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A key goal of developmental biology is to understand how a single cell transforms into 

a full-grown organism consisting of many different cell types. Single-cell RNA-

sequencing (scRNA-seq) has become a widely-used method due to its ability to identify 

all cell types in a tissue or organ in a systematic manner1-3. However, a major challenge 

is to organize the resulting taxonomy of cell types into lineage trees revealing the 

developmental origin of cells. Here, we present a strategy for simultaneous lineage 

tracing and transcriptome profiling in thousands of single cells. By combining scRNA-

seq with computational analysis of lineage barcodes generated by genome editing of 

transgenic reporter genes, we reconstruct developmental lineage trees in zebrafish 

larvae and adult fish. In future analyses, LINNAEUS (LINeage tracing by Nuclease-

Activated Editing of Ubiquitous Sequences) can be used as a systematic approach for 

identifying the lineage origin of novel cell types, or of known cell types under different 

conditions. 

Measuring lineage relationships between cell types is crucial for understanding 

fundamental mechanisms of cell differentiation in development and disease4,5. In early 

development and in adult systems with a constant turnover of cells, short-term lineage 

predictions can be computed directly on scRNA-seq data by ordering cells along 

pseudo-temporal trajectories according to transcriptome similarity6-8. However, for 

identifying the developmental origin of cells in the adult body, additional information is 

required. Genetically encoded fluorescent proteins are widely used as lineage 

markers9,10, but due to limited spectral resolution, optical lineage tracing methods have 

mostly been restricted to relatively small numbers of cells. Pioneering studies based 

on viral barcoding11,12, transposon integration sites13, microsatellite repeats14, somatic 
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mutations15,16, Cre-mediated recombination17, and genome editing of reporter 

constructs18,19 have overcome this limitation by using the enormous information 

capacity of the genome for lineage tracing. However, to date there is no method that 

allows simultaneous measurement of single-cell transcriptomes and lineage markers 

in vivo. 

LINNAEUS is based on the observation that, in the absence of a template for 

homologous repair, Cas9 produces short insertions or deletions at its target sites, 

which are variable in their length and position18,20,21 (Fig. 1a). We reasoned that these 

insertions or deletions (hereafter referred to as genetic “scars”) constitute permanent, 

heritable cellular barcodes that can be used for lineage analysis and read out by 

scRNA-seq. To ensure that genetic scarring does not interfere with normal 

development, we targeted an RFP transgene in the existing zebrafish line zebrabow 

M, which has multiple integrations of the transgenic construct22. We injected an sgRNA 

for RFP and Cas9 protein into 1-cell stage embryos in order to mark individual cells 

with genetic scars at an early time point in development (Fig. 1b). Loss of RFP 

fluorescence in injected embryos served as a direct visual confirmation of efficient scar 

formation (Supplementary Fig. 1). At a later stage, we dissociated the animals into a 

single cell suspension and analyzed the scars by targeted sequencing of RFP 

transcripts (see Methods). Simultaneously, we sequenced the transcriptome of the 

same cells by conventional scRNA-seq using droplet microfluidics23 (Fig. 1c and 

Supplementary Fig. 2). 

We found that Cas9 generated hundreds of unique scars per animal when 

targeting a single site in RFP (Supplementary Fig. 3), suggesting that analysis of 

genetic scars constitutes a powerful approach for whole-organism lineage analysis. 

Bulk analysis of 32 individual larvae revealed that some scar sequences are more likely 

to be created than others, probably through mechanisms like microhomology-mediated 

repair24 (Fig. 1d). The scars with the highest intrinsic probabilities may be created 

multiple times per embryo, and are therefore uninformative for lineage reconstruction. 

We therefore excluded the most frequent scars (p>1%) from further analysis. We found 

that scarring continued until around 10 hours post fertilization, a stage at which 

zebrafish already have thousands of cells (Fig. 1e). The early dynamics of scar 

formation could be described by a simple model using the known cell division rate 

during early development and a constant per-site scarring rate (Supplementary Fig. 4 

and Methods). Thus, our simple injection-based approach for Cas9 induction allowed 
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us to label cells in an important developmental period during which the germ layers are 

formed and precursor cells for most organs are specified25. 

Transcriptome analysis of several thousand single cells of dissociated larvae at 

5 days post fertilization (dpf) allowed identification of many cell types in the developing 

zebrafish. Using LINNAEUS, we found around 400,000 links between cells that have 

shared scars (Fig. 1f). To determine which cell types share common lineage origins, 

we calculated the enrichment or depletion of scar connections between pairs of cell 

types compared to random scar distributions. Loss of information due to dropout 

events is frequent in scRNA-seq, and we noticed that the detected number of scars 

varies between cell types (from 3 for erythrocytes to 17 for neuromast cells), possibly 

reflecting differences in cell size or activity of the promoter of the RFP transgene. We 

therefore designed the background model in such a way that the connectivity 

distribution of the randomized graphs is identical to the observed graph for all cell types 

(Supplementary Fig. 5 and Methods). In Fig. 1g we depict lineage connections that are 

enriched above background with padj<0.01. Clustering of cell types by scar connection 

strength revealed three groups (Fig. 1h), each of which contains either mostly 

ectodermal or mesendodermal cell types. These groups formed contiguous domains 

on the zebrafish fate map26, suggesting that they were generated by a small number 

of early scarring events (Fig. 1i). The clear segregation of scar patterns was 

reproducible in a second larva (Supplementary Fig. 6), validating our experimental and 

computational approach.  

Next, we set out to analyze the data at higher resolution and reconstruct lineage 

trees on the single cell level. To do so, we determined the sequence of scar creation 

events based on our single cell data. Our approach is based on the observation that 

there is a correspondence between the underlying lineage tree and the resulting scar 

network graph, a representation of all pairwise combinations of scars that are 

experimentally observed together in single cells (Fig. 2a). If all scar connections are 

detected, the scar that is created first has the highest degree of connections in the scar 

network graph, followed by scars that were created next, enabling lineage tree 

reconstruction in an iterative manner (Fig. 2b). To account for ambiguity in lineage tree 

reconstruction caused by missing connections in the scar network graph, we 

implemented a correction scheme that is based on a maximum likelihood approach. 

This method evaluates candidate trees by whether or not scar dropout rates are 

consistent across different branches in a cell type-dependent manner (Supplementary 
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Fig. 7 and Methods). Importantly, our iterative approach for lineage tree reconstruction 

is robust towards experimental biases that are intrinsic to scRNA-seq data such as 

scar dropout events. Scar dropouts entail that we do not have full lineage information 

about every single cell. However, using more than one thousand single cells for tree 

building allowed us to infer a large part of the missing scar information (Supplementary 

Fig. 8). 

The scar network graph for the 5 dpf larva exhibited a strong hierarchical 

structure, with some scars being considerably more highly connected than others (Fig. 

2c). A similar structure could be observed in the cell network graph, which also 

revealed a clear clustering of cell types according to scar profile (Fig. 2d). The 

reconstructed lineage tree (Fig. 2e, see also replicate experiment in Supplementary 

Fig. 9) allowed for a more fine-grained analysis compared to connection enrichment 

analysis (Fig. 1g), revealing for instance that a part of the surface ectoderm splits 

relatively early from the neural ectoderm. Due to the stochastic nature of cell labeling 

in LINNAEUS, scar creation is not synchronized with mitosis. It is therefore important 

to note that reconstructed lineage trees do not necessarily contain all cell divisions. 

Furthermore, early zebrafish development is highly variable27. We can therefore not 

expect to find exact correspondence of early lineage trees for all cell types in different 

animals. 

For analysis at even higher resolution, we decided to zoom into selected groups 

of cell types from different germ layers – the hematopoietic system, endodermal cell 

types, and neuronal cell types. For the hematopoietic system, we find a lineage split 

between erythrocytes and non-erythroid blood cell types (Fig. 2f). Interestingly, we do 

not observe complete separation of cell types by lineages. These observations 

probably reflect the transition from primitive to definitive hematopoiesis in early 

zebrafish development, as primitive hematopoiesis produces mostly erythrocytes, 

whereas definitive hematopoietic stem cells are capable of generating all blood cell 

types 28. For endodermal and neuronal cell types, we observed a similar structure of 

cell-type specific lineage branches, giving rise to different organs, such as the thymus, 

the hepatopancreas, and the optic apparatus (Supplementary Fig. 10). 

During development from embryo to adult, the cell type diversity of tissues and 

organs increases drastically. One of the major applications of massively parallel single 

cell lineage tracing will therefore be to systematic identification of the origin of novel 
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cell types. We hence decided to apply LINNAEUS to dissected organs of adult fish in 

order to explore the resolution of our experimental and computational approach. 

Analysis of the adult telencephalon, heart, blood, liver, and pancreas by scRNA-seq 

allowed us to identify many different cell types in these organs (Fig. 3a). Simultaneous 

measurement of genetic scars enabled us to generate network graphs similar to the 

ones we obtained for the 5 dpf data. We then determined the order of scar creation 

events and analyzed the resulting lineage trees at low granularity by grouping the 

detected cell types into 6 tissue-type categories (brain, endocardium, cardiomyocytes, 

hematopoietic cells, liver, pancreas). In general, we observed a stronger separation of 

organs than at 5 dpf (Fig. 3b and Supplementary Fig. 11), which may be caused by 

inhomogeneous expansion of clones at larval and juvenile stages. We next zoomed 

into cell types of meso-, endo- and ectodermal origin. Our tree building approach 

confirmed the split of the three germ layers (Fig 3c, d and Supplemental Fig. 12). 

Besides identifying numerous clones giving rise to distinct cell types (arrows in Fig. 3c, 

d), our approach also allowed us to analyze the hierarchy of cell fate decisions, 

including a separation of alpha/beta and delta/epsilon cells in the pancreas (Fig. 3d) 

that we also observed in a biological replicate (Supplementary Fig. 11). This is a novel 

finding, which may be linked to the recent discovery of two waves of endocrine cell 

differentiation29. Interestingly, most neurons and radial glia were found in branches that 

were fully separate from the main tree, suggesting they are in lineages that split off 

early (Supplementary Fig. 12). However, the microglia in the longest branch of the tree 

were placed into a clone that also gave rise to immune cells of the blood.  

 Here, we presented LINNAEUS, a method for simultaneous lineage analysis 

and transcriptome profiling that is compatible with droplet microfluidics and can be 

scaled up to thousands of single cells. Importantly, our approach is based on an 

existing transgenic animal with multiple integrations of a transgenic construct, which 

should facilitate adaptation of the method to other model systems. An important 

advantage of our strategy compared to competing technologies such as viral barcoding 

and other inducible sequence-based lineage tracing methods is the ability to move 

beyond clonal analysis and to computationally reconstruct full lineage trees on the 

single cell level. This is made possible by our computational approach for tree 

reconstruction that is robust to dropout events, and by our experimental strategy that 

uses independent scarring sites whose scars, once created, cannot be changed again. 

Within a single experiment, data analysis can be performed at different levels of 
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granularity, from germ layers to organs and cell types. Our combined experimental and 

computational platform thus provides a powerful strategy for dissecting the lineage 

origin of uncharacterized cell types and for measuring the capacity of lineage trees to 

adapt to genetic or environmental perturbations. We anticipate that future modifications 

of the experimental platform, such as for instance inducible systems, will enable longer 

periods of lineage tracing, and molecular recording of cellular signaling events. 
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Methods 

 

Zebrafish lines and animal husbandry 

We used the transgenic zebrafish line zebrabow M22 for LINNAEUS. This line has 

multiple integrations of a transgenic construct that expresses RFP from the ubi 

promoter, which is constitutively active in all cell types. Fish were maintained according 

to standard laboratory conditions. Animal experiments were done in compliance with 

German and Berlin state law, carefully monitored by the local authority for animal 

protection (Lageso). Embryos of the zebrabow M line were injected at the 1-cell stage 

with 2 nl Cas9 protein (NEB, final concentration 350 ng/µl) in combination with an 

sgRNA targeting RFP (final concentration 50 ng/µl). 

The sgRNA was in vitro transcribed from a template using the MEGAscript® T7 

Transcription Kit (Thermo Scientific). The sgRNA template was synthesized with T4 

DNA polymerase (New England Biolabs) by partially annealing two single stranded 

DNA oligonucleotides containing the T7 promotor and the RFP binding sequence, and 

the tracrRNA sequence, respectively. In the experiments described here, we did not 

use the ability of the line zebrabow M to switch from RFP to YFP or CFP expression 

upon addition of Cre22. 

 

Scar detection in bulk samples 

DNA-based scar detection: DNA of single animals was extracted by heating the 

samples in 50 µl of 50 mM NaOH at 95°C for 20 minutes. 1/10 volume of 1 M Tris-HCl, 

pH = 8.4 was then used to neutralize the mixture. We took 20 µl of the DNA for 

amplification of scar sequences using RFP-specific barcoded primers. The RFP 

primers were chosen such that the cut site of Cas9 was positioned approximately in 

the middle of the sequencing read. We then pooled the PCR products, performed a 

clean-up reaction using magnetic beads (AMPure Beads, Beckman Coulter), and 

added Illumina sequencing adapters in a second PCR reaction. 

RNA-based scar detection: RNA of single or pooled animals was extracted with 

TRIzol™ Reagent (Thermo Fisher Scientific) according to the manufacturer’s protocol. 

The RNA was precipitated using isopropanol, and the pellet was washed 2 times with 

75% ethanol, air dried, and resuspended in 10 µl of reverse transcription mix (0.3 µM 
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poly-T primer, 1x first strand buffer (Thermo Fisher Scientifc), 10 µM DTT, 1 mM 

dNTPs, 0.5 µl RNAseOUT™ (Thermo Fisher, Cat. No. 10777019), 0.5 µl 

SuperScript™ II (Thermo Fisher, Cat. No. 18064-014. The reaction was incubated at 

42°C for 2 h for reverse transcription, followed by scar specific PCR amplification as 

described above for DNA-based scar detection. 

 

Transcriptome and scar detection in single cells 

Single cells were captured using ChromiumÔ (10X Genomics, PN-120233), a droplet-

based scRNA-seq device according to the manufacturer’s recommendations. Briefly, 

the instrument encapsulates single cells with barcoded beads, followed by cell lysis 

and reverse transcription in droplets. Reverse transcription was performed with polyT 

primers containing cell-specific barcodes, Unique Molecular Identifiers30 (UMI), and 

adapter sequences. After pooling and a first round of amplification, the library was split 

in half. The first half was fragmented and processed into a conventional scRNA-seq 

library using the manufacturer’s protocols. We used the second, unfragmented, half to 

amplify scar reads by two rounds of PCR, using two nested forward primers that are 

specific to RFP, and reverse primers binding to the adapter site. The RFP primers were 

chosen such that the cut site of Cas9 was positioned approximately in the middle of 

the sequencing read, ensuring that a broad range of deletion lengths can be reliably 

detected. We confirmed successful library preparation by Bioanalyzer (DNA HS kit, 

Agilent). Samples were sequenced on Illumina NextSeq 500 2x 75 bp and Illumina 

HiSeq 2500 2x 100 bp. 

 

Mapping and extraction of single cell mRNA transcript counts 

Every sequencing read consists of a cellular barcode, a UMI, and a transcript 

sequence originating from an mRNA molecule. These transcript sequences were 

aligned using bwa aln31 with setting '-q 50' to a reference transcriptome constructed 

from Ensembl release 74 (www.ensembl.org) with extended 3' UTR regions32. We 

filtered out all unmapped reads and all reads that were not uniquely mapped. After 

alignment, we determined which cellular barcodes corresponded to cells. We defined 

a cell to be a cellular barcode with at least five hundred uniquely mapped molecules.  
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For each cellular barcode, we counted the number of molecules mapped to 

each gene, using the UMI-correction method described by Grün et al.33. This method 

corrects for the possibility of the same UMI being used for two different transcripts in 

the same cell with the formula t = -K ln(1 – k_o/K), with t the final number of transcripts, 

k_o the observed UMIs, and K the total number of UMIs possible. 

As protection against barcode sequencing errors, we counted the occurrence 

of each nucleotide for each barcode and filtered out barcodes in which one nucleotide 

occurred ten or more times. Furthermore, we filtered out barcodes that were one 

nucleotide substitution removed from a barcode with at least eight times as many 

transcripts. 

 

Mapping and filtering of single cell scar data 

Scar reads have the same structure as transcript reads: they consist of a barcode, a 

UMI and a scar. The scar sequences were aligned using bwa mem34 to a reference of 

RFP. We defined a cell as a barcode with at least 500 reads. We removed reads that 

were unmapped, had an incorrect barcode, or did not start with the exact PCR primer 

we used. We truncated all scar sequences to 75 nucleotides, removed shorter 

sequences, and filtered the data for sequencing errors and doublets. 

 

Determination of scar probabilities 

We aligned DNA-amplified reads of thirty-two embryos to a reference of RFP. We 

filtered out unmapped reads and reads that did not start with the exact PCR primer, 

and truncated all reads to one hundred nucleotides, removing shorter ones. To 

determine the creation probabilities of the different scars, we removed all unscarred 

RFP reads from each embryo. We normalized the scar content of each embryo to one 

and calculated scar probabilities as the average ratio with which each scar was 

observed. 

To account for the slightly different sequencing read structure of single cell and 

bulk scar detection (see above), we considered only the nucleotides that are shared 

between the two approaches, and we assigned the bulk scar probabilities to single cell 

scars accordingly. Since scars with a high creation probability contain little lineage 

information, we conservatively removed all scars for which we cannot determine the 
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probability in bulk. We filtered out all single cell scars that were not detected in bulk 

experiments and that were partially soft-clipping, meaning they contained nucleotides 

that cannot be aligned to RFP or identified as insertions or single nucleotide 

polymorphisms. Single cell scars that were not detected in bulk but that did not have 

any soft-clipping nucleotides are indeed detectable, so we set their probability to the 

lowest probability value detected in bulk. 

 

Determination of scarring dynamics 

Embryos were injected with Cas9 and sgRNA at the 1-cell stage. After 1, 2, 3, 4, 6, 8, 

10, and 24 hours, 2-3 embryos were collected and RNA and/or DNA were extracted 

using TRIzol Reagent according to the manufacturer’s protocols. Bulk scar libraries 

were produced as described above. For each sample, we calculated the percentage 

of unscarred RFP. We fit a negative exponential to this data, assuming that the fraction 

of unscarred RFP at t=0 was one. 

 

Identifying cell types 

We used the R package 'Seurat', version 1.4.0.935, for cell-type identification as 

described below. We removed genes that were not found in at least three cells, and 

removed cells that had less than two hundred of those genes. We log-normalized the 

transcript counts and removed cells with more than 2,500 genes observed. For single 

cells from 5 dpf larvae, we filtered out cells with a mitochondrial content of more than 

7.5 percent, and for single cells from adult organs we filtered out cells with a 

mitochondrial content of more than thirty percent; we expect the cardiomyocytes in 

particular to have high mitochondrial content. We regressed out influences of the 

number of transcripts and mitochondrial transcripts, and kept a total of 4071 highly-

variable genes for cells of 5 dpf larvae, and 3303 highly-variable genes for adult organ 

cells. We performed a principal component analysis and kept the first sixty components 

for single cells from 5 dpf larvae, and twenty-two for adult organ single cells. Clustering, 

using the smart local moving algorithm36 on a K-nearest neighbor graph of cells with 

resolution 1.8 was done on these components. Dimensional reduction, using t-

Stochastic Neighbor Embedding37,38 (tSNE), was done on the sixty components for the 

5 dpf larvae, and on components three to twenty-two for the adult organs to reduce the 

visual impact of batch effects. Differential gene expressions were calculated using a 
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likelihood-ratio test39 for all clusters, and these were used to identify the cell types. 

Cells isolated from the adult pancreas, liver or heart but assigned a neuronal identity 

were removed. Clusters were subsequently merged if they were found to have the 

same cell type. 

 

Connection enrichment analysis 

We used an analysis of the scars shared between cells to illuminate the overall 

structure of the sequencing results from 5 dpf larvae. We expect that cells in which we 

observe the same scar have a shared lineage. To understand the scarring process 

better, we aimed to find out which cell types share many scars – these cell types would 

have a strong lineage relationship – and which cell types do not share many scars – 

these cell types would not have many immediate shared precursors. 

We call cells 'connected' if they share at least one scar that has a creation 

probability of less than 1%. All such connections for one animal are shown in Fig 1f. 

To find out whether cell types have a higher number of connections between them than 

expected by chance, we developed the background model described below (see also 

Supplementary Fig. 5). The background model starts with the realization that a 

connection is defined by its endpoints, and that therefore the number of expected 

connections between two cell types is determined by the number of connection 

endpoints of the two cell types. More precisely, the chance of forming a connection 

between cell type A and B is given by p(A-B) = 2 * CE(A)*CE(B)/CE(tot)^2, and that of 

forming a connection within cell type A by p(A-A) = CE(A)^2/CE(tot)^2, with CE(A) the 

number of connection endpoints of cell type A, and CE(tot) the total number of 

connection endpoints. These probabilities define a binomial background model. Using 

this model, we calculate the enrichment z-score between cell types, i.e. how many 

standard deviations the observed number of connections between two cell types is 

away from the expected number of connections. A positive enrichment score indicates 

more connections than expected by chance, a negative enrichment score indicates 

less connections than expected by chance. 

We define the distance between cell types based on their enrichment z-scores 

by the following equation: D(A, B) = 1 - (E(A, B) - Emin)/(Emax – Emin), with D(A, B) the 

distance between cell types A and B, E(A, B) the enrichment z-score between them, 

Emin the minimal enrichment z-score and Emax the maximum enrichment z-score.  The 
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term E – Emin can be understood as a translation of all enrichment scores to positive 

values. These values are then divided by the maximum value and subtracted from 1 

to create distances scaled between 0 and 1. We performed hierarchical clustering on 

these distances, using average linkage as implemented by the hclust function in R. We 

cut the dendrogram into three clusters for larva 1, shown in Fig. 1h, and into two 

clusters for larva 2, shown in Supplementary Fig. 6. 

 

Tree building 

To build single-cell lineage trees, we start by creating a graph of scars. For this, we 

considered all scars that have a probability lower than 1% and that we observed in at 

least two cells. In this graph, scars are represented by nodes and nodes are connected 

if the scars coincide in two or more cells.	

In Fig. 2a we show this graph in a simple example, assuming all scars present 

are always observed. In this idealized example, a scar created in a cell will coincide 

with all scars created in the progeny of that cell. This means that in the graph of scars, 

scars created early will have the most connections. We can use this fact to infer the 

creation order and branching of scars (afterwards referred to as scar tree) in a 

recursive manner, starting with an empty scar tree:  

1. We select the most-connected scar present in the graph. 	

2. We remove this scar from the graph and place it at the relevant tip in the scar 

tree.	

3. Underneath this tip, we create as many branches as we have components in 

the scar graph after removing the scar.	

4. We iterate over these graphs, starting from step one above.	

For a simple tree, this process is illustrated in Fig. 2b. The above procedure would 

work for the idealized case where all scars present are always observed. In our actual 

data, however, due to dropout events we cannot assume this is true. We therefore 

create trees where the order in which we remove scars is predetermined, instead of 

being determined by their degree in the scar graph. Once we have created such a scar 

tree and its corresponding cell lineage tree, we can determine how likely our data is, 

given the tree, allowing for a maximum likelihood tree building procedure. 
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To determine the likelihood of a scar tree, we first use it to build a cell lineage 

tree. Using the scar tree as a skeleton, we place all cells in the lineage tree by 

determining the positions of their scars in the scar tree. Every cell is placed as low as 

allowed by their scars. If a cell has conflicting scars, i.e. scars that should not occur 

together according to the scar tree, it is not placed in the tree. Finally, we collapse 

lineage tree nodes upwards if they have less than five (for adult organs) or ten (for 5 

dpf larvae) cells. 

The criterium we use to determine the likelihood of a tree is based on scar 

dropout rates (see illustration in Supplementary Fig. 7). If, for example, according to 

the tree scar 20 follows scar 41, all cells in which we observe scar 20 should also have 

scar 41. If scar 75 also follows scar 41, all cells in which we observe 75 should also 

have scar 41. We may not always observe scar 41 in these cells. But within the sets 

of cells where we observe either 20 or 75, the ratios of cells in which we observe 41 

should be comparable. This scheme gives rise to our likelihood computation: we test 

the probability that these ratios are found to be unequal by chance, using a two-tailed 

Fisher's exact test. We do this test for every pair of scars, testing the dropout rates for 

every scar that is higher in the scar tree, for every cell type to account for different 

dropout rates for different cell types. The product of p-values for all these tests is the 

likelihood of the tree. 

We search the tree space using a Metropolis-Hastings Monte Carlo Markov 

Chain. For the first tree we build, we place scars in the order by their degree in the scar 

graph. For consecutive trees, we interchange the position of two, three, four or five 

scars in the order used for the last tree, with probabilities 50%, 30%, 15% and 5% 

respectively. We then compare the last created tree with the previous tree and decide 

whether to accept the last created tree or to reject it and use the previous tree as a 

basis for further trees. We have two criteria for this comparison: First, we set a 

maximum tree depth, defined as the highest number of consecutive scarring events 

implied in a scar tree. Trees that have higher depth than this are automatically rejected, 

unless the last tree also had a higher depth, in which case the tree with the lowest 

depth is kept. This scenario can occur because the first tree is built without boundary 

conditions on depth. Secondly, if both trees have lower than maximum depth, we 

calculate the likelihood for the tree we built and compare it to the likelihood of the 

previous tree. If its likelihood is greater, we accept the tree and create a new scar order 

based on the scar order of the last tree as described above. If its likelihood is smaller, 
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the chance of accepting the tree is the ratio of the new and old likelihood. If a tree is 

rejected, we create a new scar order based on the scar order of the previous tree. After 

the Markov chain is terminated, we select the tree with the highest likelihood from all 

trees with a depth that does not exceed the maximum depth. 

For larva 1 (Fig. 2), we followed the above protocol with a maximum depth of 

22. We only scar connections established at least two separate cells. To reduce 

computational complexity in this dataset with very high cell type and scar diversity, we 

selected a single cell type, Fibroblasts A, for tree likelihood testing. This cell type was 

used due to a high number of cells and a high average number of scars per cell. We 

created 17,000 trees and were able to place 1300 out of 1471 cells in the tree shown 

in Fig 2e. For larva 2, we followed the above protocol with a maximum depth of 16. 

After 30,000 iterations, we were able to place 994 out of 1052 cells in the tree shown 

in Supplemental Fig 9. For adult 1, we followed the above protocol with a maximum 

depth of 10. After 30,000 iterations, we were able to place 1299 out of 1323 cells in 

the tree shown in Fig. 3b. For adult 2, we followed the above protocol with a maximum 

depth of 24. After 28,000 iterations, we were able to place 1968 out of 2033 cells in 

the tree shown in Supplemental Fig 11. For visual simplification, we left out a subset 

of scars when plotting the trees. For adult 2, we left out any nodes that did not have at 

least ten cells. Furthermore, on vertical branches we only plotted the top and bottom 

node. Nodes that are not plotted are indicated by "...". 

 

Graphs 

Cell and scar graphs were made using Gephi 0.9.1 (https://gephi.org). We used the 

Fruchterman Reingold algorithm for the layout of the cell graphs, and the Yifan Hu 

algorithm for the layout of the scar graphs. The scar graphs were afterwards edited 

manually. 

 

Simulations 

We simulated the scarring process during embryo development (Supplementary Fig. 

4). To do this, we used a simple model that starts with one cell, and in which all cells 

present undergo synchronized mitosis (using cell division rates measured by 

microscopy40,41). Every cell cycle, the RFP integrations of the cells can acquire a scar. 
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The chance of creating a scar is fixed for every integration for every cell division, and 

scars are transmitted to a cell's progeny. A scarring rate of 0.3 per hour reproduced 

the fit scarring dynamics during the first three hours. 
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Figure 1. Using the CRISPR/Cas9 system for massively parallel single cell 
lineage tracing. (a) Cas9 creates insertions or deletions in an RFP transgene. These 

genetic scars can be used as lineage barcodes. (b) Sketch of the experimental 

protocol. Injection of Cas9 and sgRNA for RFP into the zygote marks cells with genetic 

scars at an early developmental stage. Scars can be read out together with the 

transcriptome by scRNA-seq at a later stage. (c) Approach for simultaneous detection 

of scars and transcriptome from single cells. Cells are captured by droplet 

microfluidics, followed by lysis, reverse transcription, and amplification. After 

amplification, the material is split and processed into a whole transcriptome library and 

a targeted RFP library for scar detection. (d) Probability distribution of scars, measured 

in bulk experiments. (e) Scarring dynamics as measured on the DNA and RNA level, 

with exponential fit. (f) t-SNE representation of scRNA-seq data for dissociated 

zebrafish larva (5 dpf). Pairs of cells with at least one common scar are linked by gray 

lines. (g) Enrichments of scar connections between cell types compared to random 

distributions. Only enrichments with padj<0.01 are shown (see Methods). (h) 
Hierarchical clustering of cell types by scar connection strength yields three clusters. 

(i) Cell type clusters determined based on scar connections form contiguous domains 

on the zebrafish fate map at shield stage. The yolk sac is shown in orange. 
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Figure 2. Computational reconstruction of lineage trees on the single cell level. 
(a) Lineage trees can be represented as network graphs. In a scar network graph, 

each node corresponds to a different scar (designated by a unique scar identification 

number), and pairs of scars that are co-expressed in single cells are connected by gray 

lines. (b) Cartoon of the computational approach. Network graphs allow reconstructing 

the order of scar creation events in an iterative approach. The first scar is determined 

as the one with the highest connectivity (red arrow). Upon removal of the first scar and 

its connections, the following scars are identified as the most highly connected ones in 

the reduced network. For details see Methods. (c) Scar network graph for 5 dpf larva. 

Scars are joined if they are co-expressed in at least one cell. Scar identification 

numbers are determined by the experimentally measured scar probabilities (Fig. 1d), 

sorted in descending order from high to low probabilities. (d) Cell network graph. Cells 

are joined if they share at least one common scar and are grouped by similarity of scar 

patterns. Color code indicates tissue of origin as determined by scRNA-seq, see panel 

(e). (e) Lineage tree for 5 dpf larva, including scar identifiers (black font) and cell 

numbers (gray font). Cell types are grouped into 10 classes as indicated by the color 

code. Pie charts indicate fractions of cell populations at the individual nodes 

(cumulative with respect to the branches below). Pie charts are plotted at half size if 

n<20.  (f) Lineage tree for 5 dpf larva, zoomed into hematopoietic cell types (see color 

code).  

 

  

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/205971doi: bioRxiv preprint first posted online Oct. 19, 2017; 

http://dx.doi.org/10.1101/205971
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5 

 

  

Figure 3

a

c d

95 (n=2)

98 (n=1005)

65 (n=33)

74 (n=245)

34 (n=1)

37 (n=213)

38 (n=0)
41 (n=771)

257 (n=25)

274 (n=20)

278 (n=0)

29 (n=1000)

22 (n=0)

247
(n=13)

155 (n=3)

185 (n=20)

19 (n=19)

21 (n=761)

104 (n=294)

107 (n=23)

12 (n=835)

14 (n=964)

...

...

...

...

...

...
... ...

... ...

...
95 (n=22)

98 (n=926)

65 (n=0)

74 (n=59)

34 (n=25)

37 (n=40)

38 (n=11)
41 (n=779)

257 (n=0)

274 (n=1)

278 (n=29)

29 (n=909)

22 (n=12)

247
(n=0)

155 (n=86)

185 (n=359)

19 (n=284)

104 (n=537)

107 (n=397)

12 (n=812)

14 (n=812)

...

...

...

...

...

...
... ...

... ...

...

b

95 (n=24)

98 (n=1968)

65 (n=33)

74 (n=304)

34 (n=26)

37 (n=253)

38 (n=11)
41 (n=1587)

257 (n=25)

274 (n=21)

278 (n=29)

29 (n=1946)

22 (n=12)

247 (n=13)

155 (n=92)

185 (n=393)

19 (n=315)

21 (n=1343)

104 (n=845)

107 (n=434)

12 (n=1684)

14 (n=1813)

...

...

...

...

...

...
... ...

... ...

...

Brain
Endocardium
Cardiomyocytes
Hematopoetic cells
Liver
Pancreas

Endocrine cells a/b

Endocrine cells d/e

Erythrocytes

Endocardium 1

Immune cells

Pancreas Smooth Muscle cells

CM Ventricle

Central neurons

Pancreas acinar cells 1

Endocardium 2

CM Atrium

Hepatocytes

Radial Glia

Neutrophils

Pancreatic duct

Heart Fibroblasts

Bulbus smooth muscle cells

ancreas Smooth Muscle cells

Liver Endothelium

Endocardial Progenitors

Apelin cells

Pancreas acinar cells 2

Neuroendocrine cells

Microglia 1

Hepatic stellate cells

Microglia 2

Apelin cells
Bulbus smooth muscle cells

CM Atrium
CM Ventricle

Endocardial Progenitors

Endocardium 1
Endocardium 2
Erythrocytes
Heart Fibroblasts
Immune cells
Neutrophils

Brain
Pancreas
Liver

Mesodermal lineage Endodermal lineage

Endocrine cells a/b
Endocrine cells d/e
Hepatic stellate cells
Hepatocytes
Liver Endothelium
Neuroendocrine cells
Pancreas Smooth Muscle
Pancreas acinar cells 1
Pancreas acinar cells 2
Pancreatic duct

Cardiomyocytes
Brain
Endocardium
Hematopoetic cells

.CC-BY-NC-ND 4.0 International licensenot peer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/205971doi: bioRxiv preprint first posted online Oct. 19, 2017; 

http://dx.doi.org/10.1101/205971
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6 

Figure 3. Single cell lineage analysis of adult organs reveals hierarchies of cell 
fate decisions. (a) t-SNE representation of scRNA-seq data for dissociated organs 

from adult zebrafish. (b) Lineage tree for adult organs, including scar identifiers (black 

font) and cell numbers (gray font). Cell types are grouped into 5 tissue-type categories. 

(c, d) Fine-grained lineage trees zooming into mesodermal and endodermal lineages. 

Clones giving rise to distinct cell types are marked with black arrows. 
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Supplementary Figure 1. Detection of scar formation using microscopy and 
sequencing (a) Loss of RFP fluorescence upon injection of Cas9 and sgRNA targeting 

RFP. (b) Reduction of unscarred RFP upon injection of Cas9 and sgRNA targeting 

RFP. 
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Supplementary Figure 2. Strong correlation between DNA and RNA detection in 
the same embryo. Scar abundances detected in bulk on the DNA and RNA level for 

5 dpf zebrafish larva. 
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Supplementary Figure 3. Scar diversity. Venn diagrams indicating numbers of 

unique and overlapping scars in four fish. “Larva 1” and “Adult 1” refer to the fish 

analyzed in the main figures, while “Larva 2” and “Adult 2” refer to the fish analyzed in 

replicate experiments. 
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Supplementary Figure 4. Scar probability modeling allows measurement of 
scarring rate. (a) The model requires two parameters, the previously measured cell 

division rate kdiv, and the per-site scarring rate kscar. We found that kscar ≈ 0.3 /h fits the 

data best. (b) Scar creation dynamics resulting from these parameters. 
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Supplementary Figure 5. Example of background model for analysis of enriched 
connections. Given twenty connection endpoints in blue cells, and six in green cells, 

the chance of a blue endpoint is 10/13, and the chance of a green endpoint is 3/13. 

We can then calculate the chances of randomly selecting a blue-blue connection, a 

blue-green connection and a green-green connection. These chances determine a 

binomial distribution of connections to compare the observed connections against. 
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Supplementary Figure 6. Enriched connections in another 5 dpf zebrafish larva. 
(a) Enrichments of scar connections between cell types compared to random 

distributions. (b) Hierarchical clustering of cell types by scar connection strength. See 

also Methods. 
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Supplementary Figure 7. Evaluation and correction scheme for tree building 
algorithm. Summary cartoon of our computational approach for dealing with missing 

links. In this example, we start with a simple lineage tree that generates two cell types, 

“blue” and “green”, and we assume that scar 33, while being present, is not observed 

in any of the green cells. This leads to loss of a connection in the scar network graph 

(marked in pink), which in turn leads to ambiguity about which scar was created first. 

To evaluate the two reconstructed trees, we analyze the scar dropout rates in the 

resulting trees in a cell-type dependent manner. The tree on the right-hand side is 

unlikely, since it would require very different dropout rates for scar 86 in the two 

branches generating cell type “blue” (black arrows). The full evaluation and correction 

scheme is described in the Methods. 
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Supplementary Figure 8. Lineage tree reconstruction allows inference of scars 
that were present but not detected. (a) Scar inference is based on the principle that, 

if the order of scarring is known, detection of a scar allows inference of all previously 

created scars. For instance, detection of scar 417 is sufficient for exact placement of 

a cell in the lineage tree in Fig. 2e, whereas detection of scar 312 without measurement 

of scars 260 and 417 only provides lineage information down to an intermediate level 

in the lineage tree. (b) Detected (red) and inferred (yellow) scars in single cell data. 
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Supplementary Figure 9. Lineage tree for another 5 dpf zebrafish larva. Lineage 

tree reconstruction and grouping of cell types as in Fig. 2e. 
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Supplementary Figure 10. Endodermal and neuronal lineage trees in 5 dpf larva. 
Lineage trees for endodermal (a) and neuronal (b) cell types at higher cell type 

resolution for the 5 dpf larva analyzed in Fig. 2e, f. We observe cell-type specific 

lineage branches that give rise to different organs, such as the thymus, the 

hepatopancreas, and the optic apparatus.  
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Supplementary Figure 11. Replicate experiment for dissected organs of adult 
zebrafish. (a, b) Scar and cell network graphs. (c) Complete lineage tree. (d) Lineage 

tree zoomed into endodermal cell types, revealing a hierarchy of lineage splits in the 

hepatopancreatic system, including a separation of alpha/beta and delta/epsilon cells. 
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Supplementary Figure 12. Neuronal cells in adult organs. Similar to Fig. 3e and 3f, 

we highlighted the cells of the neuronal lineage in analyzed adult organs. Most central 

nervous system neurons and radial glia are in clones separate from the main lineage 

tree, indicating an early precursor split. The three microglia with scar 155 share that 

scar with other immune cells. 
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