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Abstract 

Adoptive therapy with T cell receptor (TCR)-engineered T cells has shown promising results in 

the treatment of patients with tumors, and the number of TCRs amenable for clinical testing is 

expanding rapidly. Notably, adoptive therapy with T cells is challenged by treatment-related side 

effects, which calls for cautious selection of target antigens and TCRs that goes beyond their 

mere ability to induce high T cell reactivity. Here, we propose a sequence of in vitro assays to 

improve selection of TCRs, and exemplify risk assessments of on-target as well as off-target 

toxicities using TCRs directed against Cancer Germline Antigens. The proposed panel of assays 

covers parameters considered key to safety, such as expression of target antigen in healthy 

tissues, determination of a TCR’s recognition motif towards its cognate peptide, and TCR’s 

cross-reactivity towards non-cognate peptides.  
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Introduction 

Therapeutic use of anti-tumor T cells has proven feasible in a multitude of trials over the last 

decade. Alongside the demonstration of clinical benefit and enthusiasm about the therapeutic 

efficacy, the occurrence of toxicities has stimulated awareness of safety pitfalls. While initial 

studies demonstrated recognition, and sometimes destruction of healthy tissues (1-3), later 

studies demonstrated lethal adverse effects in individual patients (4,5). These studies highlight 

the two main challenges facing safety of T cell receptor (TCR) gene therapy: on- and off-target 

toxicities. With a quickly expanding panel of TCRs that have generally been selected for their 

ability to provide T cells with high avidities towards tumor antigens, there is an urgent need for 

streamlining the safety assessment of these TCRs prior to clinical usage. 

 

Selecting target antigens 

An ideal target antigen for adoptive T cell therapy (AT) displays two important features: it is 

immunogenic and shows selective and homogenous expression in tumor tissue. Immunogenicity 

is best explained as an antigen’s ability to be recognized by and sufficiently activate T cells, a 

feature that is generally well addressed when selecting a target antigen and its corresponding 

TCR (reviewed in (6)). In example, characteristics related to the immunogenicity of  two 

MAGE-C2 (MC2) antigen epitopes are summarized in Table I. Selective expression in tumor 

tissue, and hence its absence in healthy tissues, would reduce the risk for on-target toxicities. 

Differentiation, over-expressed or onco-fetal antigens are not absent from healthy tissues and the 

targeting of these antigens, e.g. MART-1 or carcinoembryonic antigen (CEA), by TCR-

transduced T cells has resulted in severe destruction of melanocytes in the eyes, ears and skin (1) 

or inflammation of the colon (2,3). Candidate antigens that are exclusively expressed by tumor 
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tissues include neo-antigens and oncoviral antigens. Neo-antigens are derived from somatic 

DNA alterations and their identification requires analyses of mutations, gene expression, and 

algorithms that predict antigen processing and presentation by major histocompatibility complex 

(MHC) (7-9). AT studies with tumor infiltrating lymphocytes (TILs) in patients with melanoma 

and cholangiocarcinoma showed that clinical benefit was associated with T cell responses 

against neo-antigens (9-11). Current exploitation of neo-antigens in AT, however, is challenged 

by the uncertainty of current algorithms accurately predicting immunogenicity, and the fact that 

neo-antigens are usually specific per patient (12-14). Viral antigens are present in more than 10% 

of human cancers and are often the result of viral insertion into the genome and subsequent 

reactivation in tumors. AT studies using TILs reactive against either HPV or EBV have shown 

clinical successes in patients with cervical cancer or nasopharyngeal carcinoma, respectively 

(15,16). In addition to neo-antigens and onco-viral antigens, also certain cancer germline 

antigens (CGAs) demonstrate tumor-selective expression. In fact, CGAs are expressed in 

gonadal tissues and some in thymus (17), and certain CGAs are considered to be selectively de-

repressed in tumor tissuess (for detailed reviews, see (6,18,19)). MAGE-A3 and NY-ESO1 are 

examples of CGAs that have already been targeted by TCR-engineered T cells in patients with 

metastatic melanoma, metastatic synovial sarcoma or multiple myeloma (4,20). Although off-

target toxicities were observed with the targeting of the former antigen (most likely an issue of 

the TCRs; see next section), the safe use of selected CGAs was suggested by the targeting of 

NY-ESO1 demonstrating clinical benefit without toxicities (20,21). 

We recommend for any antigen, with the exception of neo-antigens, to test the antigen’s absence 

from a large panel of healthy organs. Online databases such as the protein atlas 

(http://www.proteinatlas.org/) or the CGA database (www.cta.lncc.br) combine extensive data 
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from transcriptomic analyses and antibody stainings from numerous normal, non-cancerous cell 

lines and tissues. When applying these tools to assess the expression of MC2, we observed that 

mRNA expression is restricted to cells from cancers and testes, the latter considered to possess 

an immune privileged status (no MHC expression; thus no detection by T cells). The use of 

commercially available cDNA libraries of a large series of healthy tissues enable researchers to 

extend online analyses and quantify antigen expression with a laboratory assay. When 

performing qPCR using such a cDNA library, we demonstrated absence of MC2 mRNA in 

healthy tissues as illustrated in figure 1A. In case specific antibodies are available, we would 

recommend to follow-up qPCR with immune histochemistry. Using an MC2-specific antibody, 

we confirmed the presence of MC2 protein in testis and melanoma as well as its absence in 

multiple healthy tissues, such as brain, heart, intestine and lung (see figure 1B). However, both 

qPCR and immune histochemistry cannot formally exclude the presence of rare antigen-positive 

cells within a tissue, e.g. stem cells. For example, mRNA of certain CGAs has been detected 

only in medullary thymic epithelial cells but not total thymus (17). As an additional means to 

exclude target antigen expression, sophisticated in vitro cell cultures have been developed to 

closely mimic complete tissues or organs (commented in next section) (5,22). 

 

Selecting therapeutic TCRs 

Once the safety of the target antigen has been assessed, one can start selecting TCRs. Procedures 

to obtain tumor-reactive T cells and hence TCRs can generally be divided into those that rely on 

tolerant and those that rely on non-tolerant repertoires of T cells. Tolerant repertoires, where 

deletion of T cells with an avidity outside the thymic selection window has occurred, have been 

used to obtain T cell clones from patients following successful TIL therapy, peptide vaccination, 
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or using in vitro pulsing of autologous dendritic cells (23,24). Notably, the thymic selection of T 

cells is most likely a trade-off between producing a self-tolerant yet sufficiently diverse and 

responsive TCR repertoire, and escape of self-reactive TCRs cannot be negated. Indeed, TCRs 

specific for over-expressed antigens and obtained from the native repertoire have been shown to 

initiate autoimmune side effects (1). The use of non-tolerant repertoires, with the rationale of 

allowing the generation of high-avidity T cells, has been applied in allogeneic in vitro as well as 

in vivo systems. For example, HLA-mismatched antigen-presenting cells (25) or artificial 

antigen-presenting cells pulsed with peptides of interest facilitate the in vitro generation of 

tumor-reactive T cells (26). In vivo, mice transgenic for human HLA as well as mice transgenic 

for human TCR and HLA-A2 genes (27) have been immunized and used as a source of TCRs. 

After having obtained antigen-reactive T cells, sequences of the TCRα and β chains can be 

determined by molecular techniques such as 5′ RACE (23), enhanced PCR methods, capturing 

and indexing of genomic DNA-encoding TCR chains (28), or sequencing and pairing of TCR 

chains based on combinatorial algorithms (29). 

It is important to note that TCRs derived from above-mentioned repertoires, in particular the 

non-tolerant repertoir, have not been selected in the presence of all patient MHC alleles and in 

the case of mice neither against human peptides present in the thymus, and may show allo- and 

non-cognate reactivity. Moreover, TCRs, even though obtained from highly tumor-reactive T 

cells, have an inherent degeneracy for peptide recognition and are able to recognize more than a 

single peptide. This dynamic flexibility in antigen recognition is in part accredited to the bending 

ability of the TCR-CDR domains (30,31), but also to the dominant interaction of the TCR with a 

restricted number and order of amino acids present in the MHC-presented peptide. To minimize 

the risk of selecting a TCR that recognizes non-cognate self-peptides, we recommend a series of 
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assays that assess the risk of this so-called off-target toxicity. These assays are illustrated with 

two patient-derived MC2-specific TCRs 6 and 16 with details and evaluation of anti-tumor T cell 

responses mediated by TCR6 and TCR16 summarized in Table I. 

 

Recognition of random epitopes 

Initial assessment of a TCR’s self-reactivity can be done by testing the responsiveness of TCR-

transduced T cells towards random peptides known to be presented by the respective HLA 

restriction allele. Mathematical projections indicate that amongst a pool of ~10
12

 peptides, a 

single TCR may react with >10
6
 peptides, supporting the notion of TCR degeneracy for peptide 

recognition, which potentially contributes to a more diverse TCR repertoire (32). We co-cultured 

TCR6 and TCR16 T cells with antigen-presenting cells loaded with saturating concentrations of 

>100 common, HLA-A2-eluted self-peptides (4). As depicted in figure 2, both T cell populations 

mediated a T cell response to their respective cognate peptides, but to none of the other peptides. 

Importantly, these data hint to lack of cross-reactivity of these two TCRs, but we cannot fully 

exclude recognition to random peptides. Another assessment of self-reactivity can be conducted 

by testing TCR-transduced T cells towards allogenic HLA molecules. In order to exclude 

activation of T cells upon recognition of foreign HLA molecules, panels of lymphoblastoid B 

cell lines with various HLA allotypes have proven valuable (33,34).  

 

Recognition of cognate epitope via critical amino acids 

Further assessment of a TCR’s self-reactivity, and a key assay in this communication, is the 

testing of a TCR’s intrinsic capacity to recognize peptides highly homologous to its cognate 
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epitope (35,36). To this end, one can determine the recognition motif, i.e. the position and 

sequence of amino acids within the cognate epitope that are crucial for binding to the TCR. This 

motif is unique per TCR and can be considered a surrogate measure for the extent of cross-

reactivity of TCRs (22,33). The importance to assess such motifs became apparent from two 

recent clinical trials using AT with TCR-engineered T cells. The first trial targeting MAGE-A3 

and A9 (MA3/9) in the context of HLA-A2 utilized the TCR 9W11 and reported neurological 

toxicities in two patients with metastatic melanoma (4). The second trial targeting MA3 in the 

context of HLA-A1 utilized the TCR a3a and reported cardiac toxicities in one patient with 

metastatic melanoma and one patient with multiple myeloma (5). Both TCRs were affinity 

enhanced in vitro and mediated toxicity by recognizing peptides highly similar to the cognate 

peptide, namely peptides derived from MAGE-A12 and Titin present in brain and heart tissue, 

respectively. These studies clearly underline the need to assess recognition motifs, and the search 

for T cell reactivities against homologous self-peptides, prior to clinical application. The 

importance of recognition motifs is timely and its assessment has only occurred for a limited 

number of TCRs to date, which is summarized in Table II.   

Using a set of altered peptide ligands (APLs), peptides containing individual alanines 

replacements at every single position in the cognate peptide (in case of an endogenous 

alanine→glycine), we conducted stimulation assays with TCR6 and 16 T cells. Critical amino 

acids are defined as those that, when testing the respective APLs, result in a drop of the T cell 

response (generally using IFN production as a readout) of > 50% when compared to the 

response toward the cognate peptide. Following the determination of these motifs, as exemplified 

in figure 3A, we used ScanProSite (http://prosite.expasy.org/scanprosite/) (37) and identified 

target antigens, listed in figure 3B, that harbor the recognition motif and represent potential 
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cross-reactive targets for TCRs 6 and 16. Subsequently, these self-peptides were tested for their 

ability to induce T cell responses towards HLA-A2-postive antigen presenting cells loaded with 

saturating concentrations (1µM) of peptide. These experiments yielded a short list of self-

peptides that are actually recognized by the TCRs under study, defined as those that resulted in at 

least a T cell IFNγ response > 2.5% of the response to cognate peptide (figure 3B: underlined 

antigens).  

 

Recognition of non-cognate epitopes that contain recognition motif 

Once self-peptides that can be recognized by TCR T cells have been identified, we recommend 

to execute two additional tests to more stringently assess the risk for self-reactivity. These tests 

aim to provide measures for T cell avidity as well as efficiency of cellular processing and 

presentation. Towards the first test, one can titrate amounts of non-cognate peptides and 

determine the concentration of these peptides that elicits 50% of the maximal T cell response 

(EC50). For both TCR6 and 16 T cells, we found that only a single self-peptide, namely a peptide 

from the antigen MAGE-B4 (MB4) or MAGE-C1 (MC1; see figure 3B for homology and 

predicted peptide-HLA binding), respectively, revealed detectable EC50 values that were only 2-

5 fold lower than those of the cognate peptides (figure 4). Extent of homology and predicted 

peptide-MHC binding of peptides that induce T cell IFN are listed in figure 3B, which shows 

that loss of homology and peptide-MHC affinity was least affected for MB4 and MC1 peptides. 

All other self-peptides revealed no T cell reactivities at titrated doses, or at the very best 5 log 

scales lower compared to cognate peptide. These were considered not recognizable by the TCRs 

under study and excluded from further assays. Towards the second test, one can predict whether 

self-peptides are the result of antigen processing and presentation to enable T cell recognition in 
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vitro. NetCTLpan (http://www.cbs.dtu.dk/services/NetCTLpan/) (38) takes proteasomal C 

terminal cleavage, TAP transport efficiency, and peptide MHC class I binding of peptides into 

account, and can be employed to obtain an initial score for antigen processing and presentation. 

Analysis of the MB4 peptide, but not MC1 peptide, yielded a high score according to this web-

based tool. Such predictions may not be fully accurate and should be verified using cells known 

to express the antigen or antigen presenting cells (e.g. dentritic cells) transfected with antigen-

encoded RNA followed by co-cultivation with TCR-transduced T cells. To this end, we 

stimulated TCR T cells with the esophageal cancer cells line OEC-19, which natively expresses 

the MB4 and MC1 antigens, but is devoid of the MC2 antigen, and observed that both TCRs 

failed to initiate T cell activation against either MB4 or MC1 (see figure 4B). When using cell 

lines that natively express the MC2 antigen, as a control for the processing and presentation of 

MAGE antigens, we observed that both TCRs did initiate T cell activation. It is noteworthy that 

standard tissue culture systems may not always accurately reflect antigen processing and 

presentation. This was evidenced by the recognition of Titin by the TCR a3a that could only be 

observed in more elaborate tissue culture systems, such as 3D cultures of beating cardiomyocytes 

derived from induced pluripotent stem cells (22). In case the above two assays do not exclude 

self-reactivity of TCR T cells, one could pursuit assessment of the tumor-selective expression of 

such new antigens. In case expression of new antigens is not selective for tumors, the 

corresponding TCR should be excluded. Using online tools (39) as well as qPCR (figure 1A), 

MB4 showed expression within epididymis and vagina, whereas MC1 showed no expression in 

any of the healthy non-gonadal tissues. These data highlight the stringent safety profile of 

TCR16, the TCR selected for a clinical trial to treat melanoma and head-nand-neck carcinoma, 

currently prepared at Erasmus MC. 
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Future perspective of in vitro assays assessing risk of TCR-mediated toxicities 

The proposed collection and sequence of in vitro assays to assess risks for toxicities are 

presented in figure 5. We advocate this testing for TCRs with clinical intent, in particular those 

TCRs reactive against a self-peptide and derived from a non-tolerant repertoire and/or following 

gene-enhancement. In extension to gene-enhancement, introduction of TCR-CDR mutations has 

been a commonly used tool to generate high-affinity TCRs (2,4,5,20). While such gene-enhanced 

TCRs recognize target peptides at increased affinities when compared to the corresponding wild-

type TCRs, consequently such TCRs are also at risk to recognize non-cognate peptides. To test 

whether affinity enhancement led to an increase in degeneracy for peptide recognition, we made 

use of a panel of 8 TCRs specific for the same cognate peptide gp100181-188:HLA-A2) but 

harboring 2-3 mutated amino acids in either their CDR2β, CDR3α or CDR3β domains (Govers, 

Ms submitted). Upon assessment of the recognition motifs and search for motif-harboring self-

peptides, it became apparent that enhanced affinity was accompanied by drastic increase in the 

TCR’s ability to recognize self-peptides (Table III). These data extend earlier findings regarding 

a correlation between affinity enhancement and loss of TCR specificity (40), and warrant caution 

when trying to change the TCR-CDR structure as it compromises the stringet recognition of 

cognate peptide (31,41).   

Taken together, here we propose a platform of in vitro assays that in combination with available 

online-databases and tools allows for optimal toxicity risk-assessment for target antigens and 

TCRs currently under consideration for clinical trials.  
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Figure Legends 

Figure 1. Target antigen is absent or shows restricted expression in healthy tissues. 

(A) MC2, MC1 and MB4 qPCRs were performed on a cDNA library of 48 healthy, human tissue 

samples (OriGene Technologies). Patient-derived melanoma cell line EB81-MEL and patient-

derived esophageal cancer cell line OEC-19 served as positive controls. Spiking experiments 

were conducted separately to determine optimal PCR conditions for maximum sensitivity 

(detection limit: 1:1,000-10,000 MC2
+ 

cell: MC2
- 
cells; data not shown). Relative mRNA levels 

are corrected for GAPDH and expressed as fold increase compared to antigen expression in the 

testis. Part of the displayed data is derived from (23); Copyright © 2016 The American 

Association of Immunologists, Inc. (B) Immune stainings of melanoma and healthy tissues were 

conducted using a monoclonal antibody specific for MC2 (42) on tissue micro arrays (TMA). 

EnVision System (Agilent Technologies) was used for signal visualization, TMAs were scanned 

via Nano zoomer (Hamatsu) and manually scored using Distiller (SlidePath). Exemplary tissue 

sections of patient-derived melanoma tissue as well as various healthy tissues obtained from the 

Erasmus MC pathology department are displayed with 20x magnification. MC2 positivity is 

scored as brown colored nuclear staining, with 3 smaller TMAs exemplifying different staining 

intensities. 

 

Figure 2. TCRs do not recognize random peptides eluted from the restricting MHC allele. 

TCR6 or TCR16 T cells were co-cultured with T2 cells loaded with 1µM of 114 different HLA-

A2-eluted peptides (4) for 24h. Cognate MC2 peptides (TCR6: LLFGLALIEV; TCR16: 

ALKDVEERV) served as positive controls. IFNγ levels in 24h culture supernatants were 

measured by ELISA and are displayed as mean ± SEM (n=3). Left-hand panel is adapted from 

(23); Copyright © 2016 The American Association of Immunologists, Inc. 

 

Figure 3. TCRs recognize cognate peptide via unique or restricted motif. 

(A) TCR6 or TCR16 T cells were co-cultured with T2 cells loaded with 1µM of cognate peptides 

or peptides with a single alanine replacement (Altered Peptide Ligands (APL), in case of alanine 

in original peptide: glycine). IFNγ levels in 24h culture supernatants were measured by ELISA. 

IFNγ response to APLs is displayed as mean % relative to response to cognate peptides ± SEM 

(n=4). Responses < 50% (dashed line) were indicative of amino acids critical for TCR 

recognition (recognition motif: underlined amino acids). (B) Homologous motifs from (A) were 

queried against a human protein database using ScanProSite. This yielded 27 and 1 non-cognate 

matches for TCR6 and TCR16, respectively. Subsequently, TCR6 or TCR16 T cells were co-

cultured with T2 cells loaded with 1µM of these 27 and 1 peptide(s), and IFNγ levels were 

measured in 24h culture supernatants by ELISA (n=4). Underlined peptides induced a T cell 

http://clincancerres.aacrjournals.org/
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IFNγ response > 2.5% of the response to cognate peptide. Homology to cognate peptide 

(diverging amino acids underlined) as well as peptide-MHC affinity (IC50 calculations according 

to NetMHCpan; http://www.cbs.dtu.dk/services/NetMHCpan/) are indicated for those peptides 

with a detectable IFNγ response. 

 

Figure 4. TCRs mediate negligible T cell avidity nor recognize natively presented non-

cognate peptides that harbor recognition motif. 

(A) Non-cognate peptides underlined in figure 3B were titrated from 10µM (10
-5

M) to 1pM (10
-

12 
M) and tested for T cell IFNγ response as described in previous legends and displayed as mean 

± SEM (n=4). EC50 values for cognate and selected non-cognate peptides were calculated in 

GraphPad, using non-linear regression; n.d. = not detectable. (B) TCR6 or TCR16 T cells were 

co-cultured with tumor cell lines or T2 cells (as a negative control). Expression status of MC2, 

MC1, MB4 and HLA-A2 for these cells was assessed via qPCR and indicated below plots with 

plus or minus. IFNγ levels in 24h culture supernatants were measured by ELISA and are 

displayed as mean ± SEM (n=3). Left-hand plots are adapted from (23); Copyright © 2016 The 

American Association of Immunologists, Inc. 

 

Figure 5. Platform of in vitro assays to select antigens and TCRs with limited risk for in 

vivo toxicity. 

Flowchart proposes a series and sequence of in vitro techniques, exemplified in figures 1 to 4 

and explained in detail in text. Such a sequence of assays would facilitate selections of 

potentially safe target antigens and TCRs prior to their use in clinical trials. 
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Table I  Properties of cognate MAGE-C2 epitopes and corresponding TCRs that relate to T cell   

reactivity 

Epitopes 
 LLFGLALIEV 

(MAGE-C2191-200) 
 

ALKDVEERV 

(MAGE-C2336-344) 

HLA-A2 binding 
 predicted affinitya:               9.9nM 

measured affinityb:              2.5µM 
 

predicted affinitya:           342.2nM 
measured affinityb:          20.0µM 

     

TCR 
 

TCR 6  TCR 16 

TCR genesc 
 α-chain:  Vα12-2*01 / Jα23*01 / Cα 

β- chain: Vβ15*02 / Jβ2-3*01 / Cβ2 
 

α-chain:  Vα3*01 / Jα3*01 / Cα 
β- chain: Vβ28*01 / Jβ2-5*01 / Cβ2 

pMHC bindingd 
 EC50 CD8+ T cells: 348nM 

EC50 CD4+ T cells: 501nM 
 

EC50 CD8+ T cells: 663nM 
EC50 CD4+ T cells:      n.d.   

functional T 
cell aviditye 

 
EC50: 3.19nM  EC50: 73.8nM 

tumor cell 
recognitionf 

 
EB81-MEL: 

518-A2: 
607-B: 
SCC-9: 

93-VU-120: 
SUM-195-PT: 

1090pg/ml 
605pg/ml 
835pg/ml 
311pg/ml 
292pg/ml 
217pg/ml 

 

EB81-MEL: 
518-A2: 

607-B: 
SCC-9: 

93-VU-120: 
SUM-195-PT: 

 
1738pg/ml 
461pg/ml 
626pg/ml 
207pg/ml 
26pg/ml 
466pg/ml 
 

a according to http://www.cbs.dtu.dk/services/NetCTLpan/. 
b T2 cells were pulsed with titrated amounts of ALK or LLF peptide and formation of pMHC class I complexes on the 
cell surface was quantified via flow cytometry using PE-labeled HLA-A2 mAb (23). 

c cDNAs derived from patient-derived T cell clones were PCR amplified using either a set of TCR-Vα or Vβ sense 
primers and a corresponding TCR-Cα or Cβ antisense primer or 5’RACE (rapid amplification of cDNA ends). 
Following nested PCRs and cloning, TCRα and β sequences were identified using www.imgt.org and classified 
according to the Lefranc nomenclature (see (23) for details). 

d TCR T cells were pulsed with titrated amounts of PE-labeled pMHC multimer, and binding was quantified via flow 
cytometry. 

e TCR T cells were antigen-presenting cells that were pulsed with titrated amounts of cognate peptide, and 
functional T cell avidity was quantified via ELISA measurements of IFNγ production. 

f TCR-transduced T cells were co-cultured with 3 melanoma, 2 head-and-neck carcinoma and 1 triple-negative 
breast cancer cell lines all positive for HLA-A2 and MC2 (determined by qPCR) at an E:T ratio of 3:1 for 24h. Cell 
lines were treated with epigenetic drugs Azacytidine and Valproate as well as IFNγ prior to co-culture (see (23) for 
details). IFNγ levels in 24h culture supernatants were measured by ELISA; displayed values are means of five 
experiments. Note that epigenetic drugs induce enhanced and tumor-selective expression of MC2 in vitro (23) as 
well as enhanced tumor immunogenicity in vivo (18). 

n.d. = not determined. 

http://www.cbs.dtu.dk/services/NetCTLpan/
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18 
 

Table II           Recognition motifs of TCRs utilized in clinical and pre-clinical research 

TCR name 
target 

antigen 
HLA 

restriction 
cognate 
epitope 

recognition 
motifa 

number of 
antigens 

with motifb 

number of 
epitopes with 

high MHC affinity 
(<10µM)c 

reference 

a3a MAGE-A3 A1 EVDPIGHLY ExDPIxxxY 5 0 (22) 

9W11 MAGE-A3 A2 KVAELVHFL -xxE-xH--d - - (43) 

T1367 MAGE-A1 A2 KVLEYVIKV xxxEYxIKx 62 6 (33) 

s24-TCR survivin A2 ELTLGEFLKL xLTxGEFLKx 1 1 (44) 

gp100 wt gp100 A2 YLEPGPVTA xLEPGPxxA 4 4 
Govers, Ms. 
submitted 

fl-MPD  gp100 A2 YLEPGPVTA YxEPxxxxx >1000 >500 (45) 

fl-296  gp100 A2 YLEPGPVTA YxExxxxxx >1000 >500 (45) 

TCR 4 MAGE-C2 A2 LLFGLALIEV xxFGLxLxxx 260 122 (23) 

TCR 6 MAGE-C2 A2 LLFGLALIEV LxFxLxLxEx 28 9 (23) 

TCR 11 MAGE-C2 A2 LLFGLALIEV xxFGLxLxEx 21 17 (23) 

TCR 16 MAGE-C2 A2 ALKDVEERV xLKDVEERx 2 2 (23) 

aRecogniton motifs are defined through T cell IFNγ production in response to alanine scanned cognate epitopes.  

bnumber of human proteins containing matching recognition motif according to ScanProSite 
(http://prosite.expasy.org/scanprosite/). 

cnumber of proteins containing matching recognition motif (according to b) and a predicted affinity value <10M 
for binding of the peptide to its respective MHC; affinity calculations according to NetMHCpan 
(http://www.cbs.dtu.dk/services/NetMHCpan/). 

drecognition motif incomplete, amino acids on positions 2-4 and 6-7 are based on stimulation assays conducted by 
Chinnasamy et al. with a panel of MAGE-peptides with highly similar sequences (43); ‘-‘ indicates amino acids with 
unknown relevance to the recognition motif. 
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Table III          TCR affinity enhancement and its effect on off-target recognitiona 

TCR name 
KD 

[μM] 
target antigen 

cognate 
epitope 

recognition 
motifa 

number of 
antigens 

with motifb 

number of 
epitopes with 

high MHC affinity 
(<10µM)c 

gp100 wt 18.5 gp100/HLA-A2 YLEPGPVTA xLEPGPxxA 4 4 

gp100 TCR 1 7.9 gp100/HLA-A2 YLEPGPVTA xLExGPxxA 23 13 

gp100 TCR 2 4.0 gp100/HLA-A2 YLEPGPVTA xLExGPxxx 240 97 

gp100 TCR 5 1.1 gp100/HLA-A2 YLEPGPVTA xLExGPxxx 240 97 

gp100 TCR 8 0.026 gp100/HLA-A2 YLEPGPVTA xLxxxxxxx >10000 >10000 
 

aGovers, Ms, submitted. 

bnumber of human proteins containing matching recognition motif according to ScanProSite 
(http://prosite.expasy.org/scanprosite/). 

cnumber of human proteins containing matching recognition motif (according to b) and a predicted affinity value of 

<10M for binding of the peptide to its respective MHC; affinity calculations according to NetMHCpan 
(http://www.cbs.dtu.dk/services/NetMHCpan/). 
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Figure 3:
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Figure 5:
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