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First-passage times in random walks have a vast number of diverse applications in physics,

chemistry, biology, and finance. In general, environmental conditions for a stochastic process are

not constant on the time scale of the average first-passage time or control might be applied to reduce

noise. We investigate moments of the first-passage time distribution under an exponential transient

describing relaxation of environmental conditions. We solve the Laplace-transformed (generalized)

master equation analytically using a novel method that is applicable to general state schemes. The

first-passage time from one end to the other of a linear chain of states is our application for the solu-

tions. The dependence of its average on the relaxation rate obeys a power law for slow transients.

The exponent � depends on the chain length N like � ¼ �N=ðN þ 1Þ to leading order. Slow transi-

ents substantially reduce the noise of first-passage times expressed as the coefficient of variation

(CV), even if the average first-passage time is much longer than the transient. The CV has a pro-

nounced minimum for some lengths, which we call resonant lengths. These results also suggest a

simple and efficient noise control strategy and are closely related to the timing of repetitive excita-

tions, coherence resonance, and information transmission by noisy excitable systems. A resonant

number of steps from the inhibited state to the excitation threshold and slow recovery from negative

feedback provide optimal timing noise reduction and information transmission. VC 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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Given the randomness of a process, many applications

ask for the time when a state is passed first. First-passage

times of random walks comprising several steps exhibit

typically a standard deviation larger than 80% of the

average. Are there simple means to render these pro-

cesses more precise? We show that these relative fluctua-

tions can be reduced by one order of magnitude by

applying a relaxational transient and are minimal at opti-

mal lengths, which we call resonant lengths. This is sim-

ple and efficient noise control applicable to random walks

in all disciplines. It works reliably for Markovian and

non-Markovian systems. This new phenomenon of a

robust resonance between a relaxation rate and a random

walk length is closely related to coherence resonance in

excitable systems.

I. INTRODUCTION

Continuous-time random walks are a unifying concept

across physics,1–14 chemistry,15–17 biology,18–21 and

finance.22,23 The drunkard’s straying on his way home from

the pub is the graphic example frequently used to illustrate

the randomness of step timing and direction. In particular,

the time of first passage of a specific state given the stochas-

tic nature of the process is of interest in many applications. It

describes the time the drunkard arrives home, the time

necessary for a chemical reaction or gene expression to reach

a certain number of product molecules,15,21 or a quantity in

one of the many other applications.2,3,12,17,24–37

While noise happens on the small length scales and short

time scales of a system, it may trigger events on a global

scale. One of the most important functions of noise for mac-

roscopic dynamics arises from its combination with thresh-

olds.38–40 These are defined by the observation that the

dynamics of a system remains close to a stable state as long

as it does not cross the threshold value, and an actively

amplified deviation from this state happens when it is

crossed. Noise drives the system across the threshold in a

random manner. First passage is a natural concept to

describe the timing of threshold crossings. Ignition processes

are an illustrative example. Although a small random spark

might not be capable of igniting an inflammable material, a

few of them might cause an explosion or forest fire. If the

system again attains its stable state upon recovery from a

deviation, such behavior is called excitable and the large

deviation is an excitation. The excitation is terminated by

negative feedback. A forest is excitable, because it regrows

after a fire. Consumption of inflammable trees acts as the

negative feedback. Excitability describes not only forest fires

but also the dynamics of heterogeneous catalysis,41 the firing

of neurons,42 the properties of heart muscle tissue,42 and

many other systems in physics, chemistry, and biology.43–47

Random walks are frequently defined on a set of discrete

states. The rates fi;j or waiting-time distributions Wi;j for tran-

sitions from state i to j set the state dwell times. The first-
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passage time between two widely separated states is much

longer than the individual dwell times, and the conditions

setting the rates and parameters of the Wi;j are likely to

change or external control acts on the system between start

and first passage. The conditions for igniting a forest fire

change with the seasons or because the forest recovers from

a previous fire. The occurrence of subcritical sparks during

recovery has essentially no effect on the process of regrowth.

More generally, noise does not affect the recovery on large

length and long time scales, and the random process experi-

ences recovery as a slow deterministic change of environ-

mental conditions. Since recovery is typically a slow

relaxation process,45–47 it dominates event timing. Hence,

first passage in an exponential transient is a natural concept

through which one can understand the timing of sequences

of excitations. We will investigate it in this study.

We will take Markovian processes as one of the asymp-

totic cases of transient relaxation. Non-Markovian waiting-

time distributions are also used in many applications. They

arise naturally in diffusion and transport theory.1,3,5–8,30,48–51

Frequently, in biological applications, we face lumped states

consisting of many “microscopic” states.52–54 Transitions

between lumped states are non-Markovian owing to the

internal dynamics. We may also use waiting-time distribu-

tions if we lack information on all the individual steps of a

process, but we do know the inter-event interval distribu-

tions. This is usually the case with the stimulation of a cell

and the appearance of a response,55 or differentiation

sequences of stem cells.37 The state probabilities of non-

Markovian processes obey generalized master equations,

which we will use here.10,16,56–59

In Sec. II, we present a formulation of the general prob-

lem in terms of the normal and generalized master equations

and give analytic solutions for both of these. These solutions

apply to general state schemes. We continue with investigat-

ing first passage on linear chains of states in Sec. III. We pre-

sent results on scaling of the average first-passage time with

the relaxation rate of the transient c and the chain length N in

Sec. IV, and results on the phenomenon of resonant lengths

in Sec. V.

II. BASIC EQUATIONS

A. The asymptotically Markovian master equation

In this section, we consider transition rates relaxing with

rate c to an asymptotic value ki;j like

fi;jðtÞ ¼ ki;j 1þ Bi;je
�ct

� �
; ki;j � 0; Bi;j � �1: (1)

They reach a Markov process asymptotically. The dynamics

of the probability Pi;jðtÞ to be in state j for a process that

started in i at t¼ 0 obey the master equation

dPi;j

dt
¼
XN

k¼0

kk;jPi;k � kj;kPi;j þ e�ct kk;jBk;jPi;k � kj;kBj;kPi;j

� �
:

(2)

In matrix notation with the vector of probabilities Pi, we have

dPi

dt
¼ EPi þ e�ctDPi; (3)

with the matrices E and D defined by Eq. (2). The initial con-

dition defines the vector ri ¼ fdijg; j ¼ 0;…;N. The Laplace

transform of the master equation allows for a comfortable

calculation of moments of the first-passage times, which we

will carry out in Sec. III. The Laplace transform of Eq. (3) is

the system of linear difference equations

s ~PiðsÞ � ri ¼ E ~PiðsÞ þ D ~Piðsþ cÞ: (4)

B. The generalized master equation

1. The waiting-time distributions

Waiting-time distributions Wj;k in a constant environ-

ment depend on the time t� t0 elapsed since the process

entered state j at time t0. The change in conditions causes an

additional dependence on t: Wj;kðt; t� t0Þ. The lumping of

states, which we introduced as a major cause of dwell-time-

dependent transition probabilities, often entails

Wj;kðt; 0Þ ¼ Wj;kðt;1Þ ¼ 0, with a maximum of Wj;kðt; t� t0Þ
at intermediate values of t� t0.60 Waiting-time distributions

used in transport theory exhibit similar properties.30,49,50,61

We use a simple realization of this type of distributions by a

biexponential function in t� t0

Wj;k t; t� t0ð Þ ¼ Aj;kðe�aj;kðt�t0Þ � e�bj;kðt�t0ÞÞ
� 1þMj;ke�ct
� �

(5)

¼ gj;kðt� t0Þ þ hj;kðt� t0Þe�ct: (6)

The transient parts hj;kðt� t0Þe�ct of Wj;kðt; t� t0Þ collect all

factors of e�ct in Eq. (5). The functions gj;kðt� t0Þ describe

the asymptotic part of the waiting-time distributions remain-

ing after the transient. The Wj;kðt; t� t0Þ are normalized to

the splitting probabilities Cj;k ¼
Ð1

t0 dt Wj;kðt; t� t0Þ (the total

probability for a transition from j to k given the system

entered j at t0). They satisfy

XN

k¼0

Cj;kðt0Þ ¼ 1: (7)

2. The generalized master equation and its Laplace
transform

In the non-Markovian case, the dynamics of the proba-

bilities Pi;jðtÞ obey a generalized master equation62–66

dPi;jðtÞ
dt

¼
XN

l¼0

Il;jðtÞ �
XN

l¼0

Ij;lðtÞ; (8)

where Il;jðtÞ is the probability flux due to transitions from

state l to j given that the process started at state i at t¼ 0.

The fluxes are the solutions of the integral equation

Il;jðtÞ ¼
ðt

0

dt0Wl;jðt; t� t0Þ
XN

k¼0

Ik;lðt0Þ þ ql;jðtÞ: (9)

The second factor in the convolution is the probability of

arriving in state l at time t0, and the first factor is the
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probability of leaving toward j at time t given arrival at t0.
The ql;j are the initial fluxes, with ql;jðtÞ � 0 for i 6¼ l.

The Laplace transform of the probability dynamics

equation (8) is

s ~Pi;jðsÞ � dij ¼
XN

l¼0

~I l;jðsÞ �
XN

l¼0

~I j;lðsÞ; (10)

which contains the Laplace-transformed probability fluxes
~I l;j. The Kronecker delta dij captures the initial condition.

Laplace-transforming Eq. (9) is straightforward for

terms containing the asymptotic part gl;jðt� t0Þ of the

Wl;jðt; t� t0Þ [see Eq. (6)], since they depend on t� t0 only

and the convolution theorem applies directly. The terms con-

taining the transient part hl;jðt� t0Þe�ct depend on both t� t0

and t and require a little more attentionð1
0

dt e�st

ðt

0

dt0 hl;jðt� t0Þe�ct
XN

k¼0

Ik;lðt0Þ

¼
ð1

0

dt e�ðsþcÞt
ðt

0

dt0 hl;jðt� t0Þ
XN

k¼0

Ik;lðt0Þ

¼ ~hl;jðsþ cÞ
XN

k¼1

~Ik;lðsþ cÞ: (11)

This leads to the Laplace transform of Eq. (9)

~I l;jðsÞ ¼ ~ql;jðsÞ þ ~gl;jðsÞ
XN

k¼0

~Ik;lðsÞ

þ~hl;jðsþ cÞ
XN

k¼0

~Ik;lðsþ cÞ: (12)

We write the ~I l;jðsÞ and ~ql;jðsÞ as vectors. In the most general

case allowing transitions between all states, the vector ~IðsÞ is

~IðsÞ ¼ ~I0;1;…; ~I0;N; ~I1;0;…; ~I1;N;…; ~IN;0;…; ~IN;N�1

� �
(13)

and ~qðsÞ accordingly. We obtain

~IðsÞ ¼ ~GðsÞ~IðsÞ þ ~Hðsþ cÞ~Iðsþ cÞ þ ~qðsÞ: (14)

Solving for ~IðsÞ results in

~IðsÞ ¼ 1� ~GðsÞ
� ��1 ~Hðsþ cÞ~Iðsþ cÞ þ ~qðsÞ

� �
: (15)

This is again a system of linear difference equations. The

entries in the matrices ~GðsÞ and ~HðsÞ are the functions ~gl;jðsÞ
and ~hl;jðsÞ, which are the Laplace transforms of gl;jðt� t0Þ
and hl;jðt� t0Þ [Eq. (6)].

3. Solving the Laplace-transformed generalized and
asymptotically Markovian master equations

All elements of ~HðsÞ [Eq. (15)] vanish for s!1. We

also expect ~IðsÞ to be bounded for s!1. Hence, the solu-

tion for c ¼ 1 is

~I1ðsÞ ¼ 1� ~GðsÞ
� ��1

~qðsÞ: (16)

Consequently, if we obtain large Laplace arguments because

of kc� 1 instead of c ¼ 1,

~Iðsþ kcÞ � 1� ~Gðsþ kcÞ
� ��1

~qðsþ kcÞ

holds for the solution ~IðsÞ for all values of c > 0 and for k a

natural number. Once we know ~Iðsþ kcÞ, we can use Eq.

(15) to find ~Iðsþ ðk � 1ÞcÞ

~Iðsþ ðk � 1ÞcÞ � 1� ~Gðsþ ðk � 1ÞcÞ
� ��1

� f ~Hðsþ kcÞ 1� ~Gðsþ kcÞ
� ��1

~qðsþ kcÞ
þ~qðsþ ðk � 1ÞcÞg; k� c�1: (17)

In this way, we can consecutively use Eqs. (15) and (17) to

express ~Iðsþ ðk � jÞcÞ; j ¼ 0;…; k, by known functions.

The solution becomes exact with k!1. With the definition
~AðsÞ ¼ ½1� ~GðsÞ��1 ~Hðsþ cÞ, we obtain

~IðsÞ ¼ 1� ~GðsÞ
� ��1

~qðsÞ

þ
X1
k¼1

Yk�1

j¼0

~Aðsþ jcÞ 1� ~Gðsþ kcÞ
� ��1

~qðsþ kcÞ (18)

as the solution of Eq. (15). Equation (18) is confirmed by

verifying that it provides the correct solution in the limiting

cases c¼ 0 and c ¼ 1. In the latter, all entries of the matrix
~HðsÞ vanish, and we obtain directly the result without tran-

sient, Eq. (16). For c¼ 0, we notice that

X1
k¼1

Yk�1

j¼0

~AðsÞ ¼ f1� 1� ~GðsÞ
� ��1 ~HðsÞg�1 � 1

holds, which leads to the correct solution of Eq. (15)

~IðsÞ ¼ 1� ~GðsÞ � ~HðsÞ
� ��1

~qðsÞ: (19)

Formally, Eq. (18) is a solution of Eq. (15) for general ~H .

Requiring convergence of the solution entails conditions on

the matrices. The sum in Eq. (18) converges if c is larger

than 0, and there is a value s1, such that the modulus of all

eigenvalues of ~AðsÞ is smaller than 1 for s > s1. This holds,

since the entries of ~G and ~H are Laplace transforms (see also

Appendix B).

We now turn to the asymptotically Markovian master

equation (2) and write its Laplace transform (4) as

~PiðsÞ ¼ 1s� Eð Þ�1
D ~Piðsþ cÞ þ ri

� �
: (20)

This equation has the same structure as Eq. (15), and since

the matrix ð1s� EÞ�1
also vanishes for s!1, we can cal-

culate the Laplace transform of the Pi;j completely analo-

gously to the non-Markovian case. We define ~BðsÞ ¼ ð1s
�EÞ�1D and obtain

~PiðsÞ ¼ 1s� Eð Þ�1
ri

þ
X1
k¼1

Yk�1

j¼0

~Bðsþ jcÞ 1ðsþ kcÞ � E½ ��1ri (21)

as the solution of Eq. (20).

These solutions for the Laplace transforms of the gener-

alized and asymptotically Markovian master equations with
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a transient, Eqs. (15) and (21), are not restricted to state-

independent waiting-time distributions or rates. They also

apply to random walks with space- or state-dependent wait-

ing-time distributions and to arbitrary state networks.

III. THE PROBABILITY DENSITY OF THE FIRST-
PASSAGE TIME FOR A LINEAR CHAIN OF STATES

A large class of stochastic processes, including all the

examples mentioned in the introduction, are represented by

linear state schemes like

0
W1;0

 ��!W0;1

1
W2;1

 ��!W1;2

2 … N � 1
WN;N�1

 ������!WN�1;N

N; (22)

which we consider from now on. The first-passage-time

probability density F0;NðtÞ provides the probability of

arrival for the first time in state N in ðt; tþ dtÞ when the

process started in state 0 at t¼ 0. It can be determined by

solving the master equations setting state 0 as the initial

condition and considering the state N as absorbing, i.e.,

WN;N�1 ðt; t� t0Þ � 0

0
Wi;i�1

 ����!W0;1

1
Wi;i�1

 ����!Wi;iþ1

2 … N � 1 !
Wi;iþ1

N: (23)

With this, F0;NðtÞ is given by the probability flux out of the

state range from 0 to N – 1

F0;NðtÞ ¼ �
d

dt

XN�1

k¼0

P0;kðtÞ: (24)

We denote its Laplace transform by ~F0;NðsÞ. The moments

of the first-passage-time distribution are given by15

htni ¼ ð�1Þn @
n

@sn
~F0;NðsÞ

				
s¼0

: (25)

F0;NðtÞ captures not only the first-passage time 0! N but

also, to a good approximation, transitions starting at states

with indices larger than 0 (and <N), since, owing to the

initial bias, the process quickly moves into state 0 first and

then slowly starts from there.

A. Specification of the first passage problem for the
generalized master equation

We specify the input for the generalized master equation

of the non-Markovian system as

Wi;iþ1 ¼
ðe�aðt�t0Þ � e�bðt�t0ÞÞ 1� e�ctð Þ
b� a
ab
þ ðb� aÞð�þ cÞðdþ cÞ

�dðaþ cÞðbþ cÞ

; (26)

Wi;i�1 ¼
ðe�dðt�t0Þ � e��ðt�t0ÞÞ 1þ e�ctð Þ
ð�� dÞðaþ cÞðbþ cÞ

abð�þ cÞðdþ cÞ þ �� d
�d

: (27)

The denominators in Eqs. (26) and (27) arise from the nor-

malization to Ci;iþ1ðt0Þ þ Ci;i�1ðt0Þ¼1 [Eq. (7)]. We use iden-

tical waiting-time distributions for all transitions i! iþ 1

(i> 0) and all transitions i! i� 1. The process defined by

Eqs. (26) and (27) has a strong bias toward 0 in the begin-

ning and relaxes with rate c to an approximately symmetric

random walk. Figure 1 shows Wi;i61 and their development

with increasing t0. The limit of c	 a; b; �; d illustrates the

consequences of the transient. The Ci;iþ1, i> 0 relax from 0

to an asymptotic value with rate c, but the dwell times of

individual states (i 6¼ 0) are essentially constant (Fig. 1).

There is only one transition away from 0. That changes

the normalization to C0;1ðt0Þ ¼ 1 and we cannot use the form

of Eqs. (26) and (27) for W0;1. We use instead

W0;1 ¼
a0b0

b0 � a0Z0

ðe�a0ðt�t0Þ � Z0e�b0ðt�t0ÞÞ



�e�ct ð1� Z0Þð�0 þ cÞ
d0 � �0

d0 þ c
�0 þ c

e�d0ðt�t0Þ � e��0ðt�t0Þ
� �

:

(28)

FIG. 1. Waiting-time distributions. (a)

W0;1, the dwell time in state 0

decreases owing to the slow transient,

but is always in the range of seconds.

(b) Wi;iþ1 and (c) Wi;i�1. Upon entering

state i, the dependences of Wi;iþ1 and

Wi;i�1 on t� t0 with the large values of

a and b used here entail transitions

either to iþ 1 very early or to i – 1

later [see the abscissa range in (b) and

(c)]. (d) Simulation results for the aver-

age state index hi(ct)i. Since Ci;i�1 is

initially close to 1, the process lingers

around state 0 until t � c�1. When

Ci;i�1 approaches 1
2

at t > c�1, states

further away from 0 with larger index i
are also reached. Parameter values: (a)

and (d) a0¼ 0.6 s�1, b0¼ 1.07 s�1,

d0¼ 0.25 s�1, �0¼ 0.225 s�1, and

Z0¼ 0.25; (b), (c), and (d) a¼ 160 s�1,

b ¼ 211 s�1, d ¼ 4.5 s�1, and � ¼ 5.0

s�1; (a)–(c) c ¼ 0.01 s�1. The parame-

ter values of (a)–(c) are the standard

parameter set, which is used if not

mentioned otherwise.
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The transient here causes a decrease in the dwell time in

state 0 (see Fig. 1).

With the definition in Eq. (6), the matrices ~GðsÞ and
~HðsÞ and the vector ~qðsÞ [see Eq. (14)] specific to this prob-

lem are

~GðsÞ1;2 ¼ ~g0;1ðsÞ;
~GðsÞ2i;2i�1 ¼ ~GðsÞ2i;2iþ2

¼ ~gi;i�1ðsÞ; i ¼ 1;…;N � 2;

~GðsÞ2iþ1;2i�1 ¼ ~GðsÞ2iþ1;2iþ2

¼ ~gi;iþ1ðsÞ; i ¼ 1;…;N � 2;

~GðsÞ2N�2;2N�3 ¼ ~gN�1;N�2ðsÞ;
~GðsÞ2N�1;2N�3 ¼ ~gN�1;NðsÞ;

~HðsÞ1;2 ¼ ~h0;1ðsÞ;
~HðsÞ2i;2i�1 ¼ ~HðsÞ2i;2iþ2

¼ ~hi;i�1ðsÞ; i ¼ 1;…;N � 2;

~HðsÞ2iþ1;2i�1 ¼ ~HðsÞ2iþ1;2iþ2

¼ ~hi;iþ1ðsÞ; i ¼ 1;…;N � 2;

~HðsÞ2N�2;2N�3 ¼ ~hN�1;N�2ðsÞ;
~HðsÞ2N�1;2N�3 ¼ ~hN�1;NðsÞ;

~q1ðsÞ ¼ ~W0;1ðsÞ: (29)

All other entries are equal to 0. Differences between the indi-

ces on the rhs and lhs arise from the definition of the vector
~IðsÞ in Eq. (13), in which we deleted all fluxes identical to 0.

The Laplace transform of the first-passage-time distribu-

tion is [see Eq. (8)]

~F0;NðsÞ ¼ ~IN�1;NðsÞ: (30)

B. Specification of the first passage problem for the
asymptotically Markovian master equation

We use the asymptotically Markovian rates

fi;iþ1ðtÞ ¼ k 1� e�ctð Þ; fi;i�1ðtÞ ¼ k; (31)

corresponding to ki;j ¼ k; Bi;iþ1 ¼ �1, and Bi;i�1 ¼ 0 in Eq.

(1). The process has also a strong initial bias for motion

toward 0, Ci;i�1ðt0 ¼ 0Þ > Ci;iþ1ðt0 ¼ 0Þ. It relaxes with rate

c to a symmetric random walk with Ci;i�1ðt0 ¼ 1Þ
¼ Ci;iþ1ðt0 ¼ 1Þ ¼ 1

2
.

Specifically, for the first-passage problem, the matrices

D and E [see Eq. (4)] are

E1;1 ¼ �E1;2 ¼ �Ei;i61 ¼ �k; Ei;i ¼ �2k;

D1;1 ¼ Di;i ¼ �Di;i�1 ¼ k; i ¼ 2;…;N � 1;

with all other entries being 0. The vector ~r is equal to

d1i; i ¼ 1;…;N � 1. The Laplace transform of the first-pas-

sage-time distribution is

~F0;NðsÞ ¼ k ~P0;N�1ðsÞ � ~P0;N�1ðsþ cÞ
� �

; (32)

which is the transform of the probability flux fN�1;NðtÞ
P0;N�1ðtÞ.

Figures 2(a) and 2(b) compare analytical results for the

average first-passage time T with the results of simulations.

The agreement is very good, thus confirming the solutions

given by Eqs. (18) and (21). This confirmation by simula-

tions is important, since there is no method of solving differ-

ence equations that guarantees a complete solution.

IV. SCALING OF THE AVERAGE FIRST-PASSAGE TIME
WITH THE RELAXATION RATE

Figure 2 shows results for the average first-passage time

T across four orders of magnitude of the relaxation rate c.

FIG. 2. The average first-passage time

T has a power-law dependence on the

relaxation rate c of the initial transient

of the form / c�� for c! 0. (a) and

(c) Results from solution of the gener-

alized master equation (18) and Eqs.

(26)–(28). (b) and (d) Results from

solution of the asymptotically

Markovian master equation (21) and

Eq. (31) with k ¼ 0:4 s�1. N� is the

number of edges with identical

waiting-time distributions. N� is equal

to N – 1 in (c) and to N in (d). The vari-

able u in (c) and (d) is defined as

u ¼ N�=ðN� þ 1Þ. In (a) and (b), simu-

lations (lines) are compared with ana-

lytical results (
). The relative

deviations between analytical calcula-

tions and simulations are below 1%,

i.e., within the precision which can be

achieved with the number of

20 000–40 000 trajectories per data

point used to calculate the average in

simulations.
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The results strongly suggest that T grows according to a

power law c�� with decreasing c, if c is sufficiently small.

The exponent exhibits a simple dependence on the number

N� of edges with identical waiting-time distributions. That

number is equal to N for processes according to Eq. (31) and

to N – 1 for processes obeying Eqs. (26)–(28), since the 0!
1 transition is different there. The exponent � depends to

leading order on N� like N�=ðN� þ 1Þ. This applies to both

the asymptotically Markovian and non-Markovian waiting-

time distributions and to both parameter sets of waiting-time

distributions simulated in the non-Markovian case.

The exponent � is equal to 1
2

for N� ¼ 1, as has previ-

ously been shown analytically for fi;i61 according to Eq. (31)

(see Ref. 67, Chap. 5). The process is very unlikely to reach

large N with a bias toward 0, even if this is only small.

Hence, the random walk “waits” until the transient is over

and symmetry of the transition rates has been reached [see

Fig. 1(d)] and then goes to N. This waiting contributes a time

/ c�1 to T, and � approaches 1 for large N� . However, even

with the largest N and smallest values of c (� 10�6) in Fig.

2, � reaches only about 0.975 and not 1. Hence, we could not

finally establish, whether or how �¼ 1 is exactly reached for

N !1.

The average first-passage time for a symmetric random

walk increases with N like NðN � 1Þ,68 i.e., it is very long

for large N. We see a contribution of the transient to T only

if relaxation is slow enough for c�1 to be comparable to this

long time. Consequently, T is essentially independent of c
for large c and large N [see N¼ 200 in Figs. 2(a) and 2(b)].

V. RESONANT LENGTH

The coefficient of variation CV [¼standard deviation

(SD)/average T] of the first-passage time reflects the relative

fluctuations. Its dependence on the chain length N is illus-

trated in Fig. 3. CV increases monotonically with increasing

c. Its dependence on N is not monotonic. We find a pro-

nounced minimum of CV(N) for small values of c, where the

minimal value is up to one order of magnitude smaller than

CVs with N¼ 1 and with large N. This applies to the non-

Markovian [Figs. 3(a), 3(c), and 3(d)] and asymptotically

Markovian [Figs. 3(b) and 3(e)] cases, and both simulations

[Figs. 3(c)–3(e)] and analytical results [Figs. 3(a) and 3(b)]

show this behavior.

How can we get a heuristic understanding of the

decrease in CV with decreasing c and initially with increas-

ing N? The lingering close to state 0 shown in Fig. 1(d)

means that states with index i larger than 1 are not reached

before a time t � c�1 with almost certainty. This initial part

of the process contributes to T but little to SD. Hence, its

FIG. 3. The coefficient of variation CV

shows a pronounced minimum in its

dependence on the chain length N. (a)

Analytical results using the solution of

the generalized master equation (18) and

Eqs. (26)–(28). (b) Analytical results

using the solution of the asymptotically

Markovian master equation (21) and Eq.

(31). (c) and (d) Simulations using Eqs.

(26)–(28). (e) Simulations using Eq.

(31). (f) Properties of the minima of the

CV as a function of the relaxation rate c.

The splitting probability Ci;i�1ðt0 ¼ TÞ
at the minimum changes only slightly

over four orders of magnitude of c
[between 0.515 and 0.565 in (c), 0.531

and 0.564 in (d), and 0.516 and 0.555 in

(e)]. The dependence of the minimal CV

on c shown in (f) is well fitted by c0:181

in the asymptotically Markovian case

(e) and by c0:186 for c < 2� 10�3 s�1

for the parameter values in (d), but devi-

ates from a power law for the values in

(c). Parameter values: (a) a ¼ 0:4 s�1

and b ¼ 0:5275 s�1; (b) k ¼ 0:4 s�1;

(c) from top to bottom: c¼ 1, 1:156

�10�1; 1:156�10�2; 1:015�10�3;
1:156�10�4, and 10�5 s�1 and

Ci;i�1ðt0 ¼1Þ� 1
2
; (d) a¼0:4 s�1, b

¼0:5275 s�1, and from top to bottom:

c¼0:1; 1:156�10�2; 1:015�10�3;
1:156�10�4, and 10�5 s�1 and Ci;i�1

ðt0 ¼1Þ�1
2
; (e) k¼0:4 s�1, Ci;i�1ðt0

¼1Þ¼ 1
2
, c¼1, 10�3;10�4;10�5, and

10�5:5 s�1.
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growth with decreasing c and (initially) increasing N
decreases CV. Additionally, the standard deviation is deter-

mined by the rates and splitting probabilities at the end of

the transient, which are more favorable for reaching N than

the splitting probabilities at the beginning. It is therefore less

affected than the average by the c values. This also causes a

decrease in CV with decreasing c.

To gain more insight into the N dependence of CV, we

look at processes with constant transition rates and a sym-

metric process with transient rates but constant splitting

probabilities Ci;i�1 ¼ Ci;iþ1 ¼ 1
2

[see Eq. (A1)]. The perma-

nently symmetric process exhibits only a very shallow mini-

mum, and the minimal value of CV appears to be

independent of c [Fig. 4(a): discrete case]. Processes with

constant transition rates exhibit decreasing CV with decreas-

ing Ci;i�1
68 [Fig. 4(b)]. However, this decrease is minor and

does not explain the data in Fig. 3 in the range Ci;i�1 � 1
2

covered by the transient.

The comparison shows that the dynamics of the splitting

probabilities provide the major part of the reduction in CV

with increasing N in Fig. 3. The splitting probability Ci;i�1

relaxes from 1 to its asymptotic value set by the parameters

of the process. The larger the value of N, the later is the

absorbing state reached and the smaller is the value of Ci;i�1

when it is reached. As long as Ci;i�1ðt0 ¼ TÞ decreases suffi-

ciently rapidly with increasing N, so does CV. At values of N
such that cT � 2, the decrease in Ci;i�1ðt0 ¼ TÞ is negligible,

and CV starts to rise again with increasing N toward its

large-N value.

These considerations suggest that the N with minimal

CV could be fixed by a specific value of the splitting proba-

bility. This value of Ci;i�1 cannot be smaller than 1
2
, since we

would expect a monotonically decreasing CV in that regime

[the N�
1
2 regime in Fig. 3(d)]. Since this should hold also for

minima with N � 1, this value of Ci;i�1 also cannot be much

larger than 1
2
, since T would then diverge. This is confirmed

by the results shown in Fig. 3(f). The splitting probability

Ci;i�1ðt0 ¼ TÞ at the minimum changes by less than 8% over

four orders of magnitude of c and is slightly larger than 1
2
.

Hence, CV starts to rise again when the length N is so large

that the average first-passage time is long enough for

Ci;i�1ðt0 ¼ TÞ to approach the symmetric limit.69

The value of CV(N ¼ 1) depends on c in the case with

non-Markovian waiting-time distributions. It is 1 for large c
values, since the asymptotic splitting probability Ci;i�1ðt0
¼ 1Þ is larger than 1

2
[Fig. 3(c); see also Fig. 4(b)]. A refer-

ence value is the CV of a symmetric random walk with con-

stant transition rates and large N, which is equal to
ffiffiffiffiffiffiffiffi
2=3

p
.68

CV(N ¼ 1) is approximately equal to
ffiffiffiffiffiffiffiffi
2=3

p
for small val-

ues of c, since Ci;i�1ðt0 ¼ 1Þ � 1
2

applies in that case [Fig.

3(c)]. CV(N ¼ 1) is exactly
ffiffiffiffiffiffiffiffi
2=3

p
with asymptotically

Markovian waiting-time distributions [Fig. 3(e)].

The parameter values in Fig. 3(d) entail

Ci;i�1ðt0 ¼ 1Þ� 1
2
. The process has a bias toward N and we

see the well-known behavior CV(N) / N�
1
2 for large N. The

onset of the N�
1
2 behavior moves to smaller N with increasing

values of c until finally the minimum of the CV is lost. We

found minima if c�1 � (four times the average state dwell

time), but we have not determined a precise critical value.

The transition from the CV of W0;1 to CV(N ¼ 1) for

large values of c is monotonic in Fig. 3(c) for the asymptoti-

cally non-Markovian case. The asymptotically Markovian

system exhibits a minimum even for large c values [c � k:

Fig. 3(e)]. However, it is comparably shallow and is in line

with the results of Jouini and Dallery for systems without

transient68 [Fig. 4(b)].

VI. DISCUSSION AND CONCLUSION

A. (Generalized) master equation with exponential
time dependence of rates and waiting-time
distributions

In general, stochastic processes occur in changing envi-

ronments or may be subjected to control. The corresponding

mathematical description is provided by (generalized) master

equations with time-dependent coefficients. The analytical

solution of these equations is complicated even in the sim-

plest case [see Eq. (A8)].70 The Laplace-transform approach

is not applicable in general, but the exponential time depend-

ences of Eqs. (2), (8), and (9) do allow the transform to be

FIG. 4. (a) The coefficient of variation CV shows a shallow minimum in its

dependence on the chain length N with processes that are discrete and

always symmetric (symbols), but not for the continuous symmetric case

(lines), which is the solution of the Fokker–Planck equation (A2). The sym-

bolsþ and 
 show results from simulations using Eq. (A1). The calculations

used k ¼ 0:4 s�1 (all), and c ¼ 10�4 s�1 (
, full line) and c ¼ 3:6� 10�6

s�1 (þ, dashed line). The value of the CV at the minimum is essentially

unaffected by the change in the value of c. The � marks the analytical result

with N¼ 1 for both discrete cases, which are indistinguishable at the resolu-

tion of the plot and are in agreement with the simulations. The continuous

large-L and discrete large-N results agree very well. (b) CV with constant

transition rates calculated using the equations of Jouini and Dallery.68

CV �
ffiffiffiffiffiffiffiffi
2=3

p
holds for Ci;i�1 � 1

2
.

053117-7 M. Falcke and V. N. Friedhoff Chaos 28, 053117 (2018)



performed on them, leading to difference equations in

Laplace space. The solutions of these equations are given by

Eqs. (18) and (21), respectively. To the best of our knowl-

edge, this is a novel (and efficient) method of solving the

generalized master equation with this type of time depen-

dence in the kernel or the master equation with this type of

time-dependent rates.

The solutions [Eqs. (18) and (21)] also apply in the case

of state schemes more complicated than scheme (22). It is

only necessary to make appropriate changes to the defini-

tions of ~HðsÞ and ~GðsÞ or of D and E. Hence, we can use the

method presented here to investigate the dynamics of com-

plicated networks in a transient. This is of interest for studies

of ion-channel dynamics,53,54,71 transport in more than one

spatial dimension, gene regulatory networks, and many other

applications. Many quantities of interest in these investiga-

tions are moments of first-passage type and thus can be cal-

culated from the derivatives of the Laplace transforms. Some

of these calculations might require knowledge of the proba-

bility time dependence Pi;jðtÞ, i.e., the residues of ~Pi;jðsÞ. In

many cases, determination of these residues will be only

slightly more complicated than for the system without tran-

sient, since all terms arising from the transient involve the

same factors, but with shifted argument, together with the

matrix ~HðsÞ. In general, if we know the set of residues fS0g
of the Laplace transform of the system without transient and

the matrix ~HðsÞ, we can immediately write down the resi-

dues of the Laplace transform of the system with transient by

shifting fS0g by integer multiples of c. This allows easy gen-

eralization of many results and might be of particular interest

for renewal theory.15,72

B. The average first-passage time

The average first-passage time decreases with increasing

relaxation rate according to a power law, if the transient is suf-

ficiently slower than the time scale of the individual steps

(Fig. 2). The exponent depends on the chain length to leading

order like �N=ðN þ 1Þ. Remarkably, this behavior has been

found for substantially different parameters in both the asymp-

totically non-Markovian and asymptotically Markovian cases

and therefore appears to be rather universal.

C. Resonant length

Transients can substantially reduce the coefficient of

variation. We have found a monotonic decrease in CV with

decreasing c when the relaxation rate is slow compared with

state transition rates. CV exhibits a minimum in its depen-

dence on the chain length N (Fig. 3) if the transient is slow

compared with state dynamics. This minimum exists for

both asymptotically Markovian and non-Markovian discrete

systems. At a time-scale separation between the state transi-

tion rates and the transient of about 106, the CV at the mini-

mum is reduced by about one order of magnitude compared

with CV(N¼ 1).

Exploiting our results for control purposes, we can use a

transient if more precise arrival timing at the outcome of a

process is desired. Applying a transient that relaxes a bias

toward 0 reduces CV. In the context of charge carrier

transport, such a transient could be realized by a time-

dependent electric field. If we include the rising part of

CV(N) beyond the minimum in our consideration and con-

sider all CVs smaller than CV(N¼ 1) as reduced, we may

still see a reduction of CV even if the average first-passage

time is an order of magnitude longer than c�1. Hence, the

initial transient may have surprisingly long-term conse-

quences and is therefore a rather robust method for CV

reduction. Additionally, or if a transient is given, the state

and step number can be used for optimizing the precision of

arrival time. The optimum may also be at smaller lengths

than that of the non-optimized process; i.e., optimization of

precision may even lead to acceleration.

D. How can negative feedback robustly reduce noise
in timing?

Most studies investigating the effect of negative feedback

have focused on amplitude noise—we are looking at noise in

timing. Timing noise substantially reduces information trans-

mission in communication systems. Variability in timing and

protein copy numbers in gene expression or cell differentia-

tion causes cell variability.37,73 Therefore, many studies have

investigated the role of noise in gene regulatory networks and

have found that immediate negative feedback is not suitable

for reducing timing noise.74–76 This agrees with our results for

large c values. The recovery from negative feedback corre-

sponds to the transient in our present study. Therefore, our

results show that slow recovery from negative feedback is a

robust means of timing noise reduction.

Negative feedback terminating the excited state is a con-

stitutive element of many systems generating sequences of

pulses or spikes, such as oscillating chemical reactions,77,78

the electrical membrane potential of neurons,79 the sinoatrial

node controlling the heart beat,80 the tumor suppressor pro-

tein p53,81,82 Ca2þ spiking in eukaryotic cells,83–85 cAMP

concentration spikes in Dictyostelium discoideum cells, and

other cellular signaling systems.86,87

In particular, our results apply to noisy excitable spike

generators in cells, where single molecular events or sequen-

ces of synaptic inputs form a discrete chain of states toward

the threshold. In addition to the examples from membrane

potential spike generation,88 Ca2þ spiking and p53 pulse

sequences have been shown to be noise-driven excitable sys-

tems.82,84,85,89 The information content of frequency-

encoding spiking increases strongly with decreasing CV of

spike timing.90 A value of the coefficient of variation

between 0.2 and 1.0 has been measured for the sequence of

interspike intervals of intracellular Ca2þ signaling.84,85,91–93

Hence, CV is decreased compared with that of a Poisson pro-

cess and even compared with that for first passage of a sym-

metric random walk. The experimental data are also

compatible with the finding that the slower the recovery

from negative feedback, the lower is CV.84,85,91–93 This

strongly suggests that this ubiquitous cellular signaling sys-

tem uses the mechanism of noise reduction described here to

increase information transmission.

Optimal noise amplitudes minimize the CV of interspike

intervals in noisy excitable systems,40,94–97 which has been
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termed coherence resonance. Our results define the condi-

tions of optimal CV reduction in terms of system proper-

ties—an optimal number of steps from the inhibited state to

the excitation threshold during slow recovery. At the same

time, our results shed light on new aspects of coherence reso-

nance, and indeed may indicate that a more fundamental

phenomenon underlies it. Since we believe excitable systems

to be one of the most important applications of our results,

we have chosen the term resonant length.

Coming back to the widely used graphic example, what

can the drunkard learn from our results? If he chooses a pub

at the right distance from home, he will arrive home sober

and relatively in time for breakfast.
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APPENDIX A: THE SYMMETRIC ASYMPTOTICALLY
MARKOVIAN CASE AND ITS CONTINUUM LIMIT

The permanently symmetric case with a transient is

defined by

fi;i61ðtÞ ¼ k 1� e�ctð Þ: (A1)

Its continuum limit on a domain of length L (with spatial

coordinate x) satisfies

@Pðx; tÞ
@t

¼ 2k 1� e�ctð Þ @
2Pðx; tÞ
@x2

: (A2)

The Fokker–Planck equation (A2) can be solved after

applying a time transformation t! s

sðtÞ ¼ 2

ðt

0

fi;i61ðt0Þ dt0 ¼ 2k tþ e�ct

c
� 1

c

� �
: (A3)

The boundary and initial conditions, PðL; tÞ ¼ 0;
@Pðx; tÞ=@xjx¼0 ¼ 0, and Pðx; 0Þ ¼ dðxÞ specify the first-

passage problem. We find

Pðx; sÞ ¼ 2

L

X1
n¼0

cos knxð Þe�k2
ns; (A4)

where kn ¼ pð2nþ 1Þ=ð2LÞ. The ith moment of the first-

passage time is given by

htii ¼
ð1

0

tiFðtÞ dt; (A5)

FðtÞ ¼ � d

dt

ðL

0

Pðx; sðtÞÞ dx: (A6)

With an ¼ 2kk2
n=c, we obtain

hti ¼ 4

pc

X1
n¼0

ð�1Þn

2nþ 1
ean a�an

n C an; anð Þ; (A7)

where Cðy; xÞ is the lower incomplete gamma function. The

second moment is

ht2i ¼ 32L4

k2p5

X1
n¼0

ð�1Þn

ð2nþ 1Þ5
ean

�2F2 an; anf g; an þ 1; an þ 1f g;�an

� �
; (A8)

where 2F2 is a hypergeometric function. Results for CV are

shown in Fig. 4(a). In the continuous case, CV does not

exhibit a minimum in its dependence on the length L.

Interestingly, CV at small L is very close to the minimum

value of the discrete case.

The an are small for L� k=c. Therefore, in that limit,

we can approximate the incomplete C function and hyper-

geometric function by

C an; anð Þ � aan�1
n e�an ;

ean
2F2 an; anf g; an þ 1; an þ 1f g;�an

� �
� 1;

and find

CVðL� k=cÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5

3

L4

k2

k2

L4
� 1

s
¼

ffiffiffi
2

3

r
; (A9)

i.e., CV approaches monotonically the value of a symmetric

random walk with constant transition rates for large L.

APPENDIX B: NUMERICAL METHODS

Evaluation of Eqs. (18) and (21): If N is large and the

ratio between the fastest state transition rate and the relaxa-

tion rate c is larger than 104, high precision of the numerical

calculations is required for the use of Eqs. (18) and (21). A
priori known values like ~I

0

N�1;Nðs ¼ 0Þ ¼ 1 can be used to

monitor the precision of the calculations. The matrix prod-

ucts become very large at intermediate values of jc during

the summation in Eqs. (18) and (21), and their sign alternates

such that two consecutive summands nearly cancel.

Intermediate summands are of order larger than 1017, and

thus we face loss of significant figures even with the numeri-

cal floating-point number format long double. We used Arb,

a C numerical library for arbitrary-precision interval arith-

metic,98 to circumvent this problem. It allows for arbitrary

precision in calculations with Eqs. (18) and (21).

Computational speed is the only limitation with this library

and has determined the parameter range for which we estab-

lished analytical results. We were able to go to a time-scale

separation of �10�6 using this library. We calculated

moments with a relative precision of 4 � 10–4. Computations

eligible for the Cþþ long double format (c � 10�3 s�1) take

seconds on a laptop computer. Arbitrary precision computa-

tions take between 90 min and 10 days.

These numerical problems occur, if there is a range of s
where some eigenvalues of ~AðsÞ are outside the unit circle.

We mentioned in Sec. II B that the solutions in this case still

converge, if the eigenvalues are within the unit circle for large

s (s > s1). This holds for c > 0. We also know the solution

for c¼ 0 [Eq. (19)]. However, in the limit c! 0 we may face

infinitely many factors with eigenvalues outside the unit cir-

cle. We could not demonstrate in general that they are com-

pensated by the factors with small eigenvalues at sþ kc > s1
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in Eq. (18), but could demonstrate it down to a time scale ratio

individual steps/relaxation of 10–6. Nonetheless, the solution

at c ¼ 0þ might be different from the solution at c¼ 0.

Simulation method: We use simulations for comparison

with the analytic solutions and for systems with large N. The

Wl;jðt; t� t0Þ are functions only of t for a given t0. Since t0 is

the time when the process moved into state l, it is always

known. The simulation algorithm generates in each iteration

the cumulative distribution
Ð t

t0 dh
PN

ðlÞ
out

i¼1 Wl;jiðh; h� t0Þ and

then draws the time ttr for the next transition. The specific

transition is chosen from the relative values Wl;jkðttr; ttr

�t0Þ=
PN

ðlÞ
out

i¼1 Wl;jiðttr; ttr � t0Þ by a second draw. We verified

the simulation algorithm by comparison of simulated and

calculated stationary probabilities [Eq. (C4)], splitting proba-

bilities at a variety of t0 values, simulations without recovery

(“c ¼ 1”) and the comparisons in Fig. 2. We used at least

20 000 sample trajectories to calculate moments and up to

160 000 to determine the location of the minima of CV.

The outcome of a comparison with respect to computa-

tional efficiency between the evaluation of Eqs. (18) and (21)

and simulations strongly depends on the desired precision.

With the precisions achieved with Eqs. (18) and (21) (4

� 10–4), simulations with a sufficient number of sample trajec-

tories for the same precision of moments would be orders of

magnitude slower than the summation of the matrix products.

APPENDIX C: THE STATIONARY PROBABILITIES

The stationary probabilities are reached for t!1. This

entails Wi;i61ðt; t� t0Þ ¼ W1i;i61ðt� t0Þ ¼ gi;i61ðt� t0Þ. We

start from the idea that the stationary probability Pi of being

in state i is equal to the ratio of the total average time Ti

spent in i divided by the total average time for large t

Pi ¼
TiPN

j

Tj

: (C1)

Ti is equal to the number Ni of visits to state i multiplied by

the average dwell time ti in i

Pi ¼
tiNiPN

j

tjNj

: (C2)

Each visit to state i starts with a transition to i. The average

number of transitions into i is equal to the number of visits to

its neighboring states multiplied by the probability that the tran-

sition out of the neighboring states is toward i. With the split-

ting probabilities Ci;i61ðt ¼1Þ denoted by Ci;i61, the Ni obey

Ni ¼ Ci�1;iNi�1 þ Ciþ1;iNiþ1: (C3)

Dividing by the total number of visits
PN

j¼0 Nj, we get

ni ¼ Ci�1;ini�1 þ Ciþ1;iniþ1; (C4)

1 ¼
XN

j¼0

nj; (C5)

Pi ¼
tiniPN

j¼0

tjnj

: (C6)

We write Eq. (C4) in matrix form, Mn ¼ 0, with

Mi;i61 ¼ �~gi61;ið0Þ; (C7)

Mi;i ¼ 1; (C8)

and all other entries 0. We checked for N¼ 2, 3, and 4 that

detM ¼ 0 holds. Equation (C4) determines n only up to a

common factor, which is then fixed by Eq. (C5).

The average dwell times ti in the states are initially

affected by the recovery from negative feedback, but are

constant at large t. They have contributions ti;i61 from both

transitions to i61, with weights set by Ci;i61

ti ¼ Ci;iþ1ti;iþ1 þ Ci;i�1ti;i�1: (C9)

Ci;i61ti;i61 ¼ �ð@=@sÞ~gi;i61js¼0 holds owing to the normali-

zation of the Wi;i61. This leads finally to

ti ¼ �
@

@s
~gi;i�1 þ ~gi;iþ1

� �				
s¼0

: (C10)

To give a specific example, the stationary-state probabilities

for N¼ 2 are

P ¼ 1

ð@=@sÞ C1;0 ~g0;1 þ ~g1;0 þ ~g1;2 þ C1;2 ~g2;1

� �

�
C1;0ð@=@sÞ~g0;1

ð@=@sÞ ~g1;0 þ ~g1;2

� �
C1;2ð@=@sÞ~g2;1

0
BB@

1
CCA
								
s¼0
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