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Abstract  1 

Background Cardiac ischemic injury induces a pathological remodeling response, which can 2 

ultimately lead to heart failure. Detailed mechanistic insights into molecular signaling pathways 3 

relevant for different aspects of cardiac remodeling will support the identification of novel 4 

therapeutic targets. 5 

Methods While genome-wide transcriptome analysis on diseased tissues has greatly advanced 6 

our understanding of the regulatory networks that drive pathological changes in the heart, this 7 

approach has been disadvantaged by the fact that the signals are derived from tissue 8 

homogenates. Here we used tomo-seq to obtain a genome-wide gene expression signature with 9 

high spatial resolution spanning from the infarcted area to the remote to identify new regulators 10 

of cardiac remodeling. Cardiac tissue samples from patients suffering from ischemic heart 11 

disease were used to validate our findings. 12 

Results Tracing transcriptional differences with a high spatial resolution across the infarcted 13 

heart enabled us to identify gene clusters that share a comparable expression profile. The spatial 14 

distribution patterns indicated a separation of expressional changes for genes involved in specific 15 

aspects of cardiac remodeling, like fibrosis, cardiomyocyte hypertrophy, and calcium-handling 16 

(Col1a2, Nppa, and Serca2). Subsequent correlation analysis allowed for the identification of 17 

novel factors that share a comparable transcriptional regulation pattern across the infarcted 18 

tissue. The strong correlation between the expression levels of these known marker genes and the 19 

expression of the co-regulated genes could be confirmed in human ischemic cardiac tissue 20 

samples.  21 

Follow-up analysis identified SOX9 as common transcriptional regulator of a large portion of the 22 

fibrosis-related genes that become activated under conditions of ischemic injury. Lineage-tracing 23 



 3 

experiments indicated the majority of COL1-positive fibroblasts to stem from a pool of SOX9-1 

expressing cells and in vivo loss of Sox9 blunted the cardiac fibrotic response upon ischemic 2 

injury. The co-localization between SOX9 and COL1 could also be confirmed in patients 3 

suffering from ischemic heart disease. 4 

Conclusions Based on the exact local expression cues, tomo-seq can serve to reveal novel genes 5 

and key transcription factors involved in specific aspects of cardiac remodeling. Using tomo-seq 6 

we were able to unveil the unknown relevance of SOX9 as key regulator of cardiac fibrosis, 7 

pointing to SOX9 as potential therapeutic target for cardiac fibrosis.  8 

 9 

Keywords remodeling; ischemic heart disease; fibrosis; Sox9  10 
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Clinical Perspective 1 

What Is New? 2 

• SOX9 is a key regulator of cardiac fibrosis after ischemic injury in mice by regulating the 3 

expression of many extracellular matrix-related proteins. 4 

• SOX9 is induced in cardiac tissue from patients suffering from ischemic heart disease 5 

and co-localizes with COL1 expression. 6 

• Reduced levels of SOX9 lead to less cardiac fibrosis after ischemic injury in mice. 7 

• Tomo-seq can be used to identify new players in cardiac biology and disease. 8 

What Are the Clinical Implications? 9 

• Our data suggest that therapeutic inhibition of SOX9 in the diseased heart could lead to a 10 

reduction in cardiac fibrosis. 11 

 12 

  13 



 5 

Introduction 1 

Ischemic heart disease induces a heterogeneous remodeling response across the damaged area 2 

that involves fibroblast activation, cardiomyocyte hypertrophy and changes in calcium handling, 3 

all of which are eventually detrimental for cardiac function.1, 2 Fibroblast activation and 4 

cardiomyocyte hypertrophy occur as a direct effect of the local stress signals caused by the loss 5 

of viable tissue in the infarcted area. Subsequently, there is a decline in contractility of the 6 

surviving cardiomyocytes, which is caused by a change in metabolism and calcium handling 7 

genes.3  8 

Genome-wide transcriptome analysis on extracts from diseased tissues has significantly 9 

enhanced our understanding of the gene regulatory networks that drive these pathological 10 

changes in the heart.4, 5 However, to date, these approaches have been disadvantaged by the fact 11 

that the signals are derived from tissue homogenates, which inherently causes the loss of spatial 12 

information and dilutes out more localized expression signatures. Recent developments in RNA 13 

amplification strategies provide the opportunity to use small amounts of input RNA for genome-14 

wide sequencing. Here we use tomo-seq6 to obtain a genome-wide gene expression signature 15 

with high spatial resolution spanning from the infarcted area to the remote. Tracing 16 

transcriptional differences across the infarcted heart enabled us to identify clusters of genes with 17 

a comparable gene expression profile. In these individual clusters we recognized genes with 18 

well-known functions in specific aspects of heart remodeling, such as Col1a2 for fibrosis, Nppa 19 

for cardiomyocyte hypertrophy, or Serca2 for contractility. Correlation analyses using the spatial 20 

distribution patterns of these marker genes allowed for the identification of novel factors that 21 

share a comparable transcriptional regulation pattern across the infarcted tissue. Subsequent 22 

functional annotation analysis indicated that these genes could be linked to the known gene 23 



 6 

function of their reference gene. The strong correlation between the expression levels of the 1 

markers genes and the expression of the co-regulated genes could be confirmed in human 2 

ischemic tissue samples.  3 

Our data show that the high spatial resolution in gene expression signatures obtained by tomo-4 

seq reveals new regulators, genetic pathways and transcription factors that are active in well-5 

defined regions of the heart and potentially involved in specific aspects of heart disease. Using 6 

this technique, we identified SOX9 as a potent regulator of many of the Col1a2 co-regulated 7 

genes. In vivo loss of Sox9 reduced the expression of many extracellular matrix (ECM) genes 8 

which coincided with a blunted cardiac fibrotic response upon ischemic injury. These data unveil 9 

the currently unknown relevance of SOX9 as key regulator of cardiac fibrosis and underscores 10 

that tomo-seq can be used to increase our mechanistic insights into cardiac remodeling to help 11 

guide the identification of novel therapeutic candidates. 12 

 13 

 14 

Methods 15 

An expanded Methods section is available in the Supplemental Material online. Primers used to 16 

create ISH probes and for real-time PCR analysis are listed in the Supplemental Tables 7 and 8, 17 

respectively. 18 

 19 

Ischemia reperfusion model 20 

Animal experiments were performed in accordance with the institutional review committee at the 21 

Hubrecht Institute. Mice were randomly subjected to either sham or ischemia reperfusion surgery 22 



 7 

as previously described.7 Two weeks after surgery, cardiac tissue was collected for further 1 

analysis. 2 

 3 

Tomo-seq 4 

Tomo-seq experiments were performed as described elsewhere.6 In short, 2.5 mm wide portions 5 

of cardiac mouse tissue spanning from the infarct towards the remote region of the left 6 

ventricular anterior wall were embedded in tissue freezing medium, frozen on dry ice, and 7 

cryosectioned into 48 slices of 80 μm thickness. We extracted RNA from individual slices and 8 

prepared barcoded Illumina sequencing libraries according to the CEL-seq protocol.8 Paired-end 9 

reads obtained by Illumina sequencing were aligned to the transcriptome using BWA.9 The 5’ 10 

mate of each pair was used for mapping, discarding all reads that mapped equally well to 11 

multiple loci. The 3’ mate was used for barcode information. Reads counts were normalized to 12 

the same number of total reads per section. Tomo-seq data analysis was performed in MATLAB 13 

(MathWorks) using custom-written code. For data analysis we used an expression cut-off of >4 14 

reads in >1 section. In differential expression analysis (Figure 1C), we determined the boundary 15 

between remote and infarcted zone based on the spatial partitioning detected by pairwise 16 

comparison of sections across all genes in one biological replicate (Figure 1B). For the infarcted 17 

zone, we used sections 1-26, and for the remote zone we used sections 29-47. The border zone 18 

(sections 27-29) was omitted in order to reduce ambiguity in assignment of sections to zones. We 19 

then compared the sections within and outside the infarcted zone and assessed statistical 20 

significance with Wilcoxon rank sum test. For this analysis, each section was considered as an 21 

independent measurement. Furthermore, filtering was applied for genes that showed at least a 22 

two-fold expression difference between remote and infarcted zone. For this analysis, the mean 23 
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expression levels for each gene in the two zones was calculated. Concerning the hierarchical 1 

clustering, expression traces of the genes that passed the differential expression filter in Figure 2 

1C were used for analysis. The data was standardized by Z-score normalization (along rows of 3 

data) so that the mean expression is zero and the standard deviation is 1 in order to remove 4 

differences in expression level between genes. Euclidean distance was used as distance metric. 5 

The assignment of genes to clusters I-III (Figure 1D) was determined manually considering the 6 

similarity in gene expression pattern across the ischemic heart. 7 

 8 

SOX9 animal models 9 

Sox9 (Sox9fl/fl) mutant mice harboring two loxP sites flanking the exons 2-3 10 were crossed with 10 

Rosa26-CreERT2 mice (R26CreERT2) to obtain an inducible Sox9 loss-of-functional model 11 

(Sox9fl/+;R26CreERT2). For lineage tracing studies, mice expressing CreERT2 under the control of 12 

the Sox9 promoter 11 were bred with the Rosa26-tdTomato reporter mouse (R26RTdT) to obtain 13 

Sox9CreERT2;R26RTdT mice. To induce the CreERT2 protein, Sox9fl/+;R26CreERT2 and 14 

Sox9CreERT2;R26RTdT mice were injected with Tamoxifen (corn oil/ethanol) intraperitoneally (2 15 

mg at the day of surgery and 2 and 4 days after injury). Control mice (referred to as 16 

Sox9fl/+;R26CreERT2 Vehicle) received an equal volume of the vehicle that was used to deliver 17 

Tamoxifen. 18 

 19 

Pathway and transcription factor binding site enrichment   20 

To investigate whether genes share a similar biological function, we searched for over-21 

representation in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway using 22 



 9 

DAVID.12 The enriched genes in the KEGG pathway are shown as p values corrected for 1 

multiple hypothesis testing using the Benjamini-Hochberg method.  2 

Detection of over-represented conserved transcription factor binding sites in the set of genes 3 

spatially co-regulated to Col1a2 was determined using single site analysis in oPOSSUM 3.0 4 

(online software). The enrichment of SOX9 binding sites was determined using the Z-score, 5 

which uses the normal approximation to the binomial distribution to compare the rate of 6 

occurrence of a TFBS in the set of target genes to the expected rate estimated from the pre-7 

computed background set.  8 

 9 

Human heart samples 10 

Approval for studies on human tissue samples was obtained from the Medical Ethics Committee 11 

of the University Medical Center Utrecht, The Netherlands (12#387). Written informed consent 12 

was obtained or in certain cases waived by the ethics committee when obtaining informed 13 

consent was not possible due to death of the patient. In this study, we included tissue from the 14 

left ventricular free wall of patients with end-stage heart failure secondary to ischemic heart 15 

disease. This end-stage heart failure tissue was obtained at explanation of the failing heart during 16 

heart transplantation or at autopsy. For each case, three areas of the infarcted heart tissue were 17 

included; 1) infarct zone, 2) border zone, and 3) remote area. For in situ hybridization (ISH) 18 

analysis, three patients were included. From these patients, the border zone of the infarcted 19 

hearts was used for ISH to verify tomo-seq. Gene expression values in infarct zone, border zone, 20 

and remote area obtained by real-time PCR were plotted for correlation analysis. Left ventricular 21 

free wall of non-failing donor hearts that could not be transplanted for technical reasons, were 22 



 10 

used for comparison. In these cases, neither donor patient histories, nor echocardiography 1 

revealed signs of heart disease. 2 

 3 

Statistical analysis 4 

Values are presented as mean ± s.e.m. Previous studies were used to predetermine sample size. 5 

Statistical analyses between two groups were conducted using the two-tailed unpaired or paired 6 

Student's t-test or a Mann-Whitney test when the normality assumption was not met. Comparison 7 

among more than two groups was performed using a two-way ANOVA with Bonferroni’s post-8 

hoc test. Pearson's correlation coefficients were used to calculate gene pair correlation based on 9 

gene expression in human samples. KEGG pathways are ranked by their respective p value 10 

corrected for multiple hypothesis testing using the Benjamini-Hochberg method. p value <0.05 11 

was interpreted to denote statistical significance. Prism 6 (GraphPad Software, Inc.) was used for 12 

statistical analyses. 13 

 14 

Results 15 

Tomo-seq performed on the infarcted mouse heart. 16 

To obtain precise spatial information on local gene expression changes occurring in the heart in 17 

response to ischemic injury, we collected cardiac tissue from infarcted mice exposed to one hour 18 

of ischemia followed by either one or fourteen days of reperfusion (1 and 14 dpIR) and harvested 19 

tissue from sham-operated mice as control (Sham) (Figure 1A and Supplemental Figure 1).7 20 

Histological and molecular analysis confirmed a classical cardiac remodeling response in our 21 

model of ischemic injury, as exemplified by cardiac hypertrophy (Hematoxylin and Eosin 22 

staining, H&E), fibrosis (Sirius Red staining) and a change in expression of cardiac markers 23 

(Supplemental Figure 1).7 Using microdissection, a small portion of the anterior wall of the left 24 
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ventricle spanning from the infarct towards the remote (2.5 mm wide and 4.0 mm long) was 1 

processed into ~50 consecutive cryosections with a thickness of 80 μm (Figure 1A). Subsequent 2 

RNA extraction from individual slices followed by RNA amplification, barcoding strategies and 3 

RNA sequencing 6 provided genome-wide data about the spatial distribution in gene expression 4 

across the injured heart (Supplemental Databases 1 through 3). A spatial partitioning between 5 

infarcted and remote area was visible at 1 and 14 dpIR, but not in the sham-operated samples 6 

when performing pairwise comparison of sections across all expressed genes (Figure 1B and 7 

Supplemental Figure 2A). The spatial separation became considerably more pronounced after 8 

filtering for genes that showed an at least two-fold and statistically significant differential 9 

expression between the infarct and remote zone by tomo-seq (Figure 1C and Supplemental 10 

Figure 2B). The number of regulated genes was found to be the highest 14 dpIR, which included 11 

2357 coding genes and 134 non-coding transcripts (Figure 1D, Supplemental Figure 2C and 12 

Supplemental Databases 4 through 6). KEGG analysis on these regulated genes showed an 13 

enrichment for inflammatory pathway activation at day 1 after injury, while pathways involved 14 

in ECM, disease and cardiomyocyte remodeling were found to be regulated 14 dpIR 15 

(Supplemental Figure 2D and Supplemental Tables 1 and 2). 16 

 17 

Gene expression patterns reveal localized remodeling responses. 18 

Tracing transcriptional differences across the infarcted heart enabled us to identify clusters of 19 

genes with a comparable differential regulation throughout the infarcted heart at 14 dpIR (Figure 20 

1D). The individual clusters contained well-known marker genes for specific aspects of heart 21 

remodeling, Collagen type I alpha 2 (Col1a2) (identified in cluster I), Natriuretic peptide A 22 

(Nppa) (identified in cluster II) and sarco/endoplasmic reticulum Ca2+-ATPase (Serca2) (located 23 
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in cluster III). Col1a2 is expressed in activated fibroblasts and important for cardiac fibrosis,13 1 

while Nppa is a cardiomyocyte-specific stress marker involved in myocyte hypertrophy.14 2 

Cardiomyocyte contractility is regulated by calcium fluxes to and from the sarcoplasmic 3 

reticulum and is impaired during heart disease. Serca2 is a key regulator of Ca2+ transfer into the 4 

sarcoplasmic reticulum in muscle cells that is decreased during heart failure, which contributes to 5 

the decline in function.3 The expression traces for Col1a2, Nppa and Serca2 confirmed a gene-6 

specific differential regulation from the infarcted area to the remote (Figure 1E). As expected 7 

Col1a2 and Nppa were more abundantly expressed in the infarcted region 14 dpIR, while Serca2 8 

actually showed a decrease in expression towards the infarcted region (Figure 1E). ISH on 9 

cardiac tissue 14 dpIR confirmed the Col1a2 expression to originate from activated fibroblasts, 10 

while the transcriptional peaks for Nppa stemmed from the stressed, hypertrophic 11 

cardiomyocytes immediately flanking the fibrotic regions (Figure 1F). We observed a decline in 12 

Serca2 expression more towards the injured area, which is likely due to both a loss in 13 

cardiomyocytes as well as a decrease in transcriptional activation since the Nppa signals clearly 14 

indicate the presence of viable myocytes in this region (Figure 1F). The reproducibility of the 15 

obtained gene expression profiles was confirmed on a second set of samples (Supplemental 16 

Figure 3). 17 

 18 

Tomo-seq identifies potential new players for cardiac remodeling and function. 19 

An important advantage of tomo-seq over genome-wide sequencing techniques on tissue 20 

homogenates is that the local information on gene regulation allows for correlation analysis to 21 

identify genes with a comparable spatial distribution in transcriptional regulation.6 Since we 22 

observed a gene-specific expression profile throughout the infarcted tissue for Col1a2, Nppa and 23 



 13 

Serca2, we used the Euclidean distance of Z-score transformed spatial expression traces 6 to 1 

measure pattern similarity between genes 14 dpIR using Col1a2, Nppa and Serca2 as reference 2 

genes. In doing so, we obtained a gene list that showed the greatest similarity in expressional 3 

differences across the infarcted tissue with our reference genes (Table 1, Figure 1G and 4 

Supplemental Databases 7 and 8), a vast majority of which could be identified within the 5 

corresponding gene cluster identified in Figure 1D. Interestingly, next to Col1a2, Nppa or 6 

Serca2, these lists also contained other well-known genes related to the biological function of the 7 

reference genes. Among the Col1a2 co-expressed genes, we recognized additional genes known 8 

for their function in ECM deposition (like Sparc and Col3a1),2 while many of the genes co-9 

regulated with Nppa encode for proteins involved in cardiomyocyte hypertrophy (Nppb and 10 

Myh7). The gene list for Serca2 contained Pln and Ryr2, both well known for their importance in 11 

cardiac calcium handling and contractility 3 (Table 1, Supplemental Databases 7 and 8). This co-12 

expression of genes could be confirmed by ISH and indicated the signals to stem from the same 13 

cell population (Figure 1H). The connection between the spatially co-regulated genes and their 14 

biological function was underscored by KEGG pathway analysis. The one hundred fifty genes 15 

with the highest similarity in expressional changes with either Col1a2, Nppa or Serca2 16 

throughout the infarcted heart at 14 dpIR, indicated an enrichment for the cellular function 17 

known to be associated with the reference genes (Figure 1I through K, Supplemental Tables 3 18 

through 5, and Supplemental Databases 7 and 8). The known biological link of several of the 19 

listed genes and the functional connection based on gene ontology analysis suggests that the 20 

correlation analysis can serve to identify genes that are functionally related to the biological 21 

function of the reference genes.  22 

RNA sequencing (RNA-seq) on whole tissue homogenates from the infarcted area from three 23 



 14 

independent mice 14 dpIR showed a comparable directional regulation in gene expression, with 1 

the Col1a2- and Nppa-related genes going up after infarct, while the Serca2-related genes are 2 

going down compared to sham-operated mice (Supplemental Figure 4). However, in contrast 3 

with the data obtained by tomo-seq, the changes observed by RNA-seq on tissue homogenates 4 

failed to provide spatial information on co-expression of genes and showed smaller changes with 5 

a high inter-animal variation (Supplemental Figure 4). Since tomo-seq analysis is based on the 6 

correlation in gene expression within a single sample, the variation between animals is of lesser 7 

importance. 8 

Tomo-seq analysis for lncRNAs specifically, showed localized expression changes, albeit far 9 

less pronounced and specific than for coding genes (Supplemental Figure 5), which is likely due 10 

to the low abundance of lncRNA transcripts. 11 

 12 

The correlation in expression of novel genes linked to cardiac remodeling and function is 13 

conserved in humans. 14 

While multiple well-known markers of fibrosis, hypertrophy and calcium handling could be 15 

identified among the genes with a similar transcriptional activation pattern, we also found 16 

multiple ill-studied genes that so far have not been linked to aspects of cardiac remodeling 17 

(Supplemental Databases 7 and 8). To confirm the correlation in transcriptional activation, we 18 

randomly chose one candidate from each list to explore in more detail. The Z-score transformed 19 

expression traces at 14 dpIR indicated a close correlation in expressional regulation between 20 

Col1a2 with Fstl1, Nppa with Pmepa1, and Serca2 with Chchd2 (Figure 2A), which could be 21 

confirmed by ISH on murine cardiac tissue 14 dpIR (Figure 2B). Further confirmation for a 22 
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correlation in expression of these novel factors with COL1A2, NPPA and SERCA2 was obtained 1 

by ISH on ischemic human heart tissue (Figure 2C).   2 

The validity of using tomo-seq to identify genes that are expressionally linked was strengthened 3 

by the observation that real-time PCR analysis on cardiac tissue from patients suffering from 4 

ischemic heart disease confirmed the correlation between the expression levels of COL1A2, 5 

NPPA, SERCA2 and the newly identified genes (Figure 2D through F). The correlation was 6 

strongly reduced when we cross-referenced genes from different lists (Supplemental Figure 6). 7 

The density plot for the cumulative Pearson correlation coefficients validates the shift towards a 8 

higher correlation between genes that belong to the same list (co-regulated) compared to the 9 

genes that were not shown to be co-regulated (randomized) by tomo-seq (Figure 2G). 10 

While it remains to be determined which of the newly defined genes are relevant for cardiac 11 

remodeling, the functional link between the co-regulated genes and the fact that we can validate 12 

the co-regulation in both mice and human, implies that tomo-seq allows for the identification of 13 

novel genes that are potentially relevant for specific aspects of pathological remodeling of the 14 

infarcted heart.  15 

 16 

Tomo-seq identifies SOX9 as key transcription factor for cardiac fibrosis. 17 

The overlap in differential expression throughout the infarcted heart triggered us to explore 18 

whether a common transcription factor (TF) could be responsible for the synchrony in 19 

transcriptional regulation of the different gene clusters. Using an in silico approach, we searched 20 

for TFs (using oPOSSUM 3.0) that contain one or more predicted binding site(s) in the promoter 21 

regions of the top thirty Col1a2 co-regulated genes (Table 1 and Supplemental Table 6). Among 22 



 16 

these factors, we identified SOX9 as a potential candidate. SOX9 is a TF that has been 1 

recognized for its role in chondrocyte differentiation.10  2 

While so far unstudied in the adult heart, previous work showed that SOX9 has a potent function 3 

in fibrosis.15 Expression trace analysis for Sox9 revealed a strong spatial correlation with Col1a2 4 

(Figure 3A). ISH indicated Sox9 to be expressed in the same region of the infarcted area as 5 

Col1a2, although at a much lower level (Figure 3B). Real-time PCR on tissues from infarcted 6 

mouse heart further confirmed Sox9 upregulation in the infarct zone (Figure 3C). Based on the 7 

predicted binding site(s) in the promoter regions of multiple Col1a2 co-regulated genes, its 8 

proposed function in liver fibrosis and the overlap in transcriptional regulation with Col1a2 in 9 

the infarcted heart, we decided to further pursue SOX9 in cardiac fibrosis. The induction in Sox9 10 

expression was only observed 14 dpIR and restricted to the infarcted area (Supplemental Figure 11 

7A and B). Staining for both SOX9 and COL1 indicated SOX9 protein to be detectable in the 12 

same region as COL1 (Figure 3D).  13 

To start exploring the fate of SOX9-expressing cells in the infarcted heart, we employed a 14 

lineage tracing approach using a TdTomato reporter mouse model driven by the promoter of the 15 

Sox9 gene (Sox9CreERT2;R26RTdT) (Figure 3E). Fluorescence-activated cell sorting (FACS) 16 

performed on single cells isolated from the left ventricle indicated a significant elevation of the 17 

SOX9-TdT+ cell population 14 dpIR compared to Sham (Figure 3F). Immunostaining clearly 18 

showed a co-localization between SOX9-TdT+ and COL1-expressing cells, which were 19 

surrounded by cardiomyocytes (marked by alpha-actinin-2, ACTN2) (Figure 3G and H). A 20 

similar overlap in expression was observed between SOX9-TdT+ and cells labelled with two 21 

other fibroblast markers; periostin and vimentin (Supplemental Figure 8A and B, respectively).16, 22 



 17 

17 These data demonstrated that SOX9 is predominantly active in the fibroblast population that 1 

repopulates the infarcted area after injury. 2 

To further explore whether SOX9 is involved in the transcriptional activation of the Col1a2 co-3 

regulated genes, we treated fibroblasts with TGFβ1 after we exposed them to either an siRNA 4 

against Sox9 or a control. In addition to a strong repressive effect on Sox9 expression, we also 5 

observed a significant repressive effect on 6 out of 15 potential SOX9 targets listed as Col1a2 6 

co-regulated genes, with a general downward trend for the remaining genes (Supplemental 7 

Figure 7C). This was also true for additional fibrosis-related genes (Supplemental Figure 7D), 8 

indicating a global function for SOX9 in fibroblast activation. 9 

Real-time PCR analysis in tissue samples from human ischemic hearts showed a significant 10 

correlation between the levels of expression of COL1A2 and SOX9 (Figure 4A). In agreement 11 

with our mouse data, real-time PCR indicated an expressional increase in SOX9 expression 12 

towards the infarcted area (Figure 4B), where the majority of the fibrosis is located. ISH showed 13 

that a sub-population of COL1A2-positive cells was also positive for SOX9 in human ischemic 14 

hearts (Figure 4C). Immunostaining further confirmed that SOX9-expressing cells were also 15 

positive for COL1 (Figure 4D and E). 16 

 17 

SOX9 regulates cardiac fibrosis during ischemia reperfusion injury. 18 

To examine the effect of SOX9 in vivo, we generated inducible Sox9 heterozygous knockout 19 

mice (Sox9fl/+;R26CreERT2) (Figure 5A). Tamoxifen injection at the day of surgery and 2 and 4 20 

days after injury resulted in a disruption of the Sox9 allele as confirmed by PCR on genomic 21 

DNA (Figure 5B), and further quantified by real-time PCR and immunofluorescence after IR in 22 

the infarcted region (Figure 5C through E). Sox9 loss of function was accompanied with a 23 



 18 

profound reduction in fibrosis, which was quantified by the amount of Sirius Red staining in the 1 

infarcted region (Figure 5F and G). Periostin (PSTN), a protein marking activated fibroblasts,17 2 

was also reduced in the infarcted Sox9fl/+;R26CreERT2 mice treated with Tamoxifen, further 3 

confirming the importance of SOX9 as a key driver for fibrosis in the ischemic heart (Figure 4 

5H). Expression analysis for 15 randomly selected Col1a2 co-expressed genes showed an 5 

increase in expression in response to ischemic injury. Loss of Sox9 resulted in a significant 6 

reduction in expression for 13 out of 15 genes 14 dpIR compared to control animals (Figure 5I 7 

and Supplemental Database 7: highlighted in yellow).  8 

High expression levels of SOX9 have previously been described in chondrocytes and publically 9 

available SOX9 ChIP-seq data in this cell type18 showed that 15 out of the 30 genes that were co-10 

expressed with Col1a2 in our study have at least one of their predicted binding sites directly 11 

occupied by SOX9 (for instance: Col1a2, Fn1, Lum and Vim; Table 1 and Supplemental Figure 12 

9). Importantly, these sites were found enriched for the histone mark H3K27ac in the adult 13 

mouse heart (ENCODE dataset), which further demonstrates that these regions are active and 14 

open for transcription factors like SOX9 in vivo. Altogether, these data demonstrate that SOX9 15 

has the ability to occupy the promoter region of ECM-related genes and may actively regulate 16 

these genes in the heart.  17 

 18 

Discussion 19 

Here we applied tomo-seq to obtain a genome-wide gene expression profile with a high spatial 20 

resolution throughout the mammalian heart after ischemic injury. Cardiac ischemia reperfusion 21 

damage induces a heterogeneous remodeling response that involves several key processes, like 22 

cardiac fibrosis, cardiomyocyte hypertrophy, and a change in calcium handling within the heart 23 
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muscle cells.2, 3, 13, 14 Localized expressional differences of well-known markers genes for these 1 

remodeling processes allowed us to uncover novel genes that showed a comparable 2 

transcriptional regulation and that are linked to specific aspects of cardiac remodeling. Using this 3 

data set, we identified SOX9 as a key transcriptional regulator of ECM-related genes and showed 4 

that in vivo loss of Sox9 after myocardial infarction blunted the cardiac fibrotic response upon 5 

ischemic injury.  6 

While RNA sequencing techniques on tissue samples have been instrumental in defining genes 7 

relevant for cardiac remodeling and repair,4, 5 so far these approaches have been disadvantaged 8 

by the fact that the signals are derived from tissue homogenates, which inherently causes the loss 9 

of spatial information and dilutes out more localized expression signatures. Additionally, 10 

conventional methods for defining localized changes in genes expression, like ISH or 11 

immunohistochemistry, are limited to a defined set candidate genes and do not allow for 12 

genome-wide screening for novel relevant gene candidates. Recent developments in RNA 13 

amplification strategies provide the opportunity to use small amounts of input RNA for genome-14 

wide sequencing, as exemplified by tomo-seq.6 While recent studies showed this method to 15 

provide insightful data for both the developing and injured zebrafish heart,6, 19 our study for the 16 

first time shows the relevance for the mammalian heart after ischemic injury. Especially the 17 

transcriptional differences, introduced by the localized heterogeneity in remodeling throughout 18 

an individual infarcted heart, appeared to be valuable for the identification of clusters of genes 19 

that showed a comparable regulation in expression. For this study we focussed on genes that 20 

showed an equivalent transcriptional regulation pattern across the infarcted tissue as well-known 21 

functions in fibrosis, cardiomyocyte hypertrophy or contractility (Col1a2, Nppa or Serca2).2, 3, 13, 22 

14 Based on subsequent functional annotation analysis, expressional confirmation in human 23 



 20 

ischemic tissue samples and functional in vitro and in vivo assays, we conclude that the high 1 

spatial resolution in gene expression signatures obtained by tomo-seq allows for the 2 

identification of new relevant factors for specific aspects of heart disease. While we were 3 

preparing our manuscript, it was also reported that Fstl1, one of our top Col1a2 co-regulated 4 

genes, is important for cardiac fibroblast activation,20 which further underscores the relevance of 5 

our approach for identifying new players in specific cardiac remodeling responses. 6 

Using our tomo-seq data, we identified SOX9 as common transcription factor able to regulate the 7 

expression of the majority of the Col1a2 co-regulated genes. SOX9 is a transcription factor 8 

essential for chrondrogenesis via the activation of many ECM genes.21 In the heart, SOX9 is 9 

highly expressed during development where it promotes epithelial-to-mesenchymal transition 10 

and ECM organization during heart valve development.22, 23 In the adult heart, SOX9 has been 11 

shown to play a role in valve calcification.24, 25 While SOX9 has been implicated in the fibrotic 12 

response of the liver,15 so far it was unknown to play a role in cardiac fibrosis. We show that 13 

SOX9 is induced in response to ischemic injury and that in vivo loss of SOX9 after myocardial 14 

infarction blunts the cardiac fibrotic response upon damage, revealing a previously unknown 15 

function for SOX9 in cardiac fibrosis. In addition, we show that SOX9 is mainly active in the 16 

fibroblast population that repopulates the infarcted area after injury.  17 

In our efficacy studies, we make use of a reduction in SOX9 levels instead of complete deletion, 18 

which is sufficient to cause an effect on cardiac fibrosis after injury. An equally profound 19 

phenotype in the heart has been reported by others upon heterozygous deletion of Klf6 and 20 

Rock1, two other key regulators of fibrosis. 26, 27 This suggests that the molecular mechanism that 21 

drive cardiac fibrosis are sensitive to small perturbations in gene expression. Since therapeutical 22 

targeting of SOX9 would also moderately lower expression levels, we think this genetic model 23 



 21 

gives a good representation of what would happen when using an inhibitor of SOX9 in the clinic 1 

as a therapy for cardiac fibrosis.  2 

Here we show that the high spatial resolution in gene expression signatures obtained by tomo-seq 3 

reveals new regulators, genetic pathways, and transcription factors that are active in well-defined 4 

regions of the heart and potentially involved in specific aspects of heart disease. This knowledge 5 

increases our mechanistic insights into cardiac remodeling and function, and will help guide the 6 

identification of novel therapeutic candidates. However, the applicability of this approach is far 7 

greater than ischemic heart disease and the remodeling aspects we now focused on, and can also 8 

serve to identify new relevant factors for many different biological processes and disease states. 9 
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Figure legends 1 
 

Figure 1. High resolution gene expression atlas of the infarcted heart by tomo-seq. A, 2 

Schematic representation of a mouse heart after sham surgery (Sham) and 14 days post ischemia 3 

reperfusion (14 dpIR). B, Pairwise correlation for all sections across all genes showing clusters 4 

of correlated sections 14 dpIR in one biological replicate. C, Pairwise correlation for all sections 5 

across genes exhibiting at least two-fold and statistically significant differential expression 6 

between the infarct and remote zones 14 dpIR. D, Hierarchical clustering of expression traces for 7 

all genes that were found to be differentially expressed in C. E, Spatial expression pattern of 8 

three reference genes Col1a2, Nppa, and Serca2 in the hearts from Sham, 1 dpIR, and 14 dpIR 9 

mice. F, Validation of the expression pattern by ISH 14 dpIR. Four chamber view (left) and 10 

higher magnification (right) are shown. Scale bars, 1 mm (left) and 200 μm (right). G, Spatial 11 

expression traces of ten co-regulated genes 14 dpIR. Reference genes are shown in red, and ten 12 

most similar genes are shown in grey. Black bold traces show other known markers involved in 13 

fibrosis, hypertrophy, and contractility (Sparc, Nppb, and Pln, respectively). H, Validation of the 14 

co-expression pattern of Col1a2/Sparc, Nppa/Nppb, and Serca2/Pln by ISH. Scale bars, 200 μm. 15 

I through K, KEGG analysis showing the enriched pathways the top one hundred fifty genes 16 

Col1a2 (I), Nppa (J), and Serca2 (K) co-regulated genes are involved in. 17 

 

Figure 2. Identification of novel genes involved in remodeling and function of the ischemic 18 

heart. A, Spatial expression traces of three selected novel genes co-regulated with Col1a2 19 

(Fstl1), Nppa (Pmepa1), or Serca2 (Chchd2) in mice 14 dpIR in one biological replicate. 20 

Expression traces were normalized by Z-score transformation. B, Validation of co-expression of 21 

Col1a2/Fstl1, Nppa/Pmepa1, and Serca2/Chchd2 by ISH in mice 14 dpIR. Scale bars, 200 μm. 22 
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C, Validation of the co-expression pattern of COL1A2/FSTL1, NPPA/PMEPA1, and 1 

SERCA2/CHCHD2 by ISH on human ischemic heart tissue. Scale bars, 100 μm. D through F, 2 

Real-time PCR analysis of genes that are spatially co-regulated in mice 14 dpIR (see 3 

Supplemental Database 7) using human cardiac tissue from ischemic heart disease patients. 4 

Control hearts and remote, border-zone and infarct zones from ischemic hearts are plotted. Data 5 

are presented as log 2 transformed values. Pearson correlation (r) and significance of co-6 

regulated gene expression is shown (n=27–34; p<0.05 is considered significant). G, Kernel 7 

density plot of Pearson r values of the correlation in expression between the four corresponding 8 

COL1A2, NPPA, and SERCA2 co-regulated genes (co-regulated; n=12) vs genes that are not co-9 

regulated, i.e., genes cross-referenced from different lists (randomized; n=24) (see Supplemental 10 

Figure 6). Dotted lines depict the mean of the r values of all correlated and non-correlated genes.  11 

 

Figure 3. Identification of Sox9 as a key regulator of fibrosis-related genes. A, Spatial co-12 

expression of Col1a2 and Sox9 determined by tomo-seq in the heart 14 dpIR in one biological 13 

replicate. B, Validation of the co-expression of Sox9 and Col1a2 in mice determined by ISH 14 14 

dpIR. Scale bars, 100 μm. C, Real-time PCR analysis of Sox9 expression in infarct (I) and 15 

remote (R) cardiac regions. Data are presented as fold change over sham-operated control 16 

hearts (n=5–6; *p<0.05 vs sham). D, Validation of the co-expression of SOX9 and COL1 in the 17 

infarct/border-zone in mice determined by co-immunostaining 14 dpIR. Nuclei were 18 

counterstained with DAPI. White arrows point to cells expressing SOX9 in their nuclei (purple). 19 

Scale bars, 50 μm. E, Schematic representation of the lineage tracing strategy of Sox9 expressing 20 

cells. Reporter mice conditionally expressing TdTomato driven by the Sox9 promotor 21 

(Sox9CreERT2;R26RTdT) were subjected to sham surgery or IR, injected with Tamoxifen at day 0, 22 
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2, and 4 days post-surgery and analysed after 14 days. F, FACS quantification of cardiac SOX9-1 

TdT+ cells in the hearts from Sham and 14 dpIR mice (n=3–4; *p<0.05 vs healthy sham control 2 

hearts). G and H, Co-immunostaining against TdTomato (TdT) and ACTN2 (G) or COL1 (H) in 3 

the hearts from sham-operated mice and 14 dpIR. White stars in the Merge field indicate SOX9-4 

TdT-positive regions. Scale bars, 1 mm (4-chamber view) and 50 μm (higher magnification).  5 

 6 

Figure 4. SOX9 is expressed in the fibrotic region in human cardiac tissue. A, Pearson 7 

correlation of SOX9 and COL1A2 expression determined by real-time PCR analysis on cardiac 8 

patient tissue (n=30). Data are presented as log 2 transformed values. B, Real-time PCR analysis 9 

of SOX9 expression in infarct (I) and remote (R) cardiac regions of ischemic tissue samples. Data 10 

are presented as fold change over healthy control hearts (n=3–10; *p<0.05). C, Validation of the 11 

co-expression pattern of SOX9/COL1A2 by ISH in human ischemic cardiac tissue. Scale bars, 12 

100 μm (left) and 50 μm (right). D and E, Co-immunostaining against SOX9 and ACTN2 (D) or 13 

COL1 (E) in the hearts from control individuals or patients suffering from ischemic heart disease 14 

(IHD). White arrows point to cells expressing SOX9. Scale bars, 50 μm. 15 

 16 

Figure 5. Loss of Sox9 in mice protects against cardiac fibrosis. A, Schematic representation 17 

of the targeting strategy for conditional Sox9 deletion. Sox9fl/+;R26CreERT2 were subjected to 18 

sham surgery or IR, injected with Tamoxifen at day 0, 2, and 4 days post-surgery and analysed 19 

after 14 days. B, PCR genotyping for Sox9 floxed deleted allele (Sox9fl del) and Cre transgene. 20 

Genomic DNA isolated from Sox9fl/+;R26CreERT2 treated with vehicle or Tamoxifen. Used 21 

forward (P1) and reverse primers (P2) are indicated as demi-arrowheads in A. M, Marker. C, 22 

Real-time PCR analysis of Sox9 in the hearts (infarct zone) from Sox9fl/+;R26CreERT2 mice 14 23 
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dpIR injected with either vehicle or Tamoxifen (n=4–7; *p<0.05 vs the indicated groups). D, 1 

Co-immunostaining against SOX9 and ACTN2 on corresponding infarcted heart tissue 14 dpIR. 2 

Right panel shows the same section including bright field (BF). Scale bars, 50 μm. E, 3 

Quantification of SOX9 expression 14dpIR in the fibrotic region of the left ventricle or the 4 

corresponding region in Sham mice (n=3; **p<0.01, *p<0.05 vs Sham). F, Histological sections 5 

of infarcted hearts stained for Sirius Red (collagen) 14 dpIR. Scale bars, 1 mm (left) and 400 μm 6 

(right). G, Quantification of Sirius Red-positive area in infarcted area or corresponding Sham 7 

region (n=3–7; **p<0.01; *p<0.05 vs corresponding Sham). H, Western blot analysis of the 8 

fibrotic protein periostin (PSTN) in the hearts from Sox9fl/+;R26CreERT2 mice 14 dpIR. GAPDH 9 

was used as a loading control (n=4–5; *p<0.05 vs MI vehicle injected mice). I, Real-time PCR 10 

analysis of Col1a2 co-expressed genes in the mouse hearts 14 dpIR (n=6; **p<0.01; *p<0.05 vs 11 

Sham injected with Vehicle).   12 
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Table 1. Top thirty genes showing the most similar expression pattern to Col1a2.  1 
 2 

Col1a2 similar 
genes 

SOX9 predicted 
binding site 

SOX9 validated 
binding site 

Col1a2 x x 
Sparc x  
Fstl1 x x 

Serping1 x  
Pdgfrl x  

Tmem45a x  
Col3a1 x x 
Sfrp1 x x 
Lox x x 

Ecrg4   
Dkk3 x  

Col1a1 x  
Itgbl1 x  
Fn1 x x 

Thbs2   
Cthrc1 x  
Col8a1 x  
Col5a2 x  

Lum x x 
Fbln2 x  
Gas1 x x 

Antxr1 x x 
Thbs1 x x 
Ogn x  

Col16a1 x x 
Vim x x 

Cxcl16 x  
Timp1 x x 
Rnase4 x x 
Ddah1 x x 

 3 
Genes that contain a predicted/validated SOX9 binding site in their promoter region are marked. 4 
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