 13, 

just before the major wave of death. 

Figure 1A outlines the datasets generated. For all developmental and ageing 

time points, we used ATAC-seq to identify accessible regions of DNA. We also 

sequenced strand-specific nuclear RNA (>200nt long) to determine regions of 

transcriptional elongation, because previous work demonstrated that this approach could 

capture outron signal linking promoters to annotated exons (Chen et al. 2013; Kruesi et 

al. 2013; Saito et al. 2013). For the development time course, we additionally sequenced 

short (<100nt) capped nuclear RNA to profile transcription initiation, profiled four histone 

modifications to characterize chromatin state (H3K4me3, H3K4me1, H3K36me3, and 

H3K27me3), and performed a DNase I concentration course to investigate the relative 

accessibility of elements. Micrococcal nuclease (MNase) data were also collected for the 

embryo stage. As previously noted by others, we found that the ATAC-seq accessibility 

signal is similar to that observed using a low concentration DNase I or MNase, and that 
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the ATAC-seq data has the highest signal to noise ratio (Buenrostro et al. 2013; Figure 1 

- figure supplement 1A). 

To define sites that are accessible in at least one developmental or ageing stage, 

focal peaks of significant ATAC-seq enrichment were identified across all developmental 

and ageing samples, yielding 42,245 individual elements (Figure 1B, Figure 1 - source 

data 1; see Methods for details). Of these, 72.8% overlap a transcription factor binding 

site (TFBS) mapped by the modENCODE or modERN projects (Araya et al. 2014; 

Kudron et al. 2017), supporting their potential regulatory functions (Figure 2 - figure 

supplement 1A).  

Two recent studies reported accessible regions in C. elegans identified using 

DNase I hypersensitivity or ATAC-seq (Ho et al. 2017; Daugherty et al. 2017). The 

42,245 accessible elements defined here overlap 33.7% of (Ho et al. 2017) DNase I 

hypersensitive sites and 47.9% of (Daugherty et al. 2017) ATAC-seq peaks (Figure 2 - 

figure supplement 1B,C). Examining the non-overlapping sites from pairwise 

comparisons, it appears that differences in peak calling methods account for some of the 

differences. Accessible regions determined here required a focal peak of enrichment 

whereas the other studies found both focal sites and broad regions with increased 

signal. Consistent with these differences in methods, sites reported in the two studies but 

not identified here are enriched for exonic chromatin, depleted for both TFBS and 

transcription initiation sites, and often found in broad regions of increased accessibility 

across transcriptionally active gene bodies (Figure 2 - figure supplement 1B-E). 

To functionally classify elements, we annotated each of the 42,245 elements for 

transcription initiation and transcription elongation signals on both strands (Figure 2A; 
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Figure 2 - source data 1; see Methods for details). Overall, 37.1% of elements had 

evidence of promoter activity, indicated by an increase in transcription elongation signal 

in at least one stage and one direction, and 82.3% of elements had transcription 

initiation signal. These patterns of nuclear transcription were used together with gene 

and ncRNA annotations to functionally separate the accessible elements into six 

classes: protein-coding promoter, pseudogene promoter, unknown promoter, putative 

enhancer, ncRNA (tRNA, snoRNA, rRNA, or miRNA), or other (Figure 2B). Elements 

were defined as promoters where there was a significant increase in transcription 

elongation signal originating at the element. Promoters were assigned to protein-coding 

or pseudogenes if there was continuous signal extending from the element to an 

annotated first exon (covering the outron). Promoters were annotated as “unknown” if 

transcription elongation signal was not linked to an annotated gene. Elements were 

annotated as putative enhancers where there was transcription initiation signal but no 

significant transcription elongation signal (hereafter referred to as “enhancers”). 

Elements were assigned to the ncRNA class if they overlapped an annotated tRNA, 

snoRNA, rRNA, or miRNA. Finally, elements with no transcriptional activity were 

annotated as “other”. Overall, accessible sites are enriched for being located within 

outrons or intergenic regions (Figure 2 - figure supplement 2A). 

Of the 42,245 elements, 13,596 were defined as protein-coding promoters: 

11,478 elements are unidirectional promoters and 2,118 are divergent promoters that 

drive expression of two oppositely oriented protein-coding genes (Figure 2 - source data 

1). In total, promoters were defined for 11,196 protein-coding genes, with 3,000 genes 

having >1 promoter (Figure 2C). The protein-coding promoter annotations show good 

overlap with four sets of TSSs previously defined based on mapping transcription (Chen 
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et al. 2013; Kruesi et al. 2013; Saito et al. 2013; Gu et al. 2012; 76.8%–85.1%; Figure 2 - 

figure supplement 5). A further 19,231 elements were defined as enhancers. Enhancers 

were assigned to a gene if they are located within the region from its most upstream 

promoter to its gene end, with the rest left unassigned; 6,668 genes have at least one 

associated enhancer, and 3,240 genes have >1 enhancer (Figure 2C). 

The locations of unknown promoters suggest different potential functions. A large 

fraction (34.9%) generate antisense transcripts within the body of a protein coding gene, 

suggesting a possible role in regulating expression of the associated gene (Figure 2 - 

figure supplement 4). Another large group (41.1%) produce antisense transcripts from an 

element that is a protein coding promoter in the sense direction, a pattern seen in many 

mammalian promoters (Figure 2 - figure supplement 4; Preker et al. 2008; Flynn et al. 

2011; Sigova et al. 2013). Most of the rest (19.1%) are intergenic and may define 

promoters for unannotated transcripts. 

 

Patterns of histone marks at promoters and enhancers 

Promoters and enhancers show general differences in patterns of histone modifications, 

such as higher levels of H3K4me3 at promoters or H3K4me1 at enhancers, and 

chromatin states are frequently used to define elements as promoters or enhancers 

(Heintzman et al. 2007; Ernst and Kellis 2010; Ernst et al. 2011; Kharchenko et al. 2011; 

Hoffman et al. 2013; Daugherty et al. 2017). However it has been shown that H3K4me3 

levels correlate with transcriptional activity rather than with function (Pekowska et al. 

2011; Core et al. 2014; Andersson et al. 2014; Henriques et al. 2018; Rennie et al. 
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2018), suggesting that defining regulatory elements solely based on chromatin state is 

likely to lead to incorrect annotations.  

To further investigate the relationship between chromatin marking and element 

function, we mapped four histone modifications at each developmental stage (H3K4me3, 

H3K4me1, H3K27me3, H3K36me3) and examined their patterns around coding 

promoters and enhancers. As expected, many coding promoters had high levels of 

H3K4me3 and were depleted for H3K4me1 (Figure 3A). Moreover, enhancers had 

generally low levels of H3K4me3 and higher levels of H3K4me1 than promoters (Figure 

3A). However many elements did not have these patterns. For example, about 50% of 

coding promoters have a high level of H3K4me1 and no or low H3K4me3 marking 

(Figure 3A).  

To investigate the nature of these patterns, we examined coefficients of variation 

of gene expression (CV; Gerstein et al. 2014) of the associated genes. Genes with 

broad stable expression across cell types and development, such as housekeeping 

genes, have low gene expression variation and hence a low CV value. In contrast, 

genes with regulated expression, such as those expressed only in particular stages or 

cell types have a high CV value. We found a strong inverse correlation between a gene’s 

CV value and its promoter H3K4me3 level (-0.64, Spearman's rank correlation; Figure 3; 

Figure 3 - figure supplement 1A). Furthermore, promoters with low or no H3K4me3 

marking are enriched for H3K27me3 (Figure 3; Figure 3 - figure supplement 1A), which 

is associated with regulated gene expression (Tittel-Elmer et al. 2010; Pérez-Lluch et al. 

2015; Evans et al. 2016). These results support the view that H3K4me3 marking may be 

a specific feature of promoters with broad stable activity, consistent with the finding that 

active promoters of regulated genes lack H3K4me3 (Pérez-Lluch et al. 2015). The 
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profiling here was done in whole animals, which may have precluded detecting 

modifications occurring in a small number of nuclei. Nevertheless, the results indicate 

that chromatin state alone is not a reliable metric for element annotation. Histone 

modification patterns at many promoters resemble those at enhancers, and vice versa. 

Promoters and enhancers also share sequence features. Both are enriched for 

initiator INR elements, although enhancers have a slightly lower INR frequency (Figure 

3B). Promoters and enhancers show a similar level of enrichment for CpG dinucleotides, 

with the exception of promoters with high H3K4me3 and low CV values (broadly 

expressed genes), which have higher CpG content than other elements (Figure 3B and 

Figure 3 - figure supplement 1B). As expected from other studies, promoters also differ 

from enhancers by the presence of TATA motifs, which occur predominantly in genes 

with low H3K4me3 and high CV values (i.e., with regulated expression; Figure 3B and 

Figure 3 - figure supplement 1B). 

 

Promoters and enhancers can drive gene expression in an orientation 

independent manner 

To validate the promoter annotations, we compared them with studies where small 

regions of DNA had been defined as promoters using transgenic assays. These 

comprised ten regions defined based on transcription initiation signal (Chen et al. 2014), 

nine regions defined based on proximity to a germ line gene (Merritt et al. 2008), and 

four defined by proximity to the first exon of a muscle expressed gene (Hunt-Newbury et 

al. 2007). Of these 23 regions, 21 overlap an element in our set of accessible sites, 19 of 

which are annotated as protein coding promoters (Figure 2 - Figure supplement 5A). 

One of the remaining two is annotated as an enhancer and the other overlaps an 
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accessible element for which no transcriptional signal was detected. We further directly 

tested three elements annotated as promoters (for hlh-2, ztf-11 and bed-3  genes), and 

found that all three drove robust expression of a histone-GFP reporter (Figure 2 - figure 

supplement 5A). Overall, there is good concordance between promoter annotation and 

promoter activity. 

Most of the elements annotated as protein-coding promoters are flanked by 

bidirectional transcription initiation signal (74.0%), similar to the pattern seen in 

mammals. Most (82.6%) are unidirectional promoters, producing a protein-coding 

transcript in one direction, but no stable transcript from the upstream initiation site. To 

test whether such upstream antisense initiation sites could function as promoters, we 

inverted the orientation of two of the unidirectional promoters found to be active (ztf-11 

and F58D5.5). If the lack of in vivo transcription elongation was a property of the element 

or initiation site itself, the GFP fusion should not be expressed. However, we observed 

that the two inverted unidirectional promoters both drove GFP expression. The 

expression patterns generated were similar in both orientations, although one was 

weaker when inverted (Figure 2 - figure supplements 6B,C). These results suggest that 

signals for productive elongation occur downstream of the transcription initiation site.  

Similar to the upstream antisense transcription initiation observed at promoters, 

enhancers also show transcription initiation signals but generally do not produce stable 

transcripts (Core et al. 2014; Andersson et al. 2014). Previous studies have reported that 

some enhancers can function as promoters in transgenic assays and also at 

endogenous loci (Kowalczyk et al. 2012; Leung et al. 2015; Nguyen et al. 2016; van 

Arensbergen et al. 2016; Mikhaylichenko et al. 2018). To assess the potential promoter 

activities of C. elegans enhancers, we directly fused 12 putative enhancers that had 
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transcription initiation signal in embryos to a histone-GFP reporter gene and assessed 

transgenic strains for embryo expression. Two of the tested enhancers are located in 

introns, and one of these, from the bro-1  gene, has been previously validated as an 

enhancer (Brabin et al. 2011); most of the others are associated with the hlh-2  or ztf-11 

genes. We found that 10 of 12 tested regions drove reporter expression in embryos, 

including the two intronic enhancers (Figure 2 - figure supplement 5B,C). Whereas the 

hlh-2  and ztf-11  promoters drove strong, broad expression, the associated enhancers 

were active in a smaller number of cells and expression levels were overall lower 

(Figure 2 - figure supplement 6B,C). We also tested two enhancers in inverted 

orientation and found that both showed similar activity in both orientations, as observed 

for the two tested promoters (Figure 2 - figure supplement 5B,C). The percentage of 

enhancers that functioned as active promoters is higher than that observed in a cell 

based assay (Nguyen et al. 2016), possibly because all cell types are tested in an intact 

animal. Episomal based assays have also been reported to underestimate activity (Inoue 

et al. 2016). 

 

Extensive regulation of chromatin accessibility in development 

We observed that chromatin accessibility is highly dynamic across development, with 

most elements showing a significant change within the developmental time course (71%, 

>=2-fold change, FDR<0.01; Figure 4 - source data 1; see Methods). To investigate how 

accessibility relates to gene expression, we focused on the 13,596 elements annotated 

as protein-coding promoters. Of these, 10,199 displayed significant changes in 

accessibility in development, with the remaining 3397 promoters classified as having 

stable accessibility. 
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We defined 16 clusters of promoters with shared accessibility dynamics in 

development (Figure 4A and Figure 4 - figure supplement 1; Figure 4 - source data 1; 

Methods). Within clusters, we observed that promoter accessibility and nuclear RNA 

levels are usually correlated (mean r=0.47 (sd=0.11) across all clusters), indicating that 

accessibility is a good metric of promoter activity and overall gene expression (Figure 4 - 

figure supplement 1). 

The shared patterns of developmental accessibility suggest that promoters within 

each cluster may control genes involved in common processes. To explore this 

possibility, we took advantage of recent single cell profiling data obtained from L2 larvae, 

which provides gene expression measurements for different tissues (Cao et al. 2017). 

We find that half of the developmental promoter clusters are enriched for genes with 

tissue biased expression (Figure 4A and Figure 4 - figure supplement 1). Based on these 

patterns of enrichment, we defined four gonad clusters (G1-G4), two intestine clusters 

(I1, I2), one hypodermal cluster (H) and one cluster enriched for neural and muscle 

genes (N+M) (Figure 4A and Figure 4 - figure supplement 1). Genes associated with the 

remaining eight clusters (Mix1–8) are generally expressed in multiple tissues, but 

predominantly in the soma (Figure 4A and Figure 4 - figure supplement 1). As expected, 

genes linked to the stable promoters are widely expressed (Figure 4A and Figure 4 - 

figure supplement 1). Interestingly, clusters associated with the same tissues-specific 

profiles can exhibit similar variations in accessibility but with different amplitude. For 

instance, gonad clusters G1 and G2 both show a sharp increase in accessibility at the L3 

stage, however the increase is 1.5-fold larger in G2 than in G1. The gonad clusters are 
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generally characterized by an increase of promoter accessibility starting in L3 when 

germ cell number strongly increases. 

To further investigate promoter clusters sharing accessibility dynamics, we 

performed Gene Ontology analyses on the associated genes. As expected, we found 

that clusters containing genes enriched for expression in a particular tissue are also 

associated with GO terms related to that tissue (Figure 4C and Figure 4 - figure 

supplement 1). For instance, cluster H contains genes highly expressed in hypodermis 

and GO terms linked to cuticle development.  Of note, the four accessibility clusters 

enriched for expression in germ line are associated with GO terms for different sets of 

germ line functions (Figure 4 - figure supplement 1). Similarly, the two intestinal clusters 

also identify genes with different types of intestinal function. Furthermore, accessibility 

dynamics can reflect the temporal function of the associated promoters. For instance, 

cluster Mix4 has GO terms indicative of neuronal development and highest accessibility 

in the embryo, when many neurons develop. These results suggest that promoter 

clusters contain genes acting in a shared process and having a similar mode of 

regulation.  

To identify potential transcriptional regulators, we asked whether the binding of 

particular transcription factors is enriched in any promoter clusters, using TF binding 

data from the modENCODE and modERN projects (Boyle et al. 2014; Kudron et al. 

2017). TFs with enriched binding were found for each cluster, and the expression of 

such TFs was generally enriched in the expected tissue (Figure 5A ; Methods). For 

example, ELT-2, an intestine specific GATA protein (Fukushige et al. 1998), has 

enriched binding at promoters of intestinal clusters 1 and 2. Similarly, hypodermal 
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transcription factors BLMP-1 (Horn et al. 2014), NHR-25 (Gissendanner and Sluder 

2000) and ELT-3 (Gilleard et al. 1999) are enriched in the hypodermal promoter cluster, 

and germ line XND-1 transcription factor (Wagner et al. 2010) is enriched in the germ 

line clusters of promoters. Following this approach, we identified novel tissue-specific 

associations for uncharacterized transcription factors, such as ZTF-18 and ATHP-1 with 

promoters of germ line clusters and CRH-2 with the intestinal clusters (Figure 5A). Taken 

together, the results suggest that promoters with shared accessibility patterns have 

shared cell-type specific activity, and they highlight potential regulators that are 

candidates for future studies.  

 

Analysis of Ageing clusters 

We next focused on chromatin accessibility changes during ageing. In contrast to the 

development time course, the accessibility of most promoters is stable during ageing, 

with only 13% (n=1,800) of promoters showing changes (Figure 4 - source data 1). 

Interestingly, 75% of these also had regulated accessibility in development. 

As for the development time course, we clustered accessibility changes in 

ageing. We identified eight clusters of promoters with similar accessibility changes 

across ageing and annotated them based on tissue biases in gene expression 

(Figure 4B; Figure 4 - source data 1). This defined one intestinal cluster (I), two clusters 

enriched for intestine or hypodermal biased expression (I+H) and 5 mixed clusters. 

Several mixed clusters show weak gene expression enrichments, such as intestine 

expression in Mix1-2 and neural expression in Mix3 (Figure 4B). As observed for the 
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development clusters, enriched GO terms were consistent with gene expression biases 

(Figure 4B, Figure 4 - figure supplement 2). 

We then evaluated the enrichment of transcription factors at each ageing 

promoter cluster. The binding of DAF-16/FoxO, a master regulator of ageing (Lin et al. 

2001), is associated with four ageing promoter clusters (Figure 5B). Consistent with a 

prominent role in the intestine (Figure 4B; Kaplan and Baugh 2016), promoter clusters 

enriched for DAF-16 binding are enriched for intestinal genes (Figure 4B). The binding 

enrichment patterns of five other TFs implicated in ageing (DVE-1, NHR-80, ELT-2, 

FOS-1 and PQM-1 (Uno et al. 2013; Folick et al. 2015; Goudeau et al. 2011; Mann et al. 

2016; Tian et al. 2016; Mao et al. 2016; Tepper et al. 2013) are similar to DAF-16 (Figure 

5B). These TFs and DAF-16 are also enriched in developmental intestine promoter 

clusters (Figure 5A), supporting cooperation in development and ageing. A group of 

hypodermal TFs including BLMP-1, ELT-1 and ELT-3 are found enriched at promoters in 

the two I + H ageing clusters (Figure 5B). Finally, CEPB-1 binding is enriched in clusters 

Mix3 and Mix4, which are characterized by a continuous increase of promoter 

accessibility across ageing. This suggests a potential role of CEBP-1 in activating a 

subset of genes during ageing, as it is the case for its homologue CEBP-β in mouse 

(Sandhir and Berman 2010). 

 

Conclusion 

For the first time, we systematically map regulatory elements across the lifespan of an 

animal. We identified 42,245 accessible sites in C. elegans chromatin and functionally 

annotated them based on transcription patterns at the accessible site. This avoided the 
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problems of histone-mark based approaches for defining element function (Core et al. 

2014; Henriques et al. 2018; Rennie et al. 2018). Our map identified promoters active 

across development and ageing, but we did not find promoters for every gene. Classes 

that would have been missed are those for genes expressed only in males or dauer 

larvae (which we did not profile) and genes not active under laboratory conditions. In 

addition, whole-animal profiling would miss promoters active in only a small number of 

cells. In the future, assaying accessible chromatin and nuclear transcription in specific 

cell types should identify many of these missed elements. 

We found that accessibility of most elements changes during the life of the worm, 

supporting a key role played by chromatin structure. Despite the map being based on 

bulk profiling in whole animals, we find that regulatory elements with shared accessibility 

dynamics often share patterns of tissue-specific expression, GO annotation, and TF 

binding. The promoters within clusters are therefore excellent starting points for studies 

of cell- and process-specific gene expression. In summary, our identification of 

regulatory elements across C. elegans life together with an initial characterisation of their 

properties provides a key resource that will enable future studies of transcriptional 

regulation in development and ageing.  
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Methods 

Collection of developmental time series samples 

Wild-type N2 were grown at 20°C in liquid culture to the adult stage using standard 

S-basal medium with HB101 bacteria, animals bleached to obtain embryos, and the 

embryos hatched without food in M9 buffer for 24 hrs at 20°C to obtain synchronized 

starved L1 larvae. L1 larvae were grown in a further liquid culture at 20°C to the desired 

stage, then collected, washed in M9, floated on sucrose, washed again in M9, then 

frozen into "popcorn" by dripping embryo or worm slurry into liquid nitrogen. Popcorn 

were stored at -80°C until use. Times of growth were L1 (4 hrs), L2 (20 hrs), L3 (30 hrs), 

L4 (45 hrs), young adults (60 hrs). Mixed populations of embryos were collected by 

bleaching cultures of synchronized one day old adults. 

 

Collection of ageing time series samples 

glp-1(e2144) were raised at 15°C on standard NGM plates seeded with OP50 bacteria. 

Embryos were obtained by bleaching gravid adults and then approximately 6000 placed 

at 25°C on 150mm 2% NGM plates seeded with a 30X concentrated overnight culture of 

OP50. For harvest, worms were washed 3X in M9 and then worm slurry was frozen into 

popcorn by dripping into liquid nitrogen and stored at -80°C. Harvest times after embryo 

plating were D1/YA (53 hrs), D2 (71 hrs), D6 (167 hrs), D9 (239 hrs), D13 (335 hrs). 
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Nuclear isolation and ATAC-seq 

Frozen embryos or worms (1–3 frozen popcorns) were broken by grinding in a mortar 

and pestle or smashing using a Biopulverizer, then the frozen powder was thawed in 10 

ml Egg buffer (25 mM HEPES pH 7.3, 118 mM NaCl, 48 mM KCl, 2 mM CaCl2, 2 mM 

MgCl2). Ground worms were pelleted by spinning at 1500 g for 2 minutes, then 

resuspended in 10ml working Buffer A (0.3M sucrose, 10 mM Tris pH 7.5, 10 mM 

MgCl2, 1mM DTT, 0.5 mM spermidine 0.15 mM spermine, protease inhibitors (Roche 

complete, EDTA free) containing 0.025% IGEPAL CA-630. The sample was dounced 

10X in a 14ml stainless steel tissue grinder (VWR), then the sample spun 100g for 6 min 

to pellet large fragments. The supernatant was kept and the pellet resuspended in a 

further 10 ml Buffer A, then dounced for 25 strokes. This was spun 100g for 6 min to 

pellet debris and the supernatants, which contain the nuclei, were pooled, spun again at 

100g for 6 min to pellet debris, and transferred to a new tube. Nuclei were counted using 

a hemocytometer. One million nuclei were transferred to a 1.5 ml tube and spun 2000g 

for 10min to pellet. ATAC-seq was performed essentially as in (Buenrostro et al. 2013). 

The supernatant was removed, the nuclei resuspended in 47.5 ul of tagmentation buffer, 

incubated for 30 minutes at 37°C with 2.5 ul Tn5 enzyme (Illumina Nextera kit), and then 

tagmented DNA purified using a MinElute column (Qiagen) and converted into a library 

using the Nextera kit protocol. Typically, libraries were amplified using 12–16 PCR 

cycles. ATAC-seq was performed on two biological replicates for each developmental 

stage and each ageing time point. 
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DNAse I and MNase mapping 

Replicate concentration courses of DNase I were performed for each stage as follows. 

Twenty million nuclei were digested in Roche DNAse I buffer for 10 minutes at 25C using 

2.5, 5, 10, 25, 50, 100, 200, and 800 units/ml DNase I (Roche), then EDTA was added to 

stop the reactions. Embryo micrococcal nuclease (MNase) digestion concentration 

courses for embryos were made by digesting nuclei with 0.025, 0.05, 0.1, 0.25, 0.5, 1, 4, 

8, or 16 units/ml MNase in 10mM Tris pH 7.5, 10mM MgCl2, 4mM CaCl2 for 10 minutes 

at 37C. Reactions were stopped by the additon of EDTA. Following digestions, total DNA 

was isolated from the nuclei following proteinase K and RNase A digestion, then large 

fragments removed by binding to Agencourt AMPure XP beads (0.5 volumes). Small 

double cut fragments < 300 bp were isolated either using a Pippen prep gel (protocol 1) 

or using Agencourt AMPure XP beads (protocol 2). DNA was converted into sequencing 

libraries using the Illumina Truseq kit or a homemade equivalent.  

 

Transcription initiation and nuclear RNA profiling 

Nuclei were isolated and then chromatin associated RNA (development series) or 

nuclear RNA (ageing series) was isolated. Chromatin associated RNA was isolated as in 

(Pandya-Jones and Black 2009), resuspending washed nuclei in Trizol for RNA 

extraction. To isolate nuclear RNA, nuclei were directly mixed with Trizol. Following 

purification, RNA was separated into fractions of 17–200nt and >200nt using Zymo clean 

and concentrate columns. To profile transcription elongation ("long cap RNA-seq") in the 

nucleus, stranded libraries were prepared from the >200nt RNA fraction using the NEB 

Next Ultra Directional RNA Library Prep Kit (#E7420S). Libraries were made from two 
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biological replicates for each developmental stage and each ageing time point. To profile 

transcription initiation ("short cap RNA-seq"), stranded libraries were prepared from the 

17–200nt RNA fraction. Non-capped RNA was degraded by first converting uncapped 

RNAs into 5’-monophosphorylated RNAs using RNA polyphosphatase (Epibio), then 

treating with 5' Terminator nuclease (Epibio). The RNA was treated with calf intestinal 

phosphatase to remove 5’ phosphates from undegraded RNA, and decapped using 

Tobacco Acid Pyrophosphatase (Epicentre), Cap-Clip Acid Pyrophosphatase (CellScript, 

for one L2 and one L3 replicate) or Decapping Pyrophosphohydrolase, (Dpph tebu-bio, 

for one L3 replicate) and then converted into sequencing libraries using the Illumina 

TruSeq Small RNA Preparation Kit kit. Libraries were size selected to be 145–225 bp 

long on a 6% acrylamide gel, giving inserts of 20–100 bp long. Libraries were made from 

two biological replicates for each developmental stage. During the course of this work, 

the TAP enzyme stopped being available; the Cap-Clip and Dpph enzymes perform less 

well than TAP. One L3 and one YA replicate was made using a slightly different protocol. 

Embryo short cap RNA-seq data from (Chen et al. 2013) was also included in the 

analyses (GSE42819). 

 

ChIP-seq 

Balls of frozen embryos or worms were ground to a powder using a mortar and pestle or 

a Retch Mixer Mill to break animals into pieces. Frozen powder was thawed into 1% 

formaldehyde in PBS, incubated 10 minutes, then quenched with 0.125M glycine. Fixed 

tissue was washed 2X with PBS plus protease inhibitors, once in FA buffer, then 

resuspended in 1ml FA buffer per 1 mL of ground worm powder and the extract 
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sonicated to an average size of 200 base pairs with a Diagenode Bioruptor or Bioruptor 

Pico for 25 pulses of 30 seconds followed by 30 seconds pause. For ChIP, 500ug 

protein extract was incubated 2ug antibody in FA buffer with protease inhibitors 

overnight at 4°C, then incubated with magnetic beads conjugated to secondary 

antibodies for 2hrs at 4°C. Magnetic beads bound to immunoprecipitate were washed at 

room temperature twice in FA+protease inhibitors (50mM Hepes pH7.5, 1mM EDTA, 1% 

TritonX-100, 0.1% sodium deoxycholate, and 150mM NaCl), then once each in FA with 

0.5M NaCl, FA with 1M NaCl, 0.25M LiCl (containing 1% NP-40, 1% sodium 

deoxycholate, 1mM EDTA, 10mM Tris pH8) and finally twice with TE pH8. 

Immunoprecipitated DNA was then eluted at twice with 1%SDS, 250mM NaCl, 10mM 

Tris pH8, 1mM EDTA at 65°C. Eluted DNA was treated with RNase for 30min at 37C 

and crosslinks reversed by overnight incubation at 65°C with 200ug/ml proteinaseK, and 

the DNA purified using a Qiagen column. Following ChIP and DNA purification, libraries 

were prepared using the Illumina TruSeq kit. Fragments in the 250–350 base pair range 

were selected using Agencourt AMPure XP beads. Two biological replicate ChIPs were 

conducted for each histone modification at each developmental time point (Embryo, L1, 

L2, L3, L4, YA). Antibodies used were: anti-H3K4me3 (Abcam ab8580, GR273043-4), 

anti-H3K4me1 (Abcam ab8895, GR149140-2), anti-H3K36me3 (Abcam ab9050, lot 

GR288636-2), and anti-H327me3 (Wako 309-95259). 

 

Data processing 

The WBcel215/ce10 (WS220) version of the C. elegans genome was used throughout 

the study. Reads were aligned using bwa-backtrack (H. Li and Durbin 2009) in 
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single-end (ATAC-seq, short cap RNA-seq, ChIP-seq) or paired-end mode (ATAC-seq - 

developmental only, DNase-seq, MNase-seq, long cap RNA-seq). Low-quality (q < 10), 

mitochondrial and modENCODE-blacklisted (Boyle et al., 2014) reads were discarded at 

this point. 

For ATAC-seq, normalised genome-wide accessibility profiles from single-end 

reads were then calculated with MACS2 (Zhang et al. 2008) using the parameters 

--format BAM --bdg --SPMR --gsize ce --nolambda --nomodel --extsize 150 --shift -75 

--keep-dup all. Developmental ATAC-seq was also processed in paired-end mode 

(ATAC-seq libraries of ageing samples were single-end). We did not observe major 

differences between accessible sites identified from paired-end, and single-end profiles, 

and therefore use single-end profiles throughout the study for consistency. 

Short cap and long cap data was processed essentially as in (Chen et al. 2013). 

Following alignment, and filtering, transcription initiation was represented using 

strand-specific coverage of 5’ ends of short cap reads. Transcription elongation was 

represented as strand-specific coverage of long cap reads, with regions between read 

pairs filled in. For browsing, transcription elongation signal was normalised between 

samples by sizeFactors calculated from gene-level read counts using DESeq2 (Love, 

Huber, and Anders 2014). Normalised (linear) coverage signal was then further 

log-transformed with .og (normalised_coverage )l 2 + 1  

ChIP-seq data was processed as in (Chen et al. 2014). After alignment and 

filtering, the BEADS algorithm was used to generate normalised ChIP-seq coverage 

tracks (Cheung et al. 2011). 
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For downstream analyses - aggregate plots, heatmaps, screen shots - 

stage-specific tracks were obtained by averaging normalised signal across two biological 

replicates. Manipulations of genome-wide signal were performed using bedtools 

(Quinlan and Hall 2010), UCSC utilities (Kent et al. 2010), and wiggleTools (Zerbino et 

al. 2014). Computationally intensive steps were managed and parallelised using 

snakemake (Köster and Rahmann 2012). Genome-wide data was visualised using the 

Integrative Genomics Viewer (Robinson et al., 2011; Thorvaldsdóttir et al., 2013). 

 

Identification of accessible sites 

Accessible sites were identified as follows. We first identified concave regions (regions 

with negative smoothed second derivative) from ATAC-seq coverage averaged across 

all stages and replicates. This approach is extremely sensitive, identifying a large 

number (>200,000) of peak-like regions. We then scored all peaks in each sample using 

the magnitude of the sample-specific smoothed second derivative. We used IDR(Q. Li et 

al. 2011) on the scores to assess stage-specific signal levels and biological 

reproducibility, setting a conservative cutoff at 0.001. Final peaks boundaries were set to 

peak accessibility extended by 75bp on both sides. We found that calling peaks using 

paired end or single end data were highly similar, but some regions were captured better 

by one or the other. Developmental ATAC-seq datasets were sequenced paired-end and 

ageing datasets single-end. Peaks were therefore called separately using developmental 

paired-end data, developmental single-end data extended to 150bp and shifted 75bp 

upstream, and ageing (single-end only) data, and then merged. This was achieved by 

successively including peaks from the three sets if they did not overlap a peak already 
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identified in an earlier set. Figure 1 - source data 1 gives peak calls and ATAC peak 

heights at each stage. 

 

Annotation of regulatory elements 

Patterns of nuclear transcription were used to annotate elements. At each stage, 

separately on both strands, we assessed 1) initiating and elongating transcription at the 

site, 2) continuity of transcription from the site to the closest downstream gene, and 3) 

positioning of nearby exons (on the matching strand). WormBase WS260 genome 

annotations - with coordinates backlifted to WBcel215/ce10 (WS220) - were used 

throughout this study. 

To assess for transcription elongation at an accessible site, we counted 5' ends 

of long cap reads upstream (-250:-75), and downstream (+75:+250) of peak 

accessibility. We then used two approaches to identify sites with a local increase in 

transcription elongation. First, we used DESeq2 to test for an increase in downstream vs 

upstream counts ("jump" method). Statistical significance was called at log2FoldChange 

> 1.5, and adjusted p-value < 0.1 (one-sided test). To capture additional regions with 

weak signal ("incr" method), we accepted sites with 0 reads upstream, at least one read 

in both biological replicates downstream, and 3 reads total when summed across both 

biological replicates. 

To assess transcription initiation, we pooled short cap across all six wild-type 

stages, and included two additional embryo replicates from (Chen et al. 2013). The 

pooled signal was filtered for reproducibility by only keeping signal at base pairs with 
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non-zero transcription initiation in at least two replicates. We then required the presence 

of at least one base pair with reproducible signal within 125bp of peak accessibility to 

designate an accessible site as having transcription initiation. For every site, we also 

defined a representative transcription initiation mode as the position with maximum short 

cap signal within 125bp of peak accessibility. For sites without reproducible short cap 

signal, we used an extrapolated, "best-guess" position at 60bp downstream of peak 

accessibility. 

We annotated accessible sites as coding_promoter or pseudogene_promoter if 

they fulfilled the following four criteria. 1) The accessible site had transcription initiation, 

and passed at least one of the elongation tests (jump or incr), or passed both elongation 

tests (jump and incr). 2) Transcription initiation mode at the accessible site was either 

upstream of the closest first exon, or, in the presence of a UTR, up to 250bp 

downstream within the UTR. (The closest first exon was chosen based on the distance 

between the 5' end of the first exon and peak accessibility at the accessible site, allowing 

the 5' end of the exon to be up to 250bp upstream or anywhere downstream of peak 

accessibility). 3) The region from peak accessibility to the closest first exon did not 

contain the 5' end of a non-first exon. 4) Distal sites (peak accessibility >250bp from the 

closest first exon) were additionally required to (a) have continuous long cap coverage 

from 250bp downstream of peak accessibility to the closest first exon, and (b) be further 

than 250bp away from any non-first exon. 

We then further attempted to assign a single, lower-confidence promoter to 

genes that were not assigned a promoter so far. For every gene without promoter 

assignments, we re-examined sites that fulfilled criteria (2-4), and were either intergenic, 
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or within 250bp of the closest first exon. We then annotated the site with the largest jump 

test log2FoldChange as the promoter, if it was also larger than 1. 

Next, sites within 250bp of the 5' end of an annotated tRNA, snoRNA, miRNA, 

snRNA or rRNA were annotated as non-coding_RNA. Intergenic sites more than 250bp 

away from annotated exons that had initiating transcription, and passed the jump test 

were annotated as unknown_promoter. All remaining sites were annotated as 

transcription_initiation or no_transcription based on whether they had transcription 

initiation. 

Elements were then annotated on each strand based on aggregating 

transcription patterns across stages by determining the "highest" annotation using the 

ranking of: coding_promoter, pseudogene_promoter, non-coding_RNA, 

unknown_promoter, transcription_initiation, no_transcription. Element type was then 

defined using the following ranking: coding_promoter on either strand => 

coding_promoter; pseudogene_promoter on either strand => pseudogene_promoter; 

non-coding_RNA on either strand => non-coding_RNA; unknown_promoter on either 

strand => unknown_promoter; transcription_initiation on either strand => 

putative_enhancer; all remaining sites => other_element. Figure 2 - source data 1 gives 

annotation information. 

 

Motif analyses 

Inr and TATA consensus sequences were obtained from (Sloutskin et al. 2015), and 

mapped with zero mismatches using homer (Heinz et al. 2010). 
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Clustering of promoter accessibility 

Regulatory elements with regulated accessibility were determined as follows. All 

elements (n=42,245) were tested for a difference in ATAC-seq coverage between any 

developmental time point or between any ageing time point using DESeq2 (Love, Huber, 

and Anders 2014). Sites with >= 2 absolute fold change and adjusted p-value < 0.01 

were defined as "regulated" (n=30,032 in development and 6,590 in ageing), and 

regulated promoters (n=10,199 in development and 1,800 in ageing) were used in 

clustering analyses. 

For clustering analyses, depth-normalised ATAC-seq coverage of each promoter 

was calculated at each time point in development or ageing. The relative accessibility of 

a regulated promoter was calculated at each time point in development or ageing by 

applying the following formula: 

   .og  og  l 2  ATACseq coverage  1(  time point  i +  ) − l 2 (mean ATACseq coverage across time points  1) +   

For each promoter, its mean ATAC-seq coverage across time points was calculated 

separately for developmental or ageing time course. Clustering was performed using 

k-medoids, as implemented in the pam() method of the cluster R package (Maechler et 

al. 2017). Different numbers of clusters were tested for clustering of regulatory elements 

in developmental and ageing datasets and the ones with the best homogeneity of 

normalized changes in ATAC-seq signals within each cluster was chosen. We manually 

merged two ageing clusters showing comparable accessibility and tissue-specific genes 

enrichment (resulting in the cluster I+H [2]). Clusters labels were determined based on 
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which tissues showed a strong enrichment for tissue-enriched genes within each cluster 

(> 3.5-fold increase in the proportion of tissue-enriched genes between each tissue).  

To compare accessibility and gene expression, FPM-normalised gene-level read 

counts were calculated using DESeq2, and then averaged across biological replicates. 

For visualisation, relative expression levels were calculated using the approach 

described above for relative promoter accessibility (see formula above), with FPM values 

instead of ATAC-seq coverage values. 

Tissue-specific enrichment analyses used single-cell RNA-seq data from (Cao et 

al. 2017). Genes were considered enriched in a given tissue if they had a fold-change >= 

3 between the first and the second tissues with the highest expression and an adjusted 

p-value < 0.01. GO enrichments were evaluated using the R package gProfileR 

(Reimand et al. 2016). Significant enrichment was set at an adjusted p-value of 0.05, 

and hierarchically redundant terms were automatically removed by gProfileR. 

 

Cluster-specific transcription factors binding enrichment 

Optimal IDR-thresholded transcription factors ChIP-seq peaks datasets were 

downloaded from ENCODE portal. When multiple datasets were available for a given 

transcription factor, peaks from all of the datasets were combined and merged. ChIP-seq 

profiles were manually inspected and datasets showing poor-quality tracks were 

discarded, resulting in a set of 152 transcription factors. 
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To define TFBS clusters (Figure 1 - figure supplement 1C, Figure 2 - figure 

supplement 1), we extended the TF peak calls to 200bp on either side of the summit, 

and clustered overlapping peak calls using a single-linkage approach. 

Prior to analysis of TF peak enrichment at annotated promoters (Figure 5), any 

promoter overlapping with more than 10 transcription factors peaks was considered as 

“hot” and removed from the initial set of 13,596 annotated promoters, resulting in 8,351 

to be assessed by enrichment analysis. Only transcription factors with more than 200 

peaks overlapping “non-hot” promoters were kept, to remove potentially weak TF peaks 

datasets constituted only of residual “hot” peaks. Following this stringent filtering, 62 

transcription factors could be assayed for binding enrichment. A transcription factor peak 

was assigned to a promoter if any portion of the 400bp region centered at the peak 

summit intersected the promoter. Transcription factor binding enrichment in each cluster 

was estimated using the odds ratio and enrichments with an associated p-value < 0.01 

(Fisher’s exact test) were kept. Transcription factors which did not show enrichment 

higher than 2 in any cluster were discarded. Figure 5 summarizes the transcription factor 

binding enrichment in each cluster during development or ageing. Relative tissue 

expression profiles of each transcription factor at the L2 stage (data from Cao et al. 

2017) was calculated in each tissue by taking the log2 of its expression (TPM) in the 

tissue divided by its mean expression across all tissues. A pseudo-value of 0.1 was first 

added to all the TPM values before calculation of the relative levels of expression.  
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Construction of transgenic lines 

Transgene constructs were made using three-site Gateway cloning (Invitrogen) as in 

(Chen et al. 2014). Site 1 has the regulatory element sequence to be tested, site 2 has a 

synthetic outron (OU141; Conrad et al. 1995) fused to his-58  (plasmid pJA357), and site 

3 has gfp-tbb-2 3’UTR (pJA256; Zeiser et al. 2011) in the MosSCI compatible vector 

pCFJ150, which targets Mos site Mos1(ttTi5605); MosSCI lines were generated as 

described (Frøkjaer-Jensen et al. 2008). 

 

Data access 

ATAC-seq, ChIP-seq, DNase/MNase-seq, long/short cap RNA-seq data from this study 

have been deposited in the NCBI Gene Expression Omnibus (GEO) 

(http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE114494. 
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Figure legends 

Figure 1. Overview of the project. 

(A) Overview of genome-wide assays and time points of developmental and ageing 

samples. For development samples, chromatin accessibility, transcription initiation, 

productive elongation, and chromatin state were profiled in six stages of wild-type 

animals (embryos, four larval stages, young adults). For ageing samples, chromatin 

accessibility and productive transcription elongation were profiled in five time points of 

sterile adult glp-1  mutants (Day 1, Day 2, Day 6, Day 9, Day 13). (B) Representative 

screen shot of normalised genome-wide accessibility profiles in the eleven samples. 

 

Figure 2. Annotation of accessible elements. 

(A) Top, strand specific nuclear RNA in each developmental stage monitors transcription 

elongation; plus strand, blue; minus strand, red. Below is transcription initiation signal, 

element annotation coloured as in (B) right, and gene model. (B) Accessible elements by 

annotation class. (C) Left, distribution of the number of promoters and enhancers per 

gene; right, boxplot shows that genes with more promoters also have more enhancers.  

 

Figure 3. Heatmaps of HMs/factors and properties of enhancers and promoters. 

(A) Heatmaps of indicated histone modifications and CV values at coding promoters 

(top), and enhancers (bottom). Elements are ranked by mean H3K4me3 levels. CV 

values are correlated with H3K4me3 levels. (B) Distribution of initiator Inr motif, TATA 
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motif, and CpG content at coding promoters and enhancers, separated by H3K4me3 

level (top, middle, and bottom thirds). 

 

Figure 4. Shared dynamics of promoter accessibility in development and ageing. 

(A,B) Clusters of promoters showing shared relative accessibility patterns across (A) 

development or (B) ageing. Relative accessibility at each time point was defined by the 

log2 of the depth-normalized ATAC-seq coverage at each time divided by the mean 

ATAC-seq coverage across the time series (see Methods). For each cluster, the 

percentage of associated genes with tissue-enriched expression determined from 

single-cell L2 larval RNA-seq data (Cao et al. 2017) for each tissue is also shown. (C,D) 

Examples of GO terms enriched in (C) developmental or (D) ageing clusters. 

 

Figure 5. Transcription factor binding enrichment in developmental and ageing 

promoter clusters. 

Transcription factor (TF) binding enrichments in developmental (A) or ageing (B) 

promoter clusters from Figure 4. TF binding data are from modENCODE/modERN 

(Araya et al. 2014; Kudron et al. 2017); peaks in HOT regions were excluded (see 

Methods). Only TFs enriched more than 2-fold in at least one cluster are shown, and 

only enrichments with a p < 0.01 (Fisher’s exact test) are shown. Plots show TF binding 

enrichment odds ratio, relative tissue expression (log2(tissue TPM/mean TPM across all 

tissues)), and tissue expression level TPM. Expression data are from (Cao et al. 2017). 
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Legends for Figure Supplements 

Figure 1 - figure supplement 1. Comparison of ATAC-seq to concentration courses 

of DNase I-seq and MNase-seq. 

(A) Genomic DNA digested using different concentrations of DNase I (top) or MNase 

(bottom). Red rectangles highlight approximate size ranges subjected to paired-end 

Illumina sequencing. (B) SPMR-normalised coverage of a DNase I concentration series 

(blue tracks), MNase concentration series (green tracks), and ATAC-seq (red track) at 

the lin-23  locus. The modENCODE/modERN ChIP-seq peak call pileup (grey track) 

shows a TF binding region upstream of the gene. Different concentrations of nuclease 

show different types of signal. Low concentrations of DNase I and MNase produce a 

peak in the middle of the TF binding region, at the expected NDR (middle vertical bar). 

At higher concentrations, both enzymes show a peak at the -1 and +1 nucleosomes (left 

and right vertical bars). ATAC-seq has a single large peak centered in the middle of the 

TF binding region. (C) Mean normalised coverage at transcription factor binding sites 

defined by clustering modENCODE/modERN peak calls (n=36,389; Methods) in 

ATAC-seq, DNase-seq, and MNase-seq (the latter two are shown at concentrations with 

the highest accessibility enrichment). ATAC-seq shows higher signal than DNase-seq or 

MNase-seq. (D) Normalised read coverage of ATAC-seq prepared from nuclei harvested 

from live (red), or frozen (blue) embryos. 

Figure 2 - figure supplement 1. Comparisons to existing accessibility maps. 

(A) Venn diagrams showing the overlap of transcription factor binding sites defined by 

clustering modENCODE/modERN peak calls (n=36,389; Methods) to accessible sites 

from this study and two previous studies ((Daugherty et al. 2017) and (Ho et al. 2017)). 

43 

.CC-BY 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/279158doi: bioRxiv preprint first posted online Mar. 10, 2018; 

https://paperpile.com/c/B40Els/72i4
https://paperpile.com/c/B40Els/njivq
http://dx.doi.org/10.1101/279158
http://creativecommons.org/licenses/by/4.0/


 

(B) Comparison of accessible sites defined in this study to accessible sites defined in 

(Daugherty et al. 2017). (C) Comparison of accessible sites defined in this study to 

accessible sites defined in (Ho et al. 2017). (B,C) Leftmost plot shows overlaps between 

accessible sites; remaining plots compare regions found in only one study or both 

studies. Plots show mean profile of modENCODE/modERN peak call pileup, fraction of 

sites with transcription initiation signal (negative values are reverse strand signals), and 

fraction overlapping an exon. (D,E) IGV screenshots of stage-specific accessibility 

profiles and peak calls from (Daugherty et al. 2017) (top, red), (Ho et al. 2017) (middle, 

green), and this study (bottom, blue). 

Figure 2 - figure supplement 2. Genomic locations of accessible sites. 

(A) Left: distribution of bases in the C. elegans genome, partitioned into outronic, exonic, 

intronic, intergenic or mixed, based on the regulatory annotation. Right: distribution of 

genomic region type at accessible sites. (B) Distribution of genomic region at specific 

types of accessible sites. 

Figure 2 - figure supplement 3. Comparison to published TSS maps. 

(A-D) Left: overlap between accessible sites and TSS annotations from (A) (Chen et al. 

2013); (B) (Kruesi et al. 2013); (C) (Saito et al. 2013); (D) (Gu et al. 2012). Right: 

accessible site annotations of elements that overlap a TSS in the indicated study. TSSs 

were considered to overlap an accessible site if they were located within 150bp of peak 

accessibility. For (Gu et al., 2012), TSSs were clustered using a single-linkage approach 

using a distance threshold of 50bp, and the overlaps are based on those clusters. 

Figure 2 - figure supplement 4. Types of unknown promoters. 
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(A) Position and orientation of sites annotated as unknown_promoter on the forward or 

reverse strands relative to gene annotations (n=3,026). (B–D) Examples of transcription 

patterns at unknown promoters (B) coding_promoter_antisense, (C) 

genic_region_antisense, (D) intergenic.  

Figure 2 - figure supplement 5. Tests of promoter activity of annotated promoters 

and enhancers 

(A) Comparison of annotations to 23 elements previously shown to function as 

promoters in transgenic assays (Merritt et al. 2008; Hunt-Newbury et al. 2007; Chen et 

al. 2014).  (B) Indicated elements were fused to his-58-gfp (see Methods) and the 

resulting transgenic strains tested for GFP expression in embryos. Elements were 

cloned in the endogenous orientation relative to their associated gene or in inverted 

orientation, as indicated. In expression strength column, “strong” and “medium” indicate 

high and low level of GFP visible in live embryos; “weak” indicates expression only 

visible by immunofluorescence. (C) Examples of transgene expression. Shown is 

expression driven by the ztf-11  promoter and the bro-1  enhancer in both orientations; 

DIC image on left, HIS-58-GFP on right. 

Figure 3 - figure supplement 1. Histone marks and motif enrichments sorted by CV 

value. 

(A) As Figure 3A, except that accessible sites were ranked based on CV values, and the 

heatmap additionally includes H3K36me3, aligned at the start of the associated gene 

annotation. (B) As Figure 3B, except that the three groups of promoters and enhancers 
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were defined based on CV values. Bottom CV represents stable expression and top CV 

regulated expression. 

Figure 4 - figure supplement 1. Characteristics of developmental clusters. 

Clusters of promoters showing shared accessibility patterns across development. The 

first column of plots shows promoter relative ATAC coverage across the time series as 

described in Methods. The second column shows the same information displayed as a 

heatmap, each row representing a promoter. Values are contained within a color scale 

from -2 (dark blue) to 0 (white) to +2 (dark red). The third column shows relative gene 

expression across the same time series as described in Methods, each row representing 

a gene. The same color scale is used here. The boxplots column represents expression 

(in TPM) of clustered genes in individual tissues (data from Cao et al 2017). The barplots 

column represents the percentage of genes within the cluster enriched in each tissue as 

described in Methods. Finally, the horizontal bar plots column shows the top 5 enriched 

GO terms obtained for each cluster from the corresponding list of genes using gProfiler 

as described in Methods. MF=Molecular Function, CC=Cellular Component, 

BP=Biological Process. 

Figure 4 - figure supplement 2. Characteristics of ageing clusters. 

Similar to Figure 4  - figure supplement 1 for ageing clusters.  
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Source data 

Figure 1 - source data 1. Accessible sites identified using ATAC-seq 

● chrom, start, end location of the accessible site in bed-style coordinates (ce10) 

● atac_%stage_height maximum SPMR-normalised ATAC-seq signal at the peak 

in %stage (one of wt_emb , wt_l1 , wt_l2 , wt_l3 , wt_l4 , wt_ya , glp1_d1 , glp1_d2 , 

glp1_d6 , glp1_d9 , glp1_d13 ) 

● atac_source  source of the ATAC-seq peak call (see Methods) 

○ atac_wt_pe  wt (developmental) ATAC-seq treated as paired-end 

○ atac_wt_se  wt (developmental) ATAC-seq treated as single-end 

○ atac_glp1_se  glp-1 (aging) ATAC-seq, single-end only 

Figure 2 - source data 1. Regulatory annotation of accessible sites 

● chrom, start, end location of the accessible site in bed-style coordinates (ce10) 

● annot final regulatory element type, obtained by combining strand-specific 

transcription patterns (see Methods) 

● annot_%strand annotation of the strand-specific transcription patterns at the site 

(%strand is either fwd  or rev) 

● promoter_gene_id_%strand, promoter_locus_id_%strand, 

promoter_gene_biotype_%strand WormBase gene id, locus id, biotype for 

sites annotated as coding_promoter, pseudogene_promoter or non-coding_RNA 

on %strand 

● associated_gene_id, associated_locus_id WormBase gene id, locus id of 

genes whose gene body or outron region overlaps the site. These are defined for 
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for sites annotated as unknown_promoter, putative_enhancer or other_element. 

If a site overlaps multiple genes, all overlaps are reported, separated by commas. 

● tss_%strand representative transcription initiation mode on %strand (Methods) 

● scap_%strand_passed True or False based on whether the site has 

reproducible transcription initiation (Methods) 

● lcap_%stage_%strand_passed_jump True or False based on whether the site 

passed the jump test for elongating transcription (Methods, %stage is one of 

wt_emb , wt_l1 , wt_l2 , wt_l3 , wt_l4 , wt_ya , glp1_d1 , glp1_d2 , glp1_d6 , glp1_d9 , 

glp1_d13 ) 

● lcap_%stage_%strand_passed_incr  True or False based on whether the site 

passed the incr test for elongating transcription (Methods) 

Figure 4 - source data 1. Promoter accessibility clusters in development and 

ageing 

● chrom, start, end location of the accessible site in bed-style coordinates (ce10) 

● devel_is_dynamic  True or False based on whether the site shows differential 

accessibility between any two developmental stages 

● ageing_is_dynamic True or False based on whether the site shows differential 

accessibility between any two ageing time points 

● devel_prom_cluster_label assigned developmental accessibility promoter 

cluster 

● ageing_prom_cluster_label assigned ageing accessibility promoter cluster 
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Figure 1—figure supplement 1
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Figure 2—figure supplement 1, continued
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Expression
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Embryo	expression Reference Strain	
Name

Genotype

otub-2 I 397755 398120 + prom endogenous Yes strong broad Chen	et	al,	2014 	JA1613 weSi68	II;	unc-119(ed3)	III
hlh-2 I 7194716 7195216 - prom endogenous Yes strong broad,	but	not	in	intestine this	paper JA1652 weSi89	II;	unc-119(ed3)	III
ztf-11 I 9910350 9910850 - prom endogenous Yes strong broad,	but	not	in	intestine this	paper JA1733 weSi142	II;	unc-119(ed3)	III

ztf-11 I 9910350 9910850 - prom inverted Yes medium
broad,	but	not	in	intestine	
(weaker	than	endogenous	
direction)

this	paper JA1727 weSi136	II;	unc-119(ed3)	III

F58D5.5 I 12039662 12040186 + prom endogenous Yes strong broad Chen	et	al,	2014 JA1608 weSi63	II;	unc-119(ed3)	III
F58D5.5 I 12039662 12040186 + prom inverted Yes strong broad this	paper JA1765 weSi145	II;	unc-119(ed3)	III
daf-5 II 14040184 14040697 - prom	+	enh endogenous Yes strong broad Chen	et	al,	2014 JA1620 weSi72	II;	unc-119(ed3)	III	
eif-3b II 14794905 14795250 + prom endogenous Yes strong broad Chen	et	al,	2014 JA1601 	weSi61	II;	unc-119(ed3)	III
T19C3.4 III 623811 624139 - prom endogenous Yes strong broad Chen	et	al,	2014 JA1612 weSi67	II;	unc-119(ed3)	III	

Y71H2AM.20 III 2785938 2786194 - prom endogenous Yes strong broad Chen	et	al,	2014 JA1600 weSi60	II;unc-119(ed3)	III
mtm-3 III 3801252 3801770 - prom endogenous Yes strong broad Chen	et	al,	2014 JA1610 weSi65	II;	unc-119(ed3)	III
hlh-11 III 9619057 9619496 + prom endogenous Yes strong broad Chen	et	al,	2014 JA1609 weSi64	II;	unc-119(ed3)	III
bed-3 IV 9915158 9915437 + prom endogenous Yes 	weak ~20	hypodermal	cellls this	paper JA1712 weSi128	II;	unc-119(ed3)	III

rho-1 IV 16492191 16492669 - unknown	
promoter

endogenous Yes strong broad Chen	et	al,	2014 JA1611 weSi66	II;	unc-119(ed3)	III

egrh-1 X 14840974 14841376 + prom endogenous Yes strong broad Chen	et	al,	2014 JA1614 weSi69	II;	unc-119(ed3)	III

bro-1 I 5187416 5187609 + enh-intronic endogenous Yes medium seam	cells this	paper JA1708 	weSi130	II	;	unc-119(ed3)	III
bro-1 I 5187416 5187609 + enh-intronic inverted Yes weak seam	cells this	paper JA1737 weSi146	II;	unc-119(ed3)	III
hlh-2 I 7195757 7196257 - enh endogenous Yes medium few	anterior	cells this	paper JA1674 weSi108	II;	unc-119(ed3)	III
hlh-2 I 7196571 7197071 - enh endogenous Yes weak 10-20	anterior	cells this	paper JA1663 weSi97	II;	unc-119(ed3)	III
hlh-2 I 7197592 7198092 - enh endogenous Yes medium few	hypodermal	cells this	paper JA1669 weSi103	II;	unc-119(ed3)	III

hlh-2 I 7197592 7198092 - enh inverted Yes medium few	hypodermal	cells	(weaker	
than	endogenous	orientation)

this	paper JA1701 weSi123	II;	unc-119(+)]III

hlh-2 I 7198146 7198646 - enh endogenous Yes medium few	pharyngeal	cells this	paper JA1671 weSi105	II;	unc-119(ed3)	III
hlh-2 I 7198751 7199251 - enh endogenous Yes medium few	pharyngeal	cells this	paper JA1673 weSi107	II;	unc-119(ed3)	III
ztf-11 I 9911508 9912008 - enh endogenous yes weak broad,	most	cells this	paper JA1667 weSi101	II;	unc-119(ed3)	III
bed-3 IV 9910252 9910601 + enh endogenous Yes medium few	anterior	cells this	paper JA1703 weSi125	II;	unc-119(ed3)	III
bed-3 IV 9911938 9912226 + enh endogenous Yes weak ~15	nuclei,	head	and	tail this	paper JA1711 weSi133II;	unc-119(ed3)	III
bed-3 IV 9913192 9913425 + enh endogenous no no	expression this	paper JA1704 weSi126	II:	unc-119(ed3)	III
bed-3 IV 9914205 9914396 + enh endogenous no no	expression this	paper JA1705 weSi127	II;	unc-119(ed3)	III
bed-3 IV 9918007 9918207 + enh-intronic endogenous Yes weak few	hypodermal	cells this	paper JA1707 weSi129	II;	unc-119(ed3)	III

gene chr tested	region	
start

tested	region	
end

length Annotation Reference

daz-1 II 5455759 5456289 552 prom Merritt	et	al,	2008
gld-1 I 7695164 7695660 527 txn	initiation Merritt	et	al,	2008
him-3 IV 6977138 6977484 372 prom Merritt	et	al,	2008
mex-5 IV 13353211 13353674 486 prom Merritt	et	al,	2008
msp-56 IV 9841000 9841495 513 prom Merritt	et	al,	2008
pgl-3 V 4755287 4755970 709 prom Merritt	et	al,	2008
spe-11 I 5332434 5332187 272 no	txn Merritt	et	al,	2008
spn-4 V 6784847 6785394 544 prom Merritt	et	al,	2008
fbf-1 II 6080676 6081758 1114 prom Merritt	et	al,	2008

tag-243 III 4687158 4687357 199 prom Hunt-Newbury	et	al,	2007
atp-2 III 5228403 5228199 204 no	element Hunt-Newbury	et	al,	2007
him-4 X 9717247 9717573 326 no	element Hunt-Newbury	et	al,	2007
lgc-34 II 526514 526671 157 prom Hunt-Newbury	et	al,	2007
daf-5 II 14040184 14040697 514 prom	+	enh Chen	et	al	2014
egrh-1 X 14840974 14841376 403 prom Chen	et	al	2014
eif-3b II 14794905 14795250 346 prom Chen	et	al	2014
F58D5.5 I 12039662 12040186 525 prom Chen	et	al	2014
hlh-11 III 9619057 9619496 440 prom Chen	et	al	2014
mtm-3 III 3801252 3801770 519 prom Chen	et	al	2014
rho-1 IV 16492191 16492669 479 unknown	promoter Chen	et	al	2014
T19C3.4 III 623811 624139 329 prom Chen	et	al	2014
otub-2 I 397755 398120 366 prom Chen	et	al	2014

Y71H2AM.20 III 2785938 2786194 257 prom Chen	et	al	2014
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Figure 4—figure supplement 1
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Figure 4—figure supplement 1, continued
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Figure 4—figure supplement 2
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