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Abstract

Dietary intervention and genetic fat-1 mice are two models for the investigation of effects

associated with omega-3 polyunsaturated fatty acids (n3-PUFA). In order to assess their

power to modulate the fatty acid and oxylipin pattern, we thoroughly compared fat-1 and

wild-type C57BL/6 mice on a sunflower oil diet with wild-type mice on the same diet enriched

with 1% EPA and 1% DHA for 0, 7, 14, 30 and 45 days. Feeding led after 14–30 days to a

high steady state of n3-PUFA in all tissues at the expense of n6-PUFAs. Levels of n3-PUFA

achieved by feeding were higher compared to fat-1 mice, particularly for EPA (max. 1.7% in

whole blood of fat-1 vs. 7.8% following feeding). Changes in PUFAs were reflected in most

oxylipins in plasma, brain and colon: Compared to wild-type mice on a standard diet, arachi-

donic acid metabolites were overall decreased while EPA and DHA oxylipins increased with

feeding more than in fat-1 mice. In plasma of n3-PUFA fed animals, EPA and DHA metabo-

lites from the lipoxygenase and cytochrome P450 pathways dominated over ARA derived

counterparts.Fat-1 mice show n3-PUFA level which can be reached by dietary interven-

tions, supporting the applicability of this model in n3-PUFA research. However, for specific

questions, e.g. the role of EPA derived mediators or concentration dependent effects of

(individual) PUFA, feeding studies are necessary.
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Introduction

It has long been suggested that dietary intake of long-chain omega-3 polyunsaturated fatty

acids (n3-PUFA), especially of eicosapentaenoic acid (C20:5 n3, EPA) and docosahexaenoic

acid (C22:6 n3, DHA) is associated with beneficial health effects [1, 2]. Strong evidence exists

for an improvement of cardiometabolic health by lowering blood trigylceride levels and car-

diovascular outcomes, such as sudden cardiac death [2]. Furthermore, anti-inflammatory [1,

2] and anti-angiogenic [3, 4] effects have been described. Part of the effects might be explained

by direct physiological actions of n3-PUFA. They have been shown to act directly on mem-

brane ion channels, or to reduce expression of inflammatory genes via nuclear factor-kappaB

(NFκB), e.g. by interacting with peroxisome proliferator-activated receptor gamma (PPARγ)

[1, 2]. Moreover, n3-PUFA serve as substrates in the arachidonic acid (C20:4 n6, ARA) cas-

cade. In this signaling cascade, ARA is converted via three enzymatic pathways and autoxida-

tion to oxidative metabolites, called oxylipins, several of which are biologically highly active:

(I) Cyclooxygenase (COX) conversion of ARA yields series-2 prostanoids, like the potent pros-

taglandin (PG) E2 which is involved in the regulation of pain, fever and inflammation or

thromboxane (Tx) A2 which is involved in platelet aggregation [5–7]. (II) Lipoxygenase (LOX)

action on ARA leads to multiple biologically active classes of lipid mediators via hydroperoxy

intermediates, such as leukotrienes (LT), e.g. LTB4, involved in the chemotaxis of neutrophils,

lipoxins with anti-inflammatory properties or hydroxy-FA (OH-FA) [5–7]. (III) Finally, cyto-

chrome P450 (CYP) enzymes can convert ARA to OH- and epoxy-FA (Ep-FA). For instance,

ω-hydrolase activity of CYP enzymes can yield the vasoconstrictory 20-hydroxyeicosatetrae-

noic acid (20-HETE) formed by members of the CYP4A or 4F family [5, 7, 8]. Conversion of

ARA by CYP2C and 2J, e.g., leads to vasodilatory, anti-inflammatory, analgesic and angiogenic

acting Ep-FA [5, 7–10] which are further metabolized to less potent dihydroxy-FA (DiH-FA)

by the soluble epoxide hydrolase [5, 7, 11]. The effect of n3-PUFA on this important signaling

cascade is multifaceted. On the one hand, by competing with ARA for conversion, the forma-

tion of potent ARA derived mediators, such as pro-inflammatory PGE2 and LTB4 is reduced,

while their EPA derived counterparts, PGE3 and LTB5 have been shown to be less potent [1,

7]. On the other hand, enzymatic conversion of EPA and DHA can yield highly potent lipid

mediators: CYP catalyzed epoxidation leads e.g. to anti-arrhythmic acting 17(18)-epoxy eico-

satetraenoic acid (EpETE) from EPA and 19(20)-epoxy docosapentaenoic acid (EpDPE) from

DHA [12]. Interestingly, while these Ep-FA share the anti-inflammatory action of the corre-

sponding ARA oxylipins [3], 19(20)-EpDPE has been shown to inhibit angiogenesis in con-

trast to ARA derived Ep-FA [4]. Moreover, multiple hydroxylation leads to highly potent,

specialized pro-resolving lipid mediators (SPM) such as resolvins and protectins [13, 14]. A

comprehensive overview about the ARA cascade can be found in recent reviews, e.g. [5, 7, 15].

Regarding the clinical relevance of n3-PUFA in different diseases the results of epidemio-

logical and intervention studies are conflicting [1, 2, 16]. Moreover, molecular modes of action

for individual effects of n3-PUFA have not been fully unveiled, and dose dependencies remain

largely unclear [1, 2]. In order to address these questions, appropriate experimental models

allowing a well-defined modulation of the endogenous n3-PUFA and oxylipin profile are

required.

In humans and other mammals EPA and DHA can be synthesized endogenously by com-

bined elongation, desaturation and β-oxidation reactions from the essential n3-PUFA alpha

linolenic acid (C18:3 n3, ALA) [17, 18]. However, conversion rates are low on a diet rich in lin-

oleic acid (C18:2 n6, LA), as it is the case for a typical western diet (soy, corn and sunflower oil

based) [17]. In humans and other mammals, endogenous supply of EPA and DHA thus relies

on the dietary intake. In in vivo studies, animal diets are often enriched with EPA and DHA
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containing oils to modulate the endogenous n3-PUFA profile. This approach has been used in

different disease models for the investigation of n3-PUFA associated biology, e.g. in inflamma-

tory diseases, such as colon inflammation [19, 20], arthritis [21, 22], hypertension [23], liver

injury [24] or Parkinson’s Disease [25].

Another approach to investigate physiological effects of elevated endogenous n3-PUFA

concentrations is the use of the fat-1 transgenic mouse model. The DNA of these mice has

been edited to carry the fat-1 gene of the nematode Caenorhabditis elegans encoding an n3

fatty acid desaturase catalyzing the conversion of n6 to n3 fatty acids [26]. This leads to a

decreased endogenous n6/n3-ratio in fat-1 mice fed with a standard n6-PUFA rich diet com-

pared to wild type (WT) animals, e.g. from 46.6 (WT) to 2.9 (fat-1) in erythrocytes [26]. There-

fore, fat-1 mice have been used in many studies for the investigation of n3-PUFA associated

effects, e.g. in inflammation, including colitis [27, 28], hepatitis [29], pancreatitis [30], different

types of cancer, such as liver [31], colitis-associated colon cancer [32, 33] and melanoma [34]

as well as Parkinson’s Disease [35] or chemically induced diabetes [36].

In most studies using fat-1 mice, selected FA and/or (variations of) the n6/n3-PUFA ratio

in tissues are used to describe of the endogenous n3-PUFA status [27–37]. Only little attention

has been paid to the modulation of n3- and n6-PUFA oxylipins in fat-1 compared to wild type

mice. In disease models a focus was set on selected oxylipins, such as PGE and/or PGD from

ARA and/or EPA [27, 28, 32, 34, 36], SPMs [28], precursor thereof [31] and few others [28, 32,

36]. A comprehensive set of free oxylipins in fat-1 mice has only been described in plasma [38]

and total (free and esterified) OH-FA have been described in plasma and tissues [37]. Almost

no data is available on the differences in fatty acids and oxylipins in fat-1 versus WT mice after

dietary supplementation with n3-PUFA. The only available study compares the effects of nine

weeks of feeding on selected oxylipins and fatty acids in kidney tissue [39]. Therefore, in the

present study we thoroughly investigated the modulation of both, the total fatty acid and oxyli-

pin profile in fat-1 vs WT mice on a standard, sunflower oil based diet and the same diet

enriched with n3-PUFA (1% EPA and 1% DHA). Not only is a comprehensive set of tissues

and blood (including plasma and blood cells) analyzed, we also show the time course of effects

occurring on a diet enriched with n3-PUFA over a feeding period of 7–45 days. This study

provides fundamental insights on the breadth of effects on the lipidome caused by the inser-

tion of the fat-1 gene into the murine DNA in the context of a diet high in n6-PUFA compared

to an n3-PUFA dietary intervention as well as the time dependency of nutrition induced

changes.

Materials and methods

Chemicals

Acetic acid and methanol (Optima LC/MS Grade) as well as acetonitrile (HPLC-MS grade)

were obtained from Fisher Scientific (Schwerte, Germany) and ammonium acetate (p.a.) was

purchased from Merck (Darmstadt, Germany). Methyl tert-butyl ether and n-hexane (HPLC

grade) were obtained from Carl Roth (Karlsruhe, Germany). Methyl tricosanoate (FAME

C23:0) was obtained from Santa Cruz Biotechnology (Heidelberg, Germany). Oxylipin and

deuterated oxylipin standards were purchased from Cayman Chemicals (local distributor: Bio-

mol, Hamburg, Germany). Further oxylipin standards (Epoxy octadecadienoic acids

(EpODEs) and dihydroxy octadecadienoic acids (DiHODEs)) were a kind gift from the labora-

tory of Bruce Hammock (UC Davis, CA, USA). Ethyl acetate, methyl formate and all other

chemicals were purchased from Sigma Aldrich (Taufkirchen, Germany).
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Feeding experiment

Animals were cared for in accordance with the institution’s guidelines for experimental ani-

mals based on EU Directive 2010/63/EU. All experiments were carried out and use of the ani-

mals was registered and approved by the Landesamt für Gesundheit und Soziales Berlin (Reg

No.: T0025/13). Pellets for the feeding experiment were based on a standard experimental diet

from ssniff (product number: E15051; ssniff Spezialdiäten GmbH, Soest, Germany) with 10%

fat. The fat used for the standard diet (STD) was refined sunflower oil (Henry Lamotte Oils,

Bremen, Germany) enriched with 0.2% (w/w) tocopherol mix (Covi-Ox T 70 EU, BASF, Lud-

wigshafen). The n3-PUFA rich diet (STD+n3) was the same diet containing 1% EPA and 1%

DHA as ethyl esters (10% each in fat). Ethyl ester are generated during the purification and

concentration of fish oil and thus represent together with the re-esterified triglycerides the

most important class of supplementation products [40]. The fat content, peroxide value and

the fatty acid composition of the experimental diets can be found in the supplementary infor-

mation (S1 Table).

Heterozygous transgenic fat-1 mice were generated as described [26] and phenotyping

(ratio of n6/n3-PUFA) from tails was carried out using gas chromatography. For the feeding

experiment female C57BL/6 WT and fat-1 mice of 9–10 weeks of age were used (n = 6 per

feeding group). Before the experiment, mice were kept on a diet with 3.3% fat (1.8% LA, 0.23%

ALA in the diet, S2 Table) with water and food supply ad libitum. The chow was stored in plas-

tic bags containing an oxygen absorber at -20˚C. During the whole feeding experiment fresh

chow was provided every 2–3 days. WT mice were kept on the experimental diets for 7, 14, 30

and 45 days. In order to compare the fatty acid profile in fat-1 mice to WT mice fed with an

n3-PUFA enriched diet (maximum modulation of the fatty acid profile in blood and tissues

following 30 days of feeding; see below), fat-1 mice were kept on the standard sunflower diet

for 30 days. One group of WT and fat-1 animals was sacrificed on day 0. Animals were killed

by cervical dislocation and organs (liver, kidney, spleen, brain and colon) as well as blood (by

cardiac puncture) were collected. 10 μL of whole blood were directly diluted with 50 μL of

deionized water. For plasma and blood cell generation, blood was directly centrifuged (800 x g,

10 min, 4˚C). Plasma was collected and blood cells were washed once with phosphate buffered

saline (containing 1.5 mg/mL ethylenediaminetetraacetic acid (EDTA)) and reconstituted to

the original blood volume in phosphate buffered saline. All samples were stored at -80˚C until

further analysis.

Fatty acid analysis

Fatty acid composition was analyzed in all collected blood fractions (60 μL diluted whole

blood, 50 μL plasma and 100 μL reconstituted blood cells) and tissues (30–35 mg) as described

[41]. Briefly, blood and tissues were extracted with methanol/ methyl tert-butyl ether (1:2, v/v)

and derivatized to fatty acid methyl esters (FAME) with methanolic hydrogen chloride (acet-

ylchloride in methanol (1:10, v/v)) before analysis was carried out using gas chromatography

with flame ionization detection (GC-FID). For the calculation of the relative pattern and abso-

lute fatty acid concentrations response factors were used [41, 42]. Results are presented as

mean ± standard error of the mean (SEM).

Oxylipin analysis

Extraction and analysis of oxylipins from plasma (200 μL) and colon (50±5 mg) was carried

out as described [43]. Brain (50±5 mg) was homogenized following addition of internal stan-

dards and antioxidant solution [43, 44] in 750 μL ethyl acetate and 500 μL water (pH 6) in a

ball mill using two 3 mm metal beads (25 Hz, 5 min, Retsch, Haan, Germany). Following
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homogenization and centrifugation (20 000 x g, 5 min, 4˚C), the organic phase was collected

and the sample extracted with another 750 μL ethyl acetate. The combined organic phases

were evaporated using a vacuum centrifuge (Christ, Osterode am Harz, Germany) and the

dried lipid extract was reconstituted in 300 μL methanol. All samples were diluted to 6 mL

with water and acidified with acetic acid (to pH 3) directly before extraction on C18 cartridges

(500 mg, Macherey-Nagel, Düren, Germany). Methyl formate was used for elution. Oxylipins

were quantified by liquid chromatography-mass spectrometry (LC-MS) as described [43, 44].

Hemolytic plasma samples and samples with high TxB2 and 12-HETE—indicating improper

anticoagulation—were excluded from analysis. Results are presented as mean ± SEM.

Statistical analysis

Statistical analyses were performed as indicated using GraphPad Prism version 7.00 for Win-

dows, GraphPad Software, La Jolla California USA, www.graphpad.com.

Results

Behavior and bodyweight

During the experiment, no differences in animal behavior were observed and similar body

weights between the feeding groups (17.9–21.7 g, supplementary information, S1 Fig) indi-

cated no differences in feeding behavior.

Fatty acid profile

Fig 1 and Table 1 show the relative pattern of selected FA as well as the FA profile grouped as

saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and n6- and n3-polyunsatu-

rated fatty acids (PUFA) during the course of the feeding time. The full FA profile of blood

and tissues can be found in the SI (S3A+S3B Table).

Feeding of a diet enriched in EPA and DHA (1% EPA and 1% DHA as ethyl ester,

WT-STD+n3) led to a time dependent increase in the relative and absolute concentrations of

n3-PUFA, particularly EPA, DHA and n3 docosapentaenoic acid (22:5n3, n3-DPA), in blood

and all investigated tissues (Fig 1, Table 1, S2 Fig, S3 Table). The feeding time necessary to

reach a maximal increase was tissue dependent; however, 14–30 days were sufficient to reach

maximum level in all tissues and blood (as % of total FA, Fig 1, Table 1, S3 Table). The overall

FA pattern was changed least in brain (Table 1, S2D Fig).

After 30 days on the STD+n3 diet, EPA ranged in blood and tissues from 0.18–9.5% (brain/

plasma [min./max.]) and DHA levels ranged from 4.5–19% (colon/brain, Fig 1, Table 1).

While the absolute increase in EPA and DHA compared to baseline was in a similar range for

both FA (S3B Table), individual relative differences, expressed as mean %difference [(c

(FA)WT-STD+n3, D30—c(FA)WT, D0)/c(FA)WT, D0
�100], were remarkably higher for EPA com-

pared to DHA due to low baseline levels of EPA (S3 Fig). In all groups (WT mice on the stan-

dard, sunflower oil based diet (WT-STD), WT-STD+n3, and fat-1) EPA level in blood and

tissues were lower as compared to DHA. It should be noted, that in response to n3-PUFA feed-

ing, SFA and MUFA changed only slightly (however, significantly for MUFA in many tissues

and blood), while n6-PUFA levels, particularly ARA, were significantly decreased (Fig 1,

Table 1, S2 and S3 Figs, S6 Table).

Fat-1 mice fed 30 days with a standard, sunflower oil based diet showed higher levels of

EPA, n3-DPA and DHA in comparison to WT animals on the same diet (Fig 1, Table 1, S3B

Table) reaching statistical significance for EPA and DHA in many tissues (S7 Table). However,

compared to WT-STD+n3 mice, level of EPA and DHA were significantly lower in fat-1 mice
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(p<0.0001 for all tissues and blood, except DHA in brain, Fig 1, Table 1, S7 Table). Particu-

larly, levels of EPA were low (0.066–1.7%; brain/whole blood; Fig 1, Table 1) which is also

reflected in the high %difference of EPA between both groups (S4 Fig). Relative differences in

DHA and n3-DPA were more moderate in most tissues and blood between WT-STD+n3 and

fat-1 mice (S4 Fig).

The n6/n3 ratio in blood and tissues as well as the sum of %EPA and %DHA (%EPA

+DHA) in blood cells, a modification of the omega-3 index [45], as marker for the endogenous

n3-PUFA status are presented in Fig 2 for the different groups after 30 days on the experimen-

tal diets. Data on blood and tissues in all groups can be found in the SI (S5 Fig, S4 Table). The

n6/n3 ratio in WT-STD+n3 mice was below 2 in all tissues and blood (except colon with 3.6)

and 2.5–6.9 in fat-1 mice (except brain and colon with 0.83 and 16 respectively), being signifi-

cantly lower than in WT-STD mice with n6/n3 ratios of 5.1–20 (except brain and colon with

0.89 and 41, Fig 2A+2B). %EPA+DHA in blood cells was significantly higher (p<0.0001) in

WT-STD+n3 (17.4±0.2%) and fat-1 (7.4±0.2%) in comparison to WT-STD (3.9±0.1%,

Fig 2C).

Fig 1. Fatty acid profile in blood. Shown are relative amounts of EPA, DHA and ARA as well as the relative distribution of n3- and n6-PUFA, MUFA and

SFA in transgenic fat-1 mice and wild type animals (WT-STD) on a sunflower oil based diet, as well as in wild type mice on the same diet enriched with

EPA and DHA (WT-STD+n3) during the course of the feeding period (45 days) in (A) whole blood, (B) plasma and (C) blood cells. Analytes that were

below the limit of quantification are marked with a white filling in the diagram. Results of the statistical analyses for selected fatty acids during the course of

the feeding with the n3-PUFA enriched diet as well as for WT and fat-1 mice after 30 days on the experimental diets are shown in S6+S7 Tables.

https://doi.org/10.1371/journal.pone.0184470.g001
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Oxylipin pattern

Oxylipins were analyzed in selected tissues, i.e. plasma, colon and brain. Concentrations of all

oxylipins covered by the LC-MS method in all feeding groups in plasma, colon and brain are

presented in S5 Table. Since a steady state in the nutrition induced changes in fatty acids (see

above) was reached after 30 days, the differences between the groups are highlighted for this

time point in Fig 3 for selected oxylipins from EPA, DHA and ARA.

Table 1. Fatty acid profile in tissues. Shown are relative amounts of EPA, DHA and ARA as well as the sum of n6-PUFA, n3-PUFA, MUFA and SFA in

liver, kidney, spleen, colon and brain tissue in WT (WT-STD) and fat-1 mice after 30 days on a standard sunflower oil based diet and in WT mice on the same

diet enriched with EPA and DHA (WT-STD+n3) during the course of the feeding period (day 7–45). Results of the statistical analyses for selected fatty acids

during the course of the feeding with the n3-PUFA enriched diet as well as for WT and fat-1 mice after 30 days on the experimental diets are shown in S6+S7

Tables.

EPA DHA ARA n6-PUFA n3-PUFA MUFA SFA

Liver

WT-STD Day 30 <LOQ 3.7 ± 0.2 15.9 ± 0.9 39.5 ± 0.8 3.8 ± 0.2 24 ± 2 33 ±1

fat-1 Day 30 0.16 ± 0.02 6.8 ± 0.5 13.2 ± 0.7 36.7 ± 0.6 7.2 ± 0.5 24 ± 2 32 ± 1

WT-STD+n3 Day 7 6.1 ± 0.4 14.7 ± 0.3 7.8 ± 0.2 26.8 ± 0.6 22.3 ± 0.6 13.5 ± 0.5 37.4 ± 0.3

Day 14 4.4 ± 0.2 11.1 ± 0.4 5.9 ± 0.4 27 ± 1 17.0 ± 0.6 21 ± 1 35.1 ± 0.8

Day 30 5.4 ± 0.4 14.1 ± 0.8 5.1 ± 0.2 26.3 ± 0.5 21 ± 1 19 ± 2 34.7 ± 0.5

Day 45 4.2 ± 0.5 12.5 ± 0.5 6.1 ± 0.2 29 ± 1 18.1 ± 0.9 18.9 ± 0.6 34.4 ± 0.5

Kidney

WT-STD Day 30 0.015 ± 0.002 7.4 ± 0.6 22 ± 2 38.8 ± 0.7 7.7 ± 0.6 16 ± 2 38.0 ± 0.6

fat-1 Day 30 1.01 ± 0.07 12.1 ± 0.3 20.3 ± 0.6 35.5 ± 0.5 13.9 ± 0.4 12.1 ± 0.5 38.5 ± 0.3

WT-STD+n3 Day 7 4.6 ± 0.1 14.9 ± 0.7 12.9 ± 0.8 27.8 ± 0.3 20.6 ± 0.8 13 ± 1 39.1 ± 0.3

Day 14 5.2 ± 0.2 16.3 ± 0.7 10.9 ± 0.6 25.7 ± 0.2 22.6 ± 0.8 13 ± 1 38.7 ± 0.2

Day 30 6.3 ± 0.3 18.0 ± 0.5 10.3 ± 0.4 24.6 ± 0.2 25.5 ± 0.6 11.0 ± 0.7 39.0 ± 0.2

Day 45 6.2 ± 0.2 16.5 ± 0.7 9.5 ± 0.5 25.2 ± 0.3 23.9 ± 0.9 13 ± 1 38.1 ± 0.4

Spleen

WT-STD Day 30 0.035 ± 0.007 2.6 ± 0.1 20.4 ± 0.8 39 ± 1 3.0 ± 0.1 16 ± 2 42.8 ± 0.5

fat-1 Day 30 1.6 ± 0.2 4.9 ± 0.6 14 ± 1 31.2 ± 0.2 9 ± 1 18 ± 3 41 ± 1

WT-STD+n3 Day 7 3.58 ± 0.07 9.8 ± 0.3 10.5 ± 0.5 25.7 ± 0.4 17.8 ± 0.4 13.3 ± 0.9 43.2 ± 0.2

Day 14 4.0 ± 0.1 10.3 ± 0.2 8.3 ± 0.4 23.4 ± 0.4 18.7 ± 0.4 14.8 ± 0.7 43.0 ± 0.3

Day 30 4.3 ± 0.1 11.2 ± 0.2 7.7 ± 0.2 23.2 ± 0.2 20.1 ± 0.5 13.1 ± 0.7 43.6 ± 0.3

Day 45 3.8 ± 0.2 10.5 ± 0.6 6.9 ± 0.5 23.6 ± 0.2 19 ± 1 16 ± 2 42.1 ± 0.9

Brain

WT-STD Day 30 <LOQ 17.1 ± 0.3 11.3 ± 0.2 15.5 ± 0.3 17.2 ± 0.3 20.5 ± 0.6 46.8 ± 0.2

fat-1 Day 30 0.066 ± 0.005 16.3 ± 0.9 9.8 ± 0.8 14.0 ± 0.9 16.5 ± 0.9 25 ± 3 45 ± 1

WT-STD+n3 Day 7 0.15 ± 0.02 16.7 ± 0.4 10.3 ± 0.3 14.3 ± 0.4 17.1 ± 0.4 23 ± 1 46.0 ± 0.4

Day 14 0.14 ± 0.01 17.4 ± 0.3 10.6 ± 0.2 14.6 ± 0.3 17.9 ± 0.3 20.9 ± 0.7 46.6 ± 0.3

Day 30 0.18 ± 0.01 19.0 ± 0.3 9.5 ± 0.2 13.2 ± 0.2 19.6 ± 0.3 21.2 ± 0.5 46.0 ± 0.2

Day 45 0.16 ± 0.01 17.4 ± 0.5 8.8 ± 0.2 15.8 ± 0.4 15.8 ± 0.6 20 ± 1 48.7 ± 0.3

Colon

WT-STD Day 30 0.048 ± 0.010 0.73 ± 0.13 5.7 ± 1.0 35.5 ± 0.8 0.96 ± 0.15 35± 1 29.0 ± 0.8

fat-1 Day 30 0.65 ± 0.22 1.5 ± 0.5 4.7 ± 1.4 32 ± 1 2.9 ± 0.8 35 ± 2 31 ± 1

WT-STD+n3 Day 7 1.8 ± 0.3 3.5 ± 0.4 2.8 ± 0.8 28.8 ± 0.6 6.7 ± 0.7 32 ± 2 32.9 ± 0.8

Day 14 2.8 ± 0.4 5.0 ± 0.5 3.6 ± 0.6 26.0 ± 0.6 9.2 ± 0.8 30 ± 1 34.6 ± 0.7

Day 30 2.0 ± 0.2 4.5 ± 0.3 1.8 ± 0.4 27.5 ± 0.6 7.7 ± 0.5 30.5 ± 0.9 34.2 ± 0.6

Day 45 3.0 ± 0.4 5.7 ± 0.2 3.5 ± 0.4 27.4 ± 0.5 10.2 ± 0.6 27.4 ± 0.8 35.0 ± 0.3

https://doi.org/10.1371/journal.pone.0184470.t001
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Feeding of a diet enriched with n3-PUFA (1% EPA and 1% DHA as ethyl ester) led to high

changes in the oxylipin pattern of plasma, brain and colon, especially in the first seven days of

feeding (S5 Table). Due to low basal concentrations of EPA metabolites, their relative increase

was overall higher compared to DHA metabolites (exemplary shown for 30 days of feeding in

SI S6 Fig) while absolute increases in EPA and DHA metabolites were similar (except in brain,

S5 Table). Reductions of the circulating ARA eicosanoids were less consistent compared to

trends in the FA while ARA eicosanoids in colon and brain were uniformly decreased (S6 Fig).

After 30 days on the standard sunflower oil based diet, concentrations of EPA and DHA

metabolites in plasma of fat-1 mice were elevated, yet not significantly, compared to WT-STD

mice (Fig 3, S8A Table). However, reflecting changes in FA, concentrations of EPA and DHA

oxylipins in fat-1 mice were significantly lower compared to WT-STD+n3 (Fig 3, S8A Table).

Particularly, concentrations of oxylipins formed in the LOX and CYP pathway were high,

dominating the oxylipin profile in plasma of WT-STD+n3 mice, while COX metabolites were

barely altered. Interestingly, the sum of plasma oxylipins was highly elevated in WT-STD+n3

compared to fat-1 and WT-STD (S7I Fig). Comparing the ratio of precursor PUFA and their

Fig 2. n6/n3 ratio in blood as well as tissues and %EPA+DHA in blood cells. Shown is the n6/n3 ratio in blood (A) and

in tissues (B), as well as %EPA+DHA in blood cells (C) in transgenic fat-1 mice and wild type animals (WT-STD) on a

standard sunflower oil based diet, as well as in wild type mice on the same diet enriched with EPA and DHA (WT-STD+n3)

after 30 days of feeding. The n6/n3 ratio was calculated as %(C18:2 n6, C18:3 n6, C20:3 n6, C20:4 n6, C22:4n6)/ %(C18:3

n3, C20:5 n3, C22:5 n3, C22:6 n3). Statistical differences were determined using one-way ANOVA followed by Tukey’s

post test (*** p<0.001, **** p<0.0001).

https://doi.org/10.1371/journal.pone.0184470.g002

n3-PUFA & oxylipin pattern in fat-1 vs. dietary supplementation

PLOS ONE | https://doi.org/10.1371/journal.pone.0184470 September 8, 2017 8 / 19

https://doi.org/10.1371/journal.pone.0184470.g002
https://doi.org/10.1371/journal.pone.0184470


oxidative products in all feeding groups, an almost linear correlation (R2>0.8) resulted for

CYP and LOX metabolites (Fig 4). The slope of>2 indicates that moderate changes in the con-

centrations of EPA or DHA led to a more pronounced change in the concentrations of their

oxylipins.

In colon and brain tissue both, fat-1 and WT-STD+n3 mice showed a shift in the absolute

and relative pattern towards n3-PUFA derived oxylipins after 30 days on the experimental

diets in comparison to WT-STD mice (Fig 3, S7II Fig). As in plasma, WT-STD+n3 mice

showed higher concentrations of n3-PUFA oxylipins compared to fat-1. However, differences

between both groups were less pronounced, yet statistically significant in colon for many ana-

lytes, compared to plasma (Fig 3, S7I and S8 Figs, S8B+S8C Table). Additionally, in colon and

brain tissue the sum of all oxylipins was decreased (S7I Fig). Although DHA in brain tissue

showed minor differences between the feeding groups after 30 days on the experimental diets,

Fig 3. Concentrations of oxylipins. Presented are concentrations of selected prostanoids, 5-LOX, 12-LOX, 15-LOX, CYP4 and CYP2 products of ARA,

EPA and DHA as well as 18-HEPE in (A) plasma, (B) brain and (C) colon in transgenic fat-1 mice and wild type animals (WT-STD) on a sunflower oil based

diet, as well as in wild type mice on the same diet enriched with EPA and DHA (WT-STD+n3) after 30 days of feeding. The lower limit of quantification

(LLOQ) for the analyte is indicated in case it was not exceeded in >50% of the samples per group. Results of the statistical analyses for the comparison of

oxylipins between the feeding groups after 30 days on the experimental diets are shown in S8 Table.

https://doi.org/10.1371/journal.pone.0184470.g003
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DHA derived docosanoids were uniformly higher in WT-STD+n3 and fat-1 mice as compared

to WT-STD mice (Fig 3B), reaching statistical significance for some HDHAs (S8C Table). As

for EPA, concentrations of EPA-eicosanoids in brain were low.

The increase in n3-PUFAs observed in plasma, brain and colon of WT-STD+n3 and fat-1
compared to WT-STD was accompanied by a decrease in most ARA derived eicosanoids

(Fig 3, S7I Fig, S5 Table). Similar to the higher level of n3-PUFA oxylipins in WT-STD+n3

compared to fat-1, concentrations of ARA metabolites in plasma and colon were lower in

WT-STD+n3 than in fat-1, reaching statistical significance for many eicosanoids in colon. In

brain, ARA eicosanoid levels in both groups were similar.

Discussion

Feeding of n3-PUFAs EPA and DHA with the diet led to significantly higher concentrations of

respective fatty acids in blood and tissues compared to WT mice on a standard sunflower diet

as reported earlier in rodents [12, 19–22]. In men, similar observations were made following

EPA+DHA supplementation, however, changes were more moderate caused by lower supple-

mentation levels of n3-PUFA [46–52]. After 14–30 days of feeding a sunflower oil based diet

Fig 4. Correlation between plasma n3-PUFA/n6-PUFA oxylipins and the ratio of their precursor fatty acids. The ratio of CYP metabolites

(sum of epoxy-FA and dihydroxy-FA) from EPA (A) and DHA (B) to the respective ARA metabolites are plotted against the ratio of their precursor

PUFA. In panel C-D the same correlation is shown for selected 12-LOX metabolites (12-HETE and 14-HDHA). The slope of the linear regression

and the correlation coefficient were calculated based on all feeding groups of the experiment.

https://doi.org/10.1371/journal.pone.0184470.g004
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enriched with 1% EPA and 1% DHA, levels of both FA reached a maximum steady state. This

data suggests that studies aiming to investigate the effect of n3-PUFA need to implement a

pre-feeding period of at least 14–30 days in order to maximally modulate the fatty acid profile.

Fat-1 mice showed significantly lower concentrations of n3-PUFA as compared to supple-

mented WT mice which was most pronounced for EPA, being 2.7–34 fold lower in blood and

tissues, while DHA concentrations were at most threefold lower at maximum steady state at 30

days and thereafter (Fig 1, Table 1). This can be explained by the genetic background of these

animals. In the fat-1 mouse model the fat-1 gene of the roundworm C. elegans was introduced

into the DNA of C57BL/6 wildtype mice. As a consequence, these animals are able to bio-

synthesize n3- from n6-PUFA [26]. In C. elegans, different n6-PUFA, such as LA, C20:3 n6

and ARA are converted by the n3 desaturase, encoded by the fat-1 gene, resulting in ALA,

C20:4 n3 and EPA, respectively [53]. The roundworm lacks further elongase activity. There-

fore, the biosynthetic fatty acid pathway stops at EPA, being the most abundant PUFA in the

worm [53]. By contrast, in mammals EPA can be further elongated to n3-DPA which in turn

can be converted via C24:5 n3 to DHA [17, 18]. These reactions occur at high rates, e.g. 63%

(EPA to n3-DPA) and 37% (n3-DPA to DHA) in humans [54]. EPA biosynthesis in mammals

from the essential ALA, however, is low—caused by the rate limiting desaturation of ALA to

C18:4 n3 in combination with high dietary LA and low ALA consumption [19, 20]. This results

in low endogenous EPA levels compared to DHA, being <0.05% in WT mice on a standard

sunflower oil based diet in most tissues and blood (Fig 1, Table 1) or two- to tenfold lower

than DHA in blood of non-supplemented humans [46, 47, 49–52].

Due to n3 desaturase activity in fat-1 mice, endogenous EPA formation is higher compared

to WT mice. However, further metabolism by mammalian enzymes again results in high DHA

concentrations compared to EPA, e.g. 6.8% (DHA) vs. 0.16% (EPA) in liver, which is consis-

tent with previous results [29]. Thus, n3 desaturase activity led to high DHA levels in fat-1
while EPA levels were in the low range.

Levels of intermediary formed n3-DPA were in the same range as EPA levels in fat-1 mice,

supporting higher conversion rates of EPA to n3-DPA than of n3-DPA to DHA as observed in

humans [54]. This finding is also supported by levels of n3-DPA in STD fed WT mice, which

were higher compared to EPA levels in all investigated tissues and blood cells. However, it

should be noted, that n3-DPA might also be formed in the process of DHA retroconversion:

Following a single dose of 3 mg [13C]22:6-triacylglycerol to male rats (300 g), retroconversion

was found to be 9% of the total plasma [13C]22:6 n3 (estimated by [13C]22:5 n3+[13C]20:5 n3

in plasma lipids) [55].

The n6/n3 ratio, a frequently used marker to describe the endogenous n3-PUFA status [19,

25, 28, 29, 32, 34, 56] was significantly reduced in fat-1 compared to WT animals on a standard

diet. Although calculated slightly different, the observed n6/n3 ratios were comparable, how-

ever, a little higher than ratios observed by Kang et al. [26]. Feeding of WT animals with a diet

enriched with 1% EPA and 1% DHA led to significantly lower n6/n3 ratios. It remains to be

determined if this is also associated with a higher degree of protection. In a model of Parkin-

son’s disease this seems to be the case: Fat-1 mice did not show a neuroprotective effect [35],

while n3-PUFA supplementation did [25]. The lack of efficiency in the fat-1 mouse model

might be due to a lower modulation of the endogenous n3 and n6 PUFA profile compared to

supplementation, as discussed by Bousquet et al. [35].

The %EPA+DHA in blood cells for the description of the endogenous n3-PUFA status is a

modification of the omega-3 index which is discussed as a risk factor for cardiovascular dis-

eases in humans [45, 57]. In fat-1 mice, %EPA+DHA in blood cells was 7.4±0.2%. Translating

from mouse to man, these levels were in the range of an omega-3 index that has been shown to

be correlated with a lower cardiovascular risk, e.g. for mortality from coronary heart disease

n3-PUFA & oxylipin pattern in fat-1 vs. dietary supplementation

PLOS ONE | https://doi.org/10.1371/journal.pone.0184470 September 8, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0184470


(omega-3 index>8%, [45, 57]). %EPA+DHA in blood cells of fat-1 mice was also comparable

to the omega-3 index observed in healthy volunteers following supplementation (0.46–1.6 mg/

d EPA and 0.38–1.1 g/d DHA for up to 12 weeks) which ranged from 8.4–11% (calculated

from the means presented for EPA and DHA as %of total FA [46, 49, 50]). However, the ratio

of DHA to EPA in fat-1 mice was 7 while in humans after supplementation this ratio was on

average two [46, 49, 50]. Thus, individual level of EPA and DHA were differently modulated in

fat-1 mice compared to n3-PUFA supplementation with almost equal amounts of EPA and

DHA. Keeping in mind that EPA and DHA effects might be different (e.g. EpDPEs were more

effective in reducing pain than EpETEs in a model of pain associated with inflammation [58]),

care must be taken when directly transferring results obtained from the fat-1 mouse model to

humans. In response to higher endogenous level of n3-PUFA the share of n6-PUFA, such as

ARA and related FA, was decreased which is consistent with previous findings in n3-PUFA

fed animals on a dietary background high in LA [12, 21, 22] and fat-1 mice [27–29, 31–36].

Thus, EPA and DHA supplementation directly led to a notable displacement of ARA, which is

a common explanation for their anti-inflammatory action [1–3]. This theory is based on the

assumption that most ARA derived oxylipins act pro-inflammatory and that n3-PUFA com-

pete for conversion by the same enzymes yielding, e.g., less potent, EPA derived PGE3 or LTB5

[1, 7]. However, it should be noted, that many n3-PUFA derived oxylipins also possess anti-

inflammatory properties [3, 7]. A pro-inflammatory phenotype might thus also result from

a lack of n3-PUFA oxylipins. Nevertheless, our study supports a replacement of ARA by

n3-PUFA on the level of oxylipins, reflecting the changes observed for PUFA (Fig 3): While

oxylipin levels in WT animals on a standard diet—in line with the high ARA level—were dom-

inated by ARA derived oxylipins, the pattern shifted to n3-PUFA derived ones in fat-1 and

n3-PUFA fed animals. This is consistent with previous results, showing similar trends for free

oxylipins [38] and esterified OH-FA [37] in fat-1 mice as well as for esterified CYP metabolites

in plasma and tissues of rodents [12]. It should be noted that in general the modulation of the

oxylipin pattern was more pronounced for n3-supplemented than for fat-1 mice compared to

WT mice on the standard diet. As a result, n3-PUFA feeding led overall to higher concentra-

tions of n3-PUFA derived oxylipins and lower ARA derived eicosanoids (except in brain)

compared to fat-1 mice.

As shown in Fig 3 for exemplary oxylipins, the product patterns of the LOX (5, 12 and 15)

and CYP (hydroxylation and epoxygenation) pathways in plasma after n3-PUFA feeding were

dominated by EPA and DHA oxylipins. This is somewhat remarkable, since ARA remained a

dominating PUFA (6.7% ARA vs. 9.5% EPA vs. 11% DHA in plasma of WT-STD+n3 mice,

Fig 1) and indicates a preferred formation of n3-PUFA oxylipins over ARA derived ones. The

ratio of substrates and products for CYP and LOX (Fig 4) found in this study suggests that a

preference of the enzymes could explain part of the effect. However, the moderate preference

of, e.g., epoxygenating and hydroxylating CYP enzymes for DHA or EPA over ARA (ARA:

EPA:DHA 1:4:1.5 for CYP2J2) [12, 59] alone seems not to sufficiently explain the massive dif-

ference observed in the overall pattern of oxylipins in plasma. Interestingly, in tissues, the

dominance of LOX and CYP derived n3-PUFA oxylipins was less pronounced and concentra-

tions were mostly in a similar range as ARA derived eicosanoids which indicates a tissue spe-

cific regulation. Nevertheless, our findings once more show that a moderate shift in the fatty

acid pattern causes a pronounced increase in their oxidation products.

In contrast, only a slight shift in ARA derived eicosanoids to n3-PUFA oxylipins was

observed for COX products in plasma and tissues. While absolute concentrations of COX

derived ARA metabolites were similarly decreased as LOX and CYP products, EPA metabolite

concentrations in fat-1 and n3-PUFA fed mice were still very low compared to their ARA

derived counterparts. This can be explained by the low conversion rate of n3-PUFA by COX
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[60] leading on the one hand to low EPA-product formation and on the other hand to inhibi-

tion of ARA conversion by COXs.

It is interesting that compared to plasma and brain the highest concentrations of oxylipins

from all three branches of the ARA cascade were found in colon, although the share of EPA,

DHA and ARA among all FA in colon was low compared to other tissues and blood. Particu-

larly COX metabolites were found in high concentrations, indicating an important role of

these lipid mediators in homeostasis. Distinct differences in the oxylipin pattern were found

between fat-1 and WT mice on the STD diet in colon. While relative changes in ARA and

DHA metabolites were moderate, EPA metabolites from all enzymatic pathways were mas-

sively increased in fat-1 compared to WT-STD mice. This high increase may in part explain

the effectiveness of the fat-1 model in colitis and colitis-associated colon cancer [27, 28, 32,

33]. While specialized pro-resolving mediators (SPM) derived from EPA were not found in

colon tissue of fat-1 mice, 18-HEPE for example, as anti-inflammatory pathway indicator and

precursor for E series resolvins [61] with unclear formation pathway, was highly increased.

In brain, only slight modulations in the fatty acid profile were found between the groups.

Differences in oxylipins, however, were pronounced. This may have resulted from residual

blood in the tissue, although highest care was taken during sample preparation. Nonetheless,

the pronounced effect on brain oxylipin levels by n3-PUFA warrants further investigation.

Overall, the fatty acid and oxylipin pattern in fat-1 mice and n3 supplemented mice were

modulated to higher concentrations of n3-PUFA and their metabolites in blood and tissues

compared to WT mice on a standard sunflower diet. In general, the modulation in fat-1 mice

was lower compared to n3-PUFA supplementation. The applicability of the fat-1 mouse model

to investigate n3-PUFA associated effects, however, has been demonstrated in various disease

models, e.g. colon inflammation or hepatitis [27–34, 36]. Since levels of EPA+DHA in blood

cells of fat-1 mice were comparable to humans after supplementation, this model mimics

n3-PUFA concentrations readily achievable with dietary supplementation. However, levels of

the individual FA, particularly EPA were different, which might result in different physiologi-

cal effects. An advantage of the fat-1 mouse model in comparison to feeding of n3-PUFA is the

possibility of using one standard diet for the experimental groups. Therefore, confounding fac-

tors which might be introduced by the use of different experimental diets [56] or degradation

of oxidation prone PUFA to potentially bioactive compounds [62] are reduced. However, for

several questions, this model might not be suitable, particularly for the investigation of concen-

tration dependent effects or the optimization of the dietary n6/n3 ratio needed for protection

against diseases [63]. Here, feeding studies using defined concentrations of n3-PUFA in the

diet in combination with an effective feeding regime are the most suitable approach. Another

drawback of the fat-1 mouse model is that a discrimination between individual effects derived

from DHA and EPA is not possible while the diet for feeding studies can be modulated

accordingly.

Given the large amount of biologically relevant effects observed in studies using fat-1 mice,

these results indicate that efficacy of n3-PUFA, and their derived oxylipins, might thus be

found already in the context of rather low endogenous levels of n3-PUFA which could be easily

achieved—and even surpassed—by dietary interventions. However, for some questions, e.g.

the in depth and concentration dependent effects of (individual) n3-PUFA in vivo, feeding

studies remain the model of choice.
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S2 Fig. Relative distribution of fatty acid classes in tissues.

(TIF)

S3 Fig. Mean %difference of relative levels of EPA (A), DHA (B), n3 DPA (C) and ARA

(D) in WT animals after 30 days on a sunflower oil based diet enriched with EPA and

DHA in comparison to baseline (WT mice, D0).

(TIF)

S4 Fig. Mean% difference of relative levels of EPA (A), DHA (B), n3 DPA (C) and ARA

(D) in WT animals after 30 days on a sunflower oil based diet enriched with EPA and

DHA in comparison to fat-1 mice after 30 days on standard sunflower diet.

(TIF)

S5 Fig. %EPA+DHA in blood fractions (A) and in tissues (B).

(TIF)

S6 Fig. Mean% difference of selected oxylipin concentrations in (A) plasma (B) brain and

(C) colon in WT animals after 30 days on a sunflower oil based diet enriched with EPA

and DHA in comparison to baseline (WT mice, D0).

(TIF)

S7 Fig. Sum (I) and relative profile (II) of all EPA, DHA and ARA derived oxylipins cov-

ered by the LC-MS method.

(TIF)

S8 Fig. Mean %difference of selected oxylipin concentrations in (A) plasma (B) brain and

(C) colon in WT animals after 30 days on a sunflower oil based diet enriched with EPA

and DHA (WT-STD+n3) in comparison to fat-1 mice after 30 days on standard sunflower

diet.

(TIF)
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S6 Table. Statistical comparison of the fatty acid profile during the course of the feeding
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S7 Table. Statistical comparison of the fatty acid profile in transgenic fat-1 mice and wild
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mice on the same diet enriched with EPA and DHA (WT-STD+n3) after 30 days of feed-

ing.
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S8 Table. Statistical comparison of the oxylipin profile in fat-1 mice and wild type animals
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