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We examine improvements to the linear mixed model (LMM) that better correct for population structure
and family relatedness in genome-wide association studies (GWAS). LMMs rely on the estimation of a
genetic similarity matrix (GSM), which encodes the pairwise similarity between every two individuals in a
cohort. These similarities are estimated from single nucleotide polymorphisms (SNPs) or other genetic
variants. Traditionally, all available SNPs are used to estimate the GSM. In empirical studies across a wide
range of synthetic and real data, we find that modifications to this approach improve GWAS performance as
measured by type I error control and power. Specifically, when only population structure is present, a GSM
constructed from SNPs that well predict the phenotype in combination with principal components as
covariates controls type I error and yields more power than the traditional LMM. In any setting, with or
without population structure or family relatedness, a GSM consisting of a mixture of two component GSMs,
one constructed from all SNPs and another constructed from SNPs that well predict the phenotype again
controls type I error and yields more power than the traditional LMM. Software implementing these
improvements and the experimental comparisons are available at http://microsoft.com/science.

T
here has been a great deal of interest in statistical methods for genome-wide association studies (GWAS).
While linear or logistic regression have been commonly used for this task, the need to move beyond these
models has become clear. One important motivation for more sophisticated models is the existence of

confounding structure, including population structure and family relatedness. Recently, the linear mixed model
(LMM) has emerged as the model of choice to correct for such confounding structure1–9. Despite its rapid
acceptance, however, there remain concerns about its use, and several improvements have been proposed.

One suggested improvement is the inclusion of principal components (PCs) as covariates to better capture
population structure8. Another proposed improvement is to use only a subset of single nucleotide polymorphisms
(SNPs) for inclusion in the LMM4–7,10. In particular, the LMM relies on an estimate of the genetic similarity matrix
(GSM), which encodes the pairwise similarity between every two individuals in the data set. These similarities are
estimated from SNPs or other genetic variants. While traditionally all available SNPs are used to estimate the
GSM, researchers have considered using a subset, chosen in at least two different ways.

In one approach, SNPs are chosen such that they are roughly equally spaced across the genome4. The idea
behind this approach is that linkage disequilibrium (LD) among the SNPs mitigates the need to use all of them.
One motivation underlying this approach is computational efficiency. Namely, when the number of selected
SNPs is less than the sample size of the data, then the computation of P values becomes linear in sample size,
rather than quadratic4. We shall refer this to form of subsetting as LD sampling.

A second approach to subsetting is based on a mathematical equivalence between the LMM and linear
regression4,7,11. Specifically, an LMM is equivalent to a form of linear regression in which the SNPs that determine
the GSM in the LMM view are covariates in the linear-regression view. The linear-regression view suggests
including in the GSM only those covariates that are correlated to the phenotype5,7. The inclusion of causal or
tagging SNPs could improve GWAS power by reducing the model misspecification that would otherwise result
from their exclusion. Inclusion of SNPs that tag confounding structure could help correct for confounding by
effectively using these SNPs as covariates5,10. Perhaps most importantly, omitting irrelevant SNPs, which intro-
duce noise, could amplify these benefits7. We refer to this form of subsetting as SNP selection. A second
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motivation for SNP selection is the potential for computational effi-
ciency as just mentioned for LD sampling. We note that, despite these
motivations, there has been debate about its usefulness12.

Here, we thoroughly investigate these potential improvements
under conditions spanning a wide range of population structure and
family structure. In our experiments, we also consider how the distri-
bution of effect sizes affects the usefulness of these improvements.
Although we offer some theoretical insights, this work is primarily
empirical. For these empirical investigations, we employ three types of
data sets: synthetic SNPs with synthetic phenotypes, real SNPs with
synthetic phenotypes, and real SNPs with real phenotypes.

We concentrate our investigations on real-valued phenotypes and
data that are randomly ascertained. While an LMM can often be
successfully applied to binary phenotypes (e.g., containing cases
and controls)3,13,14, in preliminary studies not presented here, we find
that our results generally do not extend to situations with substantial
ascertainment bias.

In our experiments, we first generate a suite of data sets having
various degrees of confounding structure and distributions of effect
sizes. Next, we apply each of the models under investigation as
described in Table 1 to each of the data sets, performing GWAS
(computing SNP-phenotype association P values) for each combina-
tion of model and data set. Finally, we evaluate empirical type I error
rate and power for each model based on the P values obtained over
the suite of datasets.

Table 1 summarizes the main results. Selection on its own did not
live up to its promise. In the presence of population structure, family
relatedness, or both, selected SNPs did not sufficiently correct for
confounding in that the resulting model failed to control for type I
error. Interestingly, however, when combined with a second fixed or
random effect, we found that the use of SNP selection controls for
type I error and increases power. Specifically, when only population
structure was present, using selection in combination with PCs
included as (fixed-effect) covariates, yielded more power than the
traditional LMM. When family structure was present (with or with-
out population structure), SNP selection was again useful, but only
when used with a new improvement—namely, a mixture of two
GSMs, one constructed from all SNPs and another constructed from
SNPs identified by selection. This GSM-mixture model both con-
trolled type I error well and yielded more power than the traditional
LMM. This model also performed well when no confounding struc-
ture was present and when only population structure was present.

Another notable finding was that the improvements to power
afforded by SNP selection manifested most strongly when the
number of causal SNPs was low and they had large effect sizes.
Finally, on data with real SNPs (where LD was present), we found
that replacing a GSM based on all SNPs with one based on LD
sampling improved run time without degradation in type I error
or power.

Results
We evaluated various GWAS models across three broad sets of
experiments: those involving synthetic SNPs and synthetic pheno-
types, those involving real SNPs and synthetic phenotypes, and those

involving real SNPs and real phenotypes. As noted in the introduction,
we focused on data that were randomly ascertained. Also, we concen-
trated on genome-wide association analyses that test for associations
between a single SNP and a phenotype, although the methods we
considered should also be applicable to a variety of association tests,
such as those between sets of SNPs and a phenotype15. Herein, we use
the term GWAS to refer to univariate association analyses only.

Synthetic SNPs and phenotypes. We generated synthetic SNPs and
phenotypes under four settings: no population structure or family
relatedness, population structure only, family relatedness only, and
both population structure and family relatedness. We generated each
data set with M 5 50,000 SNPs and N 5 4,000 individuals, typical of
many GWASs. (Note that ref. 12 suggests that there are effectively
60,000 independent SNPs in the human genome.) We generated
SNPs such that there was no physical linkage to avoid any
confusion about the identity of true causal SNPs. In our data
generation, we varied the degree of population structure, family
structure, number of causal SNPs and signal strength over a wide
range of plausible parameters, including ones yielding strong
confounding from population structure and family relatedness, so
as to challenge and thereby uncover weaknesses of the various
models examined. Results varied depending on the presence of
population structure and on the presence of family relatedness, so
we consider the four possible cases separately.

No population or family relatedness. For each data set, we generated
SNPs with a minor allele frequency (MAF) sampled uniformly from
the range [0.05, 0.5]. For each individual, a continuous phenotype
was then constructed by generating causal and noise components,
and summing them. The causal component was generated from a
linear model with a varying number of causal SNPs C. The causal
SNPs were normalized to have mean zero and variance one, and the
effect sizes were drawn identically and independently from a

Gaussian distribution with mean zero and variance s2
g

.
C. The inde-

pendent noise component was generated independently and ident-
ically from a Gaussian distribution with mean zero and variance s2

e .
Parameter values used in our simulations were as follows:

. Number of causal SNPs: 10, 50, 100, 500, 1000

. Narrow-sense heritability (causal signal) h2~s2
g

.
s2

gzs2
e

� �
: 0.1,

0.2, 0.3, 0.4, 0.5, 0.6

Three data sets for each possible combination of parameters were
generated, yielding 3 3 5 3 6 5 90 data sets. Note that different
random seeds were used to generate each set of SNPs so that no two
sets were the same.

We used these datasets to measure empirical type I error rate and
power for three models: linear regression (Linreg), an LMM with a
GSM based on all SNPs (LMM(all)), and an LMM with a GSM based
on SNP selection (LMM(select)). See Methods for a detailed descrip-
tion of the LMM model. As motivated in the introduction by the
correspondence between an LMM and regression, SNPs were
selected so as to maximize prediction accuracy on the phenotype.
In particular, SNPs were identified by searching over multiple sets of

Table 1 | Model performance in the presence of population structure or family relatedness

Name of model Model description

population structure family relatedness

controls type I error good power controls type I error good power

Linreg Linear regression
LMM(all) LMM with GSM based on all SNPs 3 3

LMM(select) LMM with GSM based on SNP selection
LMM(select) 1 PCs LMM(select) with PCs added as fixed effects 3 3

LMM(all 1 select) LMM with a mixture of two GSMs 3 3 3 3

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6874 | DOI: 10.1038/srep06874 2



SNPs to identify those that maximized out-of-sample prediction
accuracy as measured by the log likelihood of the phenotype under
the LMM. To keep the search practical, we ordered SNPs for each
fold by their increasing univariate linear-regression P values, and
then considered increasing numbers of SNPs in this order (see
Methods for details). This approach is known as marginal regres-
sion16. The computational complexity of the algorithm is O(N2M).

For each of the three models, we measured empirical type I error
rate (the proportion of non-causal SNPs deemed significant) as a
function of P-value threshold. In addition, we measured empirical
power (the proportion of causal SNPs deemed significant) as a func-
tion of empirical type I error (Figure 1; note that a fourth method
shown in the figure, LMM(all 1 select), will be introduced in the
following section). Results are shown for different numbers of causal
SNPs. All models controlled type I error well. Furthermore,
LMM(select) yielded the most power, especially when the number
of causal SNPs was small (and thus the effect sizes were large). That
LMM(select) had more power than Linreg is not surprising when
thinking about the LMM as linear regression with selected SNPs as
covariates. Namely, conditioning on selected SNPs reduces noise in
the phenotype. That LMM(select) had more power than LMM(all)
when there were few causal SNPs is also expected, as presumably the
use of all SNPs in the GSM obfuscated the true causal signal, a
phenomenon called ‘‘dilution’’7.

One interesting finding was that SNP selection would select all
SNPs in many data sets when only a relatively small number of the
SNPs in the generating data were causal (Figure 2). One explanation
is that, as the number of causal SNPs increases for a fixed narrow-
sense heritability, the signal in each SNP decreases. Therefore, even
for a relatively small number of causal SNPs (e.g., less than 1000), the
SNP selection algorithms may not be able to detect the signal at the
individual-SNP level, thus finding all SNPs to be optimal. (See ref. 17
for a theoretical discussion.) Indeed, when we used 1000 causal SNPs
and increased narrow-sense heritability beyond 0.4, less than all
SNPs (in fact, less than 1000) were selected.

Population structure but no family relatedness. To introduce popu-
lation structure, all SNPs were generated from the Balding-Nichols
model18 with a 50550 population ratio, a baseline MAF sampled
uniformly from [0.05, 0.5], and a value for Wright’s FST that varied
across the generated data sets. The data was otherwise generated as
described for the previous setting of no population structure.

Parameter values used in these simulations were as follows:

. Number of causal SNPs: 10, 50, 100, 500, 1000

. Narrow-sense heritability h2~s2
g

.
s2

gzs2
e

� �
: 0.1, 0.2, 0.3, 0.4,

0.5, 0.6
. Degree of population structure FST: 0.005, 0.01, 0.05, and 0.1

Three data sets for each possible combination of parameters were
generated, yielding 3 3 5 3 6 3 4 5 360 data sets. As under the
previous setting of no population structure and no family related-
ness, different random seeds were used to generate each set of SNPs
so that no two sets were the same.

For each of the three models considered previously (Linreg,
LMM(all), LMM(select)), we examined exclusion and inclusion of
PCs as fixed-effect covariates. In Supplemental Material, we com-
pared two methods for estimating PCs. In one approach, PC estima-
tion was guided by the accuracy of phenotype prediction, similar to
the approach of refs. 19–21 for estimating PCs for linear and logistic
regression. In the second approach, PC estimation was guided by the
prediction accuracy of PCs on SNPs rather than the phenotype, based
on a Probabilistic Principal Components (PPC) model22. This second
approach yielded better control of type I error and power, and herein
we concentrate on only this approach. The algorithm, described in
Methods, has a computational complexity O(N2M) in the simple case
where all N PCs are computed.

The inclusion of PCs had differing effects on the performance of
the models (Supplementary Figure 1). LMM(all) controlled type I
error well, whether or not PCs were included as fixed effects, and
inclusion did not affect power. In contrast, for Linreg, inclusion of
PCs led to control of type I error, consistent with the results in ref. 23,
and had little effect on power. Furthermore, the inclusion of PCs led
to control of type I error and improved power for LMM(select), as
was recently reported in an independent investigation24.

One way to understand these results is through consideration of
the graphical-model structure25 for our data-generation process
(Figure 3a). Here, l is a hidden (latent) variable denoting which of
the two Balding-Nichols populations the individual is in, y is the
phenotype, and c and s with subscripts denote the causal and non-
causal SNPs, respectively. The graphical-model structure conveys
assertions of conditional independence among the variables repre-
sented. For example, when l is unobserved, there are open paths
between the SNP variables, reflecting induced correlation among
the SNPs. In contrast, if l were observed, these paths would be closed,
reflecting the lack of correlation among SNPs within each popu-
lation. Ref. 25 describes generally how to determine correlations
from the graph based on what is and is not observed.

The graph offers a simple explanation for the inflation of P values
(i.e., the lack of type I control) when using Linreg. In particular,
because l is unobserved, there are open paths in the graph from the
non-causal SNPs to y, indicating a correlation between the non-
causal SNPs and y. The graph also offers two possible explanations
for why LMM(all) without PCs leads to good control of type I error.
One is that, as described in the introduction, the use of LMM(all) is
equivalent to a form of linear regression where all SNPs condition the
phenotype. By conditioning on all the SNPs and thus the causal ones,
we block all paths from l to y, again making the non-causal SNPs and
y independent. The other is that a GSM based on all SNPs may
accurately represent the latent variable l, again blocking the paths
from non-causal SNPs to y. Later in this section, we will see evidence
that at least the second explanation holds true. The graph also
explains results for LMM(select). Namely, the SNP selection algo-
rithm presumably failed to select some of the causal SNPs, resulting
in paths from the non-causal SNPs to y. To validate this hypothesis,
we estimated a GSM from only the true causal SNPs (those generat-
ing the phenotype), observing no inflation (Supplemental Figure 2).
In addition, when PCs were included with LMM(select), they accur-
ately represented the latent variable (see Supplemental Material),
thus blocking the paths from non-causal SNPs to y and yielding
control of type I error.

Similar to what we observed in the case of no population or family
relatedness, SNP selection selected fewer than all SNPs in most data
sets only when there were a few causal SNPs with large effect size
(Figure 2). Furthermore, in these situations, LMM(select) with PCs
yielded more power than LMM(all) (Supplemental Figure 2).

So far, our simulations have assumed that confounding has
resulted only from differences in SNP allele frequencies between
populations. In practice, however, there may be additional con-
founding effects due to correlations between the Balding-Nichols
populations (represented by l in Figure 3) and the phenotype. For
example, environmental effects may differ between the two popula-
tions. To investigate such additional confounding effects, we simu-
lated data as before, but now added a direct correlation between l and
y as shown in Figure 3b (see Methods). To do so, we first generated
100 additional SNPs in the same way as the other SNPs except with a
fixed FST of 0.2. We then used these 100 SNPs to generate a com-
ponent added to the phenotype with variance s2

p, such that

s2
p

.
s2

pzs2
e

� �
5 0.3. These SNPs were used only in the generation

of the phenotype. They were excluded from the GWAS analysis.
Consistent with results just presented, we found that the use of PCs

led to good control of type I error. In addition, we found that use of a
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Figure 1 | Empirical type I error rate and power for no population or family relatedness with purely synthetic data. Type I error rate is plotted as a

function of P value cutoff a. Each point represents the average type I error rate or power across 18 data sets with different degrees of signal (narrow-sense

heritability). Shading on the curves for type I error rate represent the 95% confidence interval assuming type I error is controlled. All power curves that are

visibly separated have significant differences between them. For example, comparing power for Linreg and LMM(all) for 10 causal SNPs at a type I error of

1023, the P value from a two-sided binomial test applied to the number of true positives is 0.03.

www.nature.com/scientificreports
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GSM based on all SNPs led to good control (Supplemental Figure 3).
This observation indicates that a GSM based on all SNPs can accur-
ately represent (i.e., block paths through) the hidden variable l.

In summary, on purely synthetic data with population structure
but no family relatedness, we found that LMM(select) yielded better

GWAS performance than LMM(all), but only when PCs were used as
covariates.

Family relatedness but no population structure. We generated data as
described for the first setting of no confounding structure, except that

Figure 2 | Box plots showing number of SNPs selected and mixing weight as a function of the number of causal SNPs with purely synthetic data. The

first column shows log10 of the number of SNPs selected by LMM(select). The highest point corresponds to the selection of all SNPs. The second and third

columns show the number of selected SNPs and mixing weights for LMM(all 1 select). A mixing weight of 1 corresponds to using a GSM based only on

SNP selection. A mixing weight of 0 corresponds to using a GSM based only on all SNPs.

www.nature.com/scientificreports
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we created family relatedness by mating randomly selected synthetic
individuals, producing 10 offspring per parent pair. The fraction of
offspring in the population was varied across the generated data sets
so as to yield a degree of inflation for Linreg similar to that in the
population-structure setting. In a single mating, the genotype of the
child was constructed by selecting one copy of the genotype from the
mother and one copy from the father. Matings were performed in
two passes, creating equal numbers of offspring in each pass. In the
first pass, each mother and father pair was selected from the same
population. In the second pass, each pair was selected randomly from
the existing set of individuals, possibly from different populations.

Parameter values used in these simulations were as follows:

. Number of causal SNPs: 10, 50, 100, 500, 1000

. Narrow-sense heritability h2~s2
g

.
s2

gzs2
e

� �
: 0.1, 0.2, 0.3, 0.4,

0.5, 0.6
. Degree of family relatedness; fraction of individuals belonging to

a family: 0.5, 0.6, 0.7, 0.8, 0.9

Three data sets for each possible combination of parameters were
generated, yielding 3 3 5 3 6 3 5 5 450 data sets. Again, different
random seeds were used to generate each set of SNPs so that no two
sets were the same.

Under this setting, we evaluated Linreg 1 PCs, LMM(all), and
LMM(select) 1 PCs. Linreg 1 PCs and LMM(select) 1 PCs failed
to control type I error, in contrast to the setting with population
structure, whereas LMM(all) controlled type I error (Figure 4 and
Supplementary Figure 4). Again, we can understand these results in
terms of the graphical-model structure for the data-generation pro-
cess, which is that of Figure 3a where now the hidden variable corre-
sponds to family relatedness. In terms of this graph, inflation
observed for Linreg 1 PCs (also seen in Ref. 8) indicates that the
use of PCs as fixed effects failed to block the paths through l from
non-causal SNPs to y. Similarly, inflation observed for LMM(select)
1 PCs indicates that neither PCs as fixed effects nor selected SNPs
blocked the paths through l. Only LMM(all) blocked all paths from
the non-causal SNPs to y, either by conditioning on all SNPs, having
a GSM that fully captures family relatedness l, or both. Later in this
section, we will see evidence supporting at least the second
explanation.

Turning to power, we found that LMM(select) performed best
(Supplementary Figure 4). Thus, interestingly, no model performed
best in terms of both type I control and power. Based on this obser-
vation, we developed a new LMM model having a GSM made up of a
mixture of two GSMs ((1 2 p) K0 1 p K1), one based on all SNPs
(K0) and one based on SNP selection (K1). Methods provides a
detailed description of the algorithm for creating this model, called
LMM(all 1 select).

Because we included a mixture component based on all SNPs, the
algorithm considered only a relatively small number of SNPs for the
selected component. Nonetheless, because one of the components
was based on all SNPs, the computational complexity of this algo-
rithm was the same as that of LMM(select): O(N2M). Note that this
model is closely related to those in refs. 26,27, and is also related to
the model of ref. 10 who added SNPs as fixed effects identified with
forward-backward selection conditioned on a GSM estimated from
all SNPs.

This new model yielded the benefits of both a GSM based on
selected SNPs and one based on all SNPs. It controlled type I error
and had power equal to that of an LMM with selected SNPs (Figure 4
and Supplementary Figure 4). As before, the power advantage was
greater when a relatively small number of the SNPs in the generated
data were causal. The model also performed well in the settings of no
confounding structure and population structure only (Figures 1 and
4, and Supplemental Figure 2).

Interestingly, the number of SNPs selected first increased and then
decreased with the number of causal SNPs (Figure 2). Presumably,
the decrease was due to the fact that one of the components of the
mixture GSM is based on all SNPs and that this component can well
represent larger numbers of causal SNPs with smaller effect size, as
we have seen under the previous settings of confounding structure.
This explanation is consistent with the mixing weights p estimated
for the mixture GSM (Figure 2). Namely, when there were a small
number of causal SNPs with large effect size, the estimated mixing
weight was high, favouring the GSM based on SNP selection. When
there were a large number of causal SNPs with small effect sizes, the
estimated mixing weight was low, favoring the GSM based on all
SNPs.

As before, we explored additional confounding due to family relat-
edness, corresponding to a direct arc from l to y in Figure 3b. Such
confounding could result from, for example, family-related envir-
onmental effects. To create this additional confounding structure, we
first generated 100 additional SNPs subject to the same family relat-
edness as the other SNPs, and then used these 100 SNPs to generate a
component added to the phenotype with variance s2

p, such that

s2
p

.
s2

pzs2
e

� �
5 0.3.

Linreg and LMM(select) failed to control type I error due to the
open paths from non-causal SNPs to y. In contrast, LMM(all) and
LMM(all 1 select) controlled type I error (Supplementary Figure 5),
indicating that a GSM based on all SNPs is capable of blocking the
paths through l—that is, a GSM based on all SNPs is capable of
capturing family relatedness.

Population structure and family relatedness. We generated data as
described for the setting of population structure and no family relat-

Figure 3 | Graphical models for the data-generation process. The variable l is hidden (latent) and corresponds to confounding structure, either

population structure of family relatedness. The variables c and s with subscripts correspond to causal and non-causal SNPs, respectively.
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Figure 4 | Empirical type I error rate and power with and without population structure (PS) and family relatedness (FR) with purely synthetic data.
Type I error rate is plotted as a function of P value cutoff a. Each point represents the average type I error rate or power across multiple data sets with

varying numbers of causal SNPs and varying degrees of heritability, population structure, and family relatedness.

www.nature.com/scientificreports
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edness, except we added family relatedness by mating randomly
selected individuals as described in the previous section. Parameter
values used in these simulations were as follows:

. Number of causal SNPs: 10, 50, 100, 500, 1000

. Narrow-sense heritability h2~s2
g

.
s2

gzs2
e

� �
: 0.1, 0.2, 0.3, 0.4,

0.5, 0.6
. Degree of population structure; FST: 0.005, 0.01, 0.05, and 0.1
. Degree of family relatedness; fraction of individuals belonging to

a family: 0.5, 0.6, 0.7, 0.8, 0.9

Three data sets for each possible combination of parameters was
generated, yielding 3 3 5 3 6 3 4 3 5 5 1800 data sets. Again, no
two sets of SNPs were the same.

Using this data, we examined four models: Linreg 1 PCs,
LMM(all), LMM(select) 1 PCs, and LMM(all 1 select). The model
LMM(all 1 select), which performed best for the setting of family
relatedness without population structure, also performed best here
(Figure 4 and Supplementary Figure 6). These results indicate that
the inclusion of all SNPs as part of the mixture GSM led to good
control of type I error for both forms of confounding structure,
consistent with our findings for family relatedness alone and popu-
lation structure alone. Furthermore, the inclusion of selected SNPs as
part of the mixture GSM led to improved power, again most notably
so when there were a small number of causal SNPs with large effect
size (Supplementary Figure 6). Finally, as we saw for the setting of
family structure alone, the number of SNPs selected first increased
and then decreased with the number of causal SNPs (Figure 2).

Real SNPs and synthetic phenotypes. We next compared models
using data sets based on real SNPs and synthetic phenotypes. We
used real SNPs to determine whether our results on synthetic SNPs
would hold under more realistic conditions, including those where
SNPs were in LD. We continued to use synthetic phenotypes to
maintain a gold standard as to which SNPs were causal.

We used real SNPs from three cohorts, two from human studies—
the Northern Finnish Birth Cohort from 1966 (Finnish) and CIDR
Visceral Adiposity Study (VAS)—and one from a mouse cross
(Mouse) (see Methods). These data contain various degrees of popu-
lation structure and family relatedness. From a hierarchical cluster-
ing performed on each of these three data sets (Figure 5), we see that
Finnish contains little population structure or family relatedness,
VAS contains mostly population structure as illustrated by the broad
bands of similarity, and the mouse data contains both forms of con-
founding structure as illustrated by the combination of broad and
narrow bands. We generated the phenotype in essentially the same
manner as for purely synthetic data sets, always using h2 5 0.5.

To understand our strategy for measuring empirical type I error
rate and power, it is useful to first understand an effect that can lead
to loss in power. When computing an association P value for a given
SNP, that SNP and SNPs nearby from the GSM should not be
included4,5,14. If these SNPs are included, then (as follows from the
linear-regression view of the LMM) they effectively become covari-
ates in the test and reduce power. This effect is called proximal
contamination4,5. In the experiments with synthetic SNPs, which
contained no LD due to recombination, it was sufficient to exclude
only the single SNP tested from the GSM in order to avoid proximal
contamination. We did so using the method in ref. 5. In the experi-
ments with real SNPs in LD, we could have used a similar approach
and excluded SNPs from the GSM that were close to the SNP being
tested. However, this approach was somewhat computationally
expensive. Thus, instead we excluded from the GSM all SNPs on
the chromosomes being tested, as has been described previously4,5,12.
Specifically, we measured type I error rate with SNPs from chro-
mosome 1 and power with SNPs from chromosome 2, after first
sampling causal SNPs from all but chromosome 1 and constructing
the GSM with SNPs from all but chromosomes 1 and 2 (repeating

this procedure multiple times to obtain good estimates). One poten-
tial problem with this approach is that leaving out chromosome 2
from the GSM when measuring type I error rate on chromosome 1
would lead to open paths from the non-causal SNPs on chromosome
1 to the phenotype (through causal SNPs on chromosome 2). These
exclusions could then result in inflated P values due not to a poor
model, but rather to this expedient approach of avoiding proximal
contamination. We will examine this potential problem in more
detail after considering the main results of the analysis, but for pur-
poses of evaluating the various models, we avoided this problem by
making sure that no causal SNPs were on chromosome 2 when
evaluating type I error rate on chromosome 1.

We applied the models Linreg, Linreg 1 PCs, LMM(select),
LMM(select) 1 PCs, LMM(all), and LMM(all 1 select) to each of
these data sets, yielding results that were consistent with our findings
on the purely synthetic data. In particular, for the Finnish SNPs,
which had little population structure or family relatedness, all models
controlled type I error, and models using SNP selection had more

Figure 5 | The GSM for three real SNP data sets. Each point in the matrix

corresponds to the similarity between a pair of individuals. Lighter colors

correspond to greater similarity. The ordering was obtained by a

hierarchical clustering, as indicated by the dendrograms on the axes, where

different colors reflect substantially different clusters.
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power than models that did not (Figure 6 and Supplementary Figure
7). For the VAS SNPs, which contained mostly population structure,
all models except Linreg and LMM(select) controlled type I error,
and again models using SNP selection had more power than models
that did not (Figure 6 and Supplementary Figure 8). For the Mouse
SNPs, which exhibited both forms of confounding structure, only
LMM(all) and LMM(all 1 select) controlled type I error, and
LMM(all 1 select) had the most power, presumably because it was
the only model that both used SNP selection and controlled type I
error (Figure 6 and Supplementary Figure 9).

Returning to the potential problem of leaving out one chro-
mosome to avoid proximal contamination, we investigated this
problem by repeating our experiments on Mouse data but now allow-
ing causal SNPs to be sampled from chromosome 2 when evaluating
type I error rate on chromosome 1. The result was that the leave-out-
one-chromosome approach did indeed lead to inflated P values
(Supplementary Figure 10). Consequently, although we were able
to avoid the bad effects of leaving out one chromosome in our syn-
thetic experiments, we recommend that, in practice, the method only
be used when avoiding proximal contamination with a small window
around the tested SNP is not computationally feasible.

Finally, LD among the SNPs in this data allowed us to investigate
the usefulness of replacing a GSM estimated from all SNPs with one
estimated after LD sampling, as first suggested in ref. 4. We did so for
the Mouse SNPs, where we had found a GSM based on all SNPs to be
most needed for control of type I error. A sample of only one fourth
of the available 10,000 SNPs yielded good control of type I error
(Figure 7), suggesting that, at least for this SNP data, LD sampling
can be an effective approach to improving the run time of GWAS.

Real SNPs and phenotypes. We applied our models to fully real data
to check for consistency with our findings on synthetic data. In
general, evaluation of real data is difficult, because the gold
standard (i.e., the identity of the causal SNPs) is unknown.
Nonetheless, some real data sets have a bronze standard—a
validated collection of causal SNPs or SNPs that tag causal ones—
making a partially informative analysis possible, with the limitation
that the list of validated SNPs is incomplete. In this work, we analysed
the Finnish data set with phenotypes low density lipoprotein (LDL),
high density lipoprotein (HDL), and triglycerides (Trig), and the
VAS data set with phenotype BMI. The causal SNPs and
associated loci for the bronze standard were obtained from the
NHGRI GWAS catalog (http://www.genome.gov/gwastudies). We
examined four models: Linreg, LMM(select) 1 PCs, LMM(all),
and LMM(all 1 select).

To get a sense of type I error rate, we counted apparent false
positive loci. A locus was considered a false positive if it contained
a below threshold SNP more than two million bases away from
any catalog SNP. To get a sense of power, we counted the number
of loci deemed to be true positives. A locus was considered a true
positive if it was in the catalog and contained a below threshold
SNP. There were no significant differences (Supplementary Table
1). For the VAS data set, LMM(select) 1 PCs selected all SNPs.
This observation is consistent with our results from synthetic data,
as the BMI phenotype is thought to have many causal SNPs. For
the Finnish data set, all methods yielded zero false positives at
thresholds of 5 3 1027 and 5 3 1028, consistent with our under-
standing that the Finnish data has little population structure or
family relatedness.

Discussion
Traditionally, when an LMM is used for GWAS, its GSM is estimated
from all available SNPs. In this work, we have evaluated potential
improvements to this approach on a broad set of data, both synthetic
and real.

One potential improvement, building a GSM based on selected
SNPs that well predict the phenotype failed rather dramatically. In
particular, when population structure, family relatedness, or both
were present, this approach failed to control for type I error.
Presumably, SNPs sufficient for good prediction are not sufficient
for good GWAS performance. These results are in contrast to our
previous findings7, which used less realistic simulations. None-
theless, when SNP selection was used in combination with other
improvements, it proved useful. Specifically, in the presence of popu-
lation structure alone, SNP selection in combination with PCs used
as covariates controlled type I error and also yielded more power
than the traditional approach. In all settings, with or without popu-
lation structure or family relatedness, a mixture of two GSMs, one
constructed from all SNPs and another constructed from SNPs iden-
tified by SNP selection both controlled type I error and yielded more
power than the traditional LMM. Furthermore, the improvements to
power afforded by SNP selection were the strongest when some SNPs
had a large effect size.

Of course, when analyzing real data, there will be uncertainty
about the distribution of effect sizes and about how much population
structure and family relatedness are present. Consequently, we
recommend using the mixture GSM when feasible. One drawback
of this approach is computational expense: run time is O(N2M),
where N and M are the sample size and number of tested SNPs,
respectively. One observation that could mitigate this problem is that
the GSM component based on all available SNPs can be replaced with
one based on a set of SNPs sampled across the genome (LD sam-
pling). Depending on the degree of LD among the SNPs, a subject for
further investigation, the sample could in principle be small enough
such that the number of sampled SNPs k would be less than N,
yielding a O(NMk) computational complexity4. A second benefit
implied by the potential effectiveness of LD sampling is that the
measurement of a large number of SNPs (e.g., whole-genome
sequencing) would be unnecessary for building the GSM.

Another way to improve run time would be to remove closely
related individuals (if any) from the analysis and then employ
LMM(select) 1 PCs. This approach has several drawbacks. First,
there would be a loss in power due to the removal of individuals.
Also, inflation could remain due to distant family relatedness (cryptic
relatedness). In addition, the approach may not work well in a setting
where population structure deviates from the idealized Balding-
Nichols structure employed in our investigations. Finally, although
its run time is less than GSM-mixture approach, its computation
complexity is no better: O(N2M).

We also found that avoiding proximal contamination by exclud-
ing SNPs from the GSM that are in the same chromosome as the SNP
being tested can lead to inflated P values. When feasible, we recom-
mend excluding SNPs in a small window around the SNP being
tested. Ref. 5 provides a relatively efficient algorithm for doing so.

Interestingly, we found that a GSM based on all SNPs (or LD-
sampled SNPs) could account for population structure just as well as
PCs. Consequently, if SNP selection picks all SNPs, then there is no
need to add PCs to the LMM. We note that ref. 8 showed that adding
PCs could be beneficial, but only in rare situations where some SNPs
are unusually differentiated.

Our experiments suggest that good GWAS performance across
multiple settings requires two model components: a component
based on all (or LD sampled) SNPs to control type I error, and a
component based on selected SNPs to improve power. These two
components are random effects in our mixture GSM, but ref. 10 has
had success with a model wherein one component is a GSM based on
all SNPs and the other component is a set of fixed-effect SNPs iden-
tified by forward-backward selection. (The use of a fixed-effect com-
ponent rather than a random-effect component should be
particularly useful when the number of SNPs with large effect size
is very small.) Other approaches for creating two-component models
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Figure 6 | Empirical type I error rate and power for three real SNP data sets and synthetic phenotypes with 10 causal SNPs. Each point represents the

average type I error rate or power across multiple synthetic phenotypes (400 for Finnish and AVS, and 4,000 for Mouse). In the Finnish power plot,

methods that include select have greater power than those that do not.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6874 | DOI: 10.1038/srep06874 10



including alternative methods for selecting SNPs (e.g., refs. 28–30),
seem worthy of investigation.

Finally, we emphasize that our empirical investigations covered only
randomly ascertained data. Initial investigations suggest that many of
our conclusions do not apply when there is strong ascertainment bias
as can be found in case-control studies12. Identifying improvements for
the ascertained case is a subject for further investigation.

Software implementing the traditional LMM and the improve-
ments discussed here as well as the simulations and evaluations are
available at http://microsoft.com/science.

Methods
Description of real data. The Finnish data comes from the NFBC1966 Study31 and
was pre-processed as described in ref. 32, yielding 328,517 SNPs for 5,256 individuals.
No covariates were used, as they were regressed out during pre-processing. The VAS
data (dbGap phs000169.v1.p1) was filtered with individual missingness , 0.1, MAF
. 0.05, SNP missingness , 0.1, and Hardy-Weinberg disequilibrium P values .

0.00001, yielding 720,036 SNPs for 2,802 individuals. The real BMI phenotype was

analyzed with age, gender, race, site, smoking amount, drinking amount, and
education as covariates. The Mouse data and its pre-processing is described in ref. 33
yielding 10,150 SNPs for 1,940 individuals.

The linear mixed model. An LMM decomposes the variance associated with
phenotype y into the sum of a linear additive genetic and residual component. The
distribution of y is given by

p yð Þ~N y Xb; s2
g Kzs2

e I
���� �

, ð1Þ

where X is the N 3 Q matrix of N individuals and Q covariates (e.g., gender, age)
including an offset term, b is the Q 3 1 vector of fixed effects, I is the N 3 N identity
matrix, K is the GSM of size N 3 N (determined from a set of SNPs), s2

g is the variance

of the genetic component, and s2
e is the variance residual component.

As discussed in the main text, the LMM model (equation 1) is equivalent to a form
of linear regression. In particular, consider the phenotype as a linear regression of
SNPs Z (N 3 S) on phenotype, with mutually independent effect sizes a distributed

N a 0j ;
s2

g

s
I

 !
. Assuming the values for each SNP are standardized, the log likelihood

can be written as

Figure 7 | Empirical type I error rate and power for phenotypes synthetically generated from SNPs from the Mouse data with 10 causal SNPs. GSMs

were estimated from SNPs sampled uniformly across the genome (every kth SNP). Each point represents average type I error rate or power across 4,000

synthetic phenotypes.
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g
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s
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Identifying K~
1
s

ZZ T, we recover equation (1). Note that, when K 5
1
s

ZZT, K is

called the realized relationship matrix (RRM)34. The RRM is commonly used in
genetic studies11 and we do so here. For a detailed discussion of the LMM, see ref. 35.

As discussed, we concentrated on genome-wide association analyses that test for
associations between a single SNP and a phenotype. When using the LMM to com-
pute a P value for the association between a test SNP and the phenotype, we used an F-
test where parameters were estimated using restricted maximum likelihood (REML).

The value for d~s2
e

.
s2

g estimated for the null model was also applied to the

alternative models3,36. We assumed an additive effect of a SNP on the phenotype. In
particular, the value of a SNP for a given individual was encoded as the number of
minor alleles of the SNP for that individual (0, 1 or 2).

Description of algorithms. The algorithm for SNP selection was as follows:

1. Create random train-test partitions of the data samples (corresponding to indi-
viduals).

2. For each partition
a. Use the training data to compute univariate linear-regression P values on

each SNP.
b. Order the SNPs by increasing P value.
c. For numSNPs in {0, 1, 2, 4, …, 1024, all} (the default values), use the first

numSNPs as features for the LMM:
i. Optimize the parameters of the LMM using REML.
ii. Use the LMM to compute the predictive log likelihood of the test data

(the log joint probability density of the test data given the training data).
3. Choose the value of numSNPs that maximizes the sum over the partitions of the

predictive log likelihood of the test data.

In step 1, we use a 90%–10% train-test partition of the data with enough partitions such
that there are 10,000 samples in the test sets overall. In practice, this number of samples
leads to the selection of a similar number of SNPs for different random seeds. This default
applies to the other method that uses random train-test partitions as well. The most time
consuming step in the algorithm is the evaluation of the predictive log likelihood when all
SNPs are used in step 2c. The computational complexity of this step is O(N2M). In the
experiments with synthetic SNPs and phenotypes, we used the search grid {0, 1, 5, 10, 20,
50, 100, 500, 1000, 2000, 5000, 10000, all} in step 2c. In the experiments with real SNPs
and synthetic phenotypes, we used the search grid {0, 1, 3, 10, 32, 101, 322, 1024, all}. In
the experiments with real data, we used the default values above.

The algorithm for estimating PCs was a follows:

1. Remove individuals that are closely related. Our default removes individuals
until no two individuals have an estimated kinship coefficient from a GSM
computed from all genome-wide variants of less than 0.1.

2. One dimension of the matrix of SNPs indexes multivariate samples, while the
other indexes variables of the samples. To avoid problems due to the high
dimensionality of the SNPs of each individual, treat the SNPs as samples and
the individuals as variables.

3. Partition the samples into subsamples for cross-validation. Partition SNPs
across chromosomes to reduce correlation between the partitions. When
evaluating prediction accuracy for a given subsample, the subsample is used
for testing, while the other subsamples are used for training. Each train-and-
test constitutes a fold.

4. For numPCs 5 0
a. For each fold

i. Use the training data to compute maximum likelihood estimates for a
PPC model.

ii. Compute the log likelihood of the test data according to this model.
5. Repeat step 4 with increasing numPCs until either (1) the sum over the folds of

log likelihood decreases twice in a row or (2) this sum first increases and the
decreases below the starting value.

6. Select the PPC model that maximizes the sum over the folds of the log like-
lihood.

7. Project the individuals who were removed in step 1 onto the subspace defined
by the optimal PPCA model (see Supplementary Material).

The algorithm for creating LMM(all 1 select) was as follows:

1. Create random train-test partitions of the individuals.
2. For each partition

a. Use the training data to compute P values on each SNP based on an LMM
with a GSM using all SNPs.

b. Order the SNPs by increasing P value.
c. For numSNPs in {0, 1, 2, 4, …, 128} (the default values), use the first

numSNPs as features for the LMM:
i. Optimize the parameters of the LMM including the mixing weight p by

REML.
ii. Use the LMM to compute the predictive log likelihood of the test data

(the log probability density of the test data given the training data).

3. Choose the value of numSNPs that maximizes the sum over the partitions of the
predictive log likelihood of the test data.

Because we included a mixture component based on all SNPs, the algorithm con-
sidered only a relatively small number of SNPs for the select component (see step 2c).
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