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Abstract: Dysfunction of the ubiquitin-proteasome system (UPS) has been implicated in
atherosclerosis development. However, the nature of UPS dysfunction has been proposed to be
specific to certain stages of atherosclerosis development, which has implications for proteasome
inhibition as a potential treatment option. Recently, low-dose proteasome inhibition with bortezomib
has been shown to attenuate early atherosclerosis in low-density lipoprotein receptor-deficient
(LDLR−/−) mice. The present study investigates the effect of low-dose proteasome inhibition
with bortezomib on pre-existing advanced atherosclerosis in LDLR−/− mice. We found that
bortezomib treatment of LDLR−/− mice with pre-existing atherosclerosis does not alter lesion
burden. Additionally, macrophage infiltration of aortic root plaques, total plasma cholesterol levels,
and pro-inflammatory serum markers were not influenced by bortezomib. However, plaques of
bortezomib-treated mice exhibited larger necrotic core areas and a significant thinning of the fibrous
cap, indicating a more unstable plaque phenotype. Taking recent studies on favorable effects of
proteasome inhibition in early atherogenesis into consideration, our data support the hypothesis of
stage-dependent effects of proteasome inhibition in atherosclerosis.
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1. Introduction

Accumulating evidence suggests that the ubiquitin-proteasome system (UPS) plays an important
role in atherogenesis. The UPS represents the major pathway for intracellular protein degradation and
is involved in numerous atherosclerosis-relevant processes, such as inflammation and management of
oxidative stress [1,2]. The 20S proteasome core complex contains three distinct proteolytic activities
for hydrolysis of proteins into small peptides [3] and can be targeted by a variety of inhibitors [4].
Proteasome inhibitors have gained attention by exhibiting potent anti-inflammatory properties [5].
In addition, inhibition of the proteasome with low doses of inhibitors has been shown to have
anti-oxidative effects in vitro and in vivo, without toxic side effects [6]. Consequently, proteasome
inhibitors were attributed anti-atherogenic properties.

Recently, we showed that treatment of low-density lipoprotein receptor-deficient (LDLR−/−)
mice with low doses of bortezomib attenuates early atherosclerotic lesion formation [7]. Beneficial
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effects from proteasome inhibition in early atherosclerosis are conceivable, since a dual role of the
UPS in atherosclerotic plaque progression was postulated [1,8]. It was assumed that the UPS may be
overreactive at an early stage, thereby driving the inflammatory response. With disease progression,
vascular proteasomal activity may ultimately decrease [1,9], thus potentially narrowing the therapeutic
window for proteasome inhibition. Moreover, a shift in proteasome composition, as described for
cardiac disease [10], may influence the responsiveness to proteasome inhibition [11] in the course
of atherosclerosis.

Recent studies investigating proteasome inhibition in different animal models of atherosclerosis
have yielded conflicting results, ranging from pro-atherogenic effects [12,13] to anti-atherogenic
effects [7,14]. Comparability of these studies is limited as they use different animal models, proteasome
inhibitors, and doses, as well as target different stages of atherosclerosis. In addition to the
above-mentioned atherosclerosis stage dependency, the effects of proteasome inhibitors may be
particularly dose-dependent. We have previously shown that a six-week bortezomib treatment at a
very low dose (50 µg/kg body weight (BW) ameliorates the establishment of early atherosclerosis in
LDLR−/− mice. Considering the suggested dual role of the UPS in atherosclerosis [1,2,8,9] and the
deduced stage-dependent effects of proteasome inhibition therefrom, we asked whether the same
treatment regimen is beneficial or detrimental in established advanced atherosclerosis in LDLR−/−

mice. Overall, investigation of the effect of bortezomib on advanced atherosclerosis is of clinical
relevance, since bortezomib is currently being used in multiple myeloma patients [15]—an elderly
patient cohort with an increased atherosclerosis prevalence.

Therefore, we investigated the effect of a six-week low-dose bortezomib treatment on pre-existing
advanced atherosclerosis in Western-type diet-fed LDLR−/− mice. Bortezomib treatment at this stage
did not alter lesion burden, but influenced plaque composition by promoting features of plaque
instability. Taking recent studies on favorable effects of bortezomib treatment in early atherogenesis in
LDLR−/− mice into consideration, the current data provides further evidence for a stage-dependent
role of the UPS in atherosclerosis.

2. Results

2.1. Low-Dose Bortezomib Treatment Was Efficient and Well-Tolerated

To investigate the effect of low-dose proteasome inhibition on pre-existing atherosclerosis, male
LDLR−/− mice were fed a Western type diet for 18 weeks, starting from the age of 10 weeks. Western
diet was then continued for another 6 weeks with intraperitoneal injections of bortezomib (Bor) or
saline (C) (Figure 1A). Mice were injected with 50 µg/kg BW bortezomib twice weekly, a low dose
previously shown to be non-toxic [7].

Treatment was well tolerated. Body weight was similar in both groups at the end of the treatment
period (Table 1). Bor treatment had no influence on plasma total cholesterol or triglyceride levels
(Table 1). Bor-treated mice showed a significant inhibition of the chymotrypsin-like proteasomal
activity, as measured in liver lysates 24 h after the final injection (Table 1).
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Figure 1. Atherosclerotic lesion burden in the aorta. (A) Experimental design. Male low-density 
lipoprotein receptor-deficient (LDLR−/−) mice were fed a Western diet for 24 weeks and were treated 
with intraperitoneal injection of saline (C) or bortezomib (Bor) during the last 6 weeks. (B) En face Oil 
Red O staining of Bor and C aortae revealed no differences in the atherosclerotic lesion area. 
Representative images and the quantification are shown. n = 11 per group.  

Table 1. Body weight, cholesterol, and triglycerides concentrations, and proteasomal activities in 
LDLR−/− mice. 

 C (n = 11) Bor (n = 11) 
Body weight (g) 41.1 ± 1.3 42.7 ± 1.4 

Total cholesterol (mg/dL) 1718 ± 154 1730 ± 130 
Triglycerides (mg/dL) 1562 ± 186 1391 ± 97 

Proteasomal activity in liver lysates (RFU) 1440 ± 51 1211 ± 50 * 
C: control animals; Bor: animals treated with proteasome inhibitor bortezomib; LDLR−/−: low- density 
lipoprotein receptor-deficient; RFU: relative fluorescence unit. * p < 0.05. 

2.2. Bortezomib Had No Effect on Lesion Size and Macrophage Infiltration  

En face Oil Red O staining revealed marked atherosclerosis in both C and Bor mice, indicative 
of advanced atherosclerosis. Bor treatment had no effect on the en face lesion area compared to saline 
treatment (C: 15.74% ± 0.97%; Bor: 16.90% ± 1.39%; p = 0.502; Figure 1B). These results are consistent 
with lesion area quantification in the aortic root (C: 33.91% ± 1.86%; Bor: 34.86% ± 1.79%; p = 0.719; 
Figure 2A,B). Likewise, quantification of the Oil Red O positive plaque area yielded in similar results 
for both groups (C: 42.73% ± 5.24%; Bor: 47.33% ± 4.44%; p = 0.519; Figure 2C), indicating that lipid 
accumulation in atherosclerotic lesions of the aortic root is not influenced by Bor treatment. 

For analysis of macrophage content in aortic root lesions, Galectin-3 (Mac-2) immunohistochemistry 
was performed. No differences in macrophage content between either group were detected (C: 
23.97% ± 1.76%; Bor: 22.81% ± 0.89%; p = 0.710; Figure 2D,E). Correspondingly, serum levels of the 
pro-inflammatory chemokine monocyte chemoattractant protein 1 (MCP-1) (C: 64.44 ± 4.84 pg/mL; 
Bor: 70.75 ± 7.19 pg/mL; p = 0.475) as well as serum levels of interleukin (IL)-6 (C: 6.57 ± 0.48 pg/mL; 
Bor: 8.23 ± 1.43 pg/mL; p = 0.555) did not significantly differ between Bor and C mice (Figure 3A,B). 

Figure 1. Atherosclerotic lesion burden in the aorta. (A) Experimental design. Male low-density
lipoprotein receptor-deficient (LDLR−/−) mice were fed a Western diet for 24 weeks and were treated
with intraperitoneal injection of saline (C) or bortezomib (Bor) during the last 6 weeks. (B) En face
Oil Red O staining of Bor and C aortae revealed no differences in the atherosclerotic lesion area.
Representative images and the quantification are shown. n = 11 per group.

Table 1. Body weight, cholesterol, and triglycerides concentrations, and proteasomal activities in
LDLR−/− mice.

C (n = 11) Bor (n = 11)

Body weight (g) 41.1 ± 1.3 42.7 ± 1.4
Total cholesterol (mg/dL) 1718 ± 154 1730 ± 130

Triglycerides (mg/dL) 1562 ± 186 1391 ± 97
Proteasomal activity in liver lysates (RFU) 1440 ± 51 1211 ± 50 *

C: control animals; Bor: animals treated with proteasome inhibitor bortezomib; LDLR−/−: low- density lipoprotein
receptor-deficient; RFU: relative fluorescence unit. * p < 0.05.

2.2. Bortezomib Had No Effect on Lesion Size and Macrophage Infiltration

En face Oil Red O staining revealed marked atherosclerosis in both C and Bor mice, indicative of
advanced atherosclerosis. Bor treatment had no effect on the en face lesion area compared to saline
treatment (C: 15.74% ± 0.97%; Bor: 16.90% ± 1.39%; p = 0.502; Figure 1B). These results are consistent
with lesion area quantification in the aortic root (C: 33.91% ± 1.86%; Bor: 34.86% ± 1.79%; p = 0.719;
Figure 2A,B). Likewise, quantification of the Oil Red O positive plaque area yielded in similar results
for both groups (C: 42.73% ± 5.24%; Bor: 47.33% ± 4.44%; p = 0.519; Figure 2C), indicating that lipid
accumulation in atherosclerotic lesions of the aortic root is not influenced by Bor treatment.

For analysis of macrophage content in aortic root lesions, Galectin-3 (Mac-2)
immunohistochemistry was performed. No differences in macrophage content between either group
were detected (C: 23.97% ± 1.76%; Bor: 22.81% ± 0.89%; p = 0.710; Figure 2D,E). Correspondingly,
serum levels of the pro-inflammatory chemokine monocyte chemoattractant protein 1 (MCP-1)
(C: 64.44 ± 4.84 pg/mL; Bor: 70.75 ± 7.19 pg/mL; p = 0.475) as well as serum levels of interleukin
(IL)-6 (C: 6.57 ± 0.48 pg/mL; Bor: 8.23 ± 1.43 pg/mL; p = 0.555) did not significantly differ between
Bor and C mice (Figure 3A,B).
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Figure 2. Atherosclerotic lesion size, lipid accumulation, and macrophage infiltration in the aortic 
root. Oil Red O staining of aortic root cryosections showed similar lesion sizes and similar cholesteryl 
ester content in Bor and C mice. (A) Representative Oil Red O aortic root sections. (B) Lesion area 
quantification. (C) Quantification of plaque cholesteryl ester content. Galectin-3 (Mac-2) staining of 
aortic root cryosections revealed similar macrophage content in Bor and C lesions. (D) Representative 
Mac-2 stainings. (E) Mac-2 quantification. n = 11 per group. Bor = bortezomib; C = saline control.  

 
Figure 3. Serum levels of inflammatory markers monocyte chemoattractant protein 1 (MCP-1) and 
interleukin (IL)-6. Both monocyte chemoattractant protein-1 (A) and interleukin-6 (B) serum levels 
remained unaltered by Bor treatment. n = 11 per group. Bor = bortezomib; C = saline control. 

  

Figure 2. Atherosclerotic lesion size, lipid accumulation, and macrophage infiltration in the aortic
root. Oil Red O staining of aortic root cryosections showed similar lesion sizes and similar cholesteryl
ester content in Bor and C mice. (A) Representative Oil Red O aortic root sections. (B) Lesion area
quantification. (C) Quantification of plaque cholesteryl ester content. Galectin-3 (Mac-2) staining of
aortic root cryosections revealed similar macrophage content in Bor and C lesions. (D) Representative
Mac-2 stainings. (E) Mac-2 quantification. n = 11 per group. Bor = bortezomib; C = saline control.
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Figure 3. Serum levels of inflammatory markers monocyte chemoattractant protein 1 (MCP-1) and
interleukin (IL)-6. Both monocyte chemoattractant protein-1 (A) and interleukin-6 (B) serum levels
remained unaltered by Bor treatment. n = 11 per group. Bor = bortezomib; C = saline control.
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2.3. Bortezomib Influenced Plaque Composition Towards a Vulnerable Phenotype

To gain further insight into plaque composition, we performed Movat pentachrome staining
and Sirius Red-staining of paraffin sections of the brachiocephalic artery (Figure 4A,F). Plaque
volume (C: 1.89 ± 0.11 mm3; Bor: 2.13 ± 0.19 mm3; p = 0.456; Figure 4B) and the degree of
stenosis (C: 59.36% ± 2.85%; Bor: 65.41% ± 2.36%; p = 0.125; Figure 4C) were similar in Bor and
C mice. However, lesions of Bor animals had a significantly larger necrotic core area compared to
lesions of C animals (C: 33.19% ± 4.83%; Bor: 47.81% ± 5.24%; p = 0.029; Figure 4D). Analysis of
fibrous cap width showed a significant decrease in Bor compared to C mice (C: 36.25 ± 6.74 µm;
Bor: 19.86 ± 4.13 µm; p = 0.049; Figure 4E). Picrosirius red birefringence indicates a lower collagen
content in the brachiocephalic artery (BCA) lesions of Bor mice (C: 13.00% ± 2.37%; Bor: 10.56 ± 2.42%;
p = 0.183; Figure 4G), albeit not reaching a level of significance.
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Figure 4. Characterization of atherosclerotic lesions in the brachiocephalic artery (BCA).
(A) Representative serial sections of the BCA were stained with the Movat pentachrome. Plaque
volume (B) and stenosis (C) were not affected by Bor treatment, confirming data from the aortic
root. Bor mice showed a significantly larger necrotic core (D) and a significantly thinner fibrous
cap (E). n = 8 per group. (F) Representative sections of picrosirius red-stained BCA sections were
photographed under polarized light and analyzed for collagen birefringence. (G) Quantification of
lesion collagen content. Bor treatment tended to lower collagen content of BCA lesions. n = 6–7 per
group. Bor = bortezomib; C = saline control, * p < 0.05.
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3. Discussion

The purpose of the current study was to investigate the influence of proteasome inhibition
with bortezomib at a low dose of 50 µg/kg BW, a treatment previously shown to attenuate early
atherogenesis [7], on pre-existing, advanced atherosclerosis in LDLR−/− mice. Stage-dependent,
opposing effects of proteasome inhibition have been hypothesized [1,8], but data from LDLR−/− mice
with established atherosclerosis, treated with low doses of bortezomib, were previously not available.
We show that low-dose bortezomib treatment of LDLR−/− mice with advanced atherosclerosis does
not increase lesion burden but promotes features of plaque instability.

In the present study, we investigated the effect of low doses of bortezomib on pre-existing
atherosclerosis, which was induced by feeding LDLR−/− mice a Western-type diet for 18 weeks.
Bortezomib had no influence on plaque burden as shown in the aorta and the BCA, but increased
necrotic core size and reduced fibrous cap width in BCA plaques. Therefore, the present study
illustrates the difficulty of identifying a therapeutic window for proteasome inhibition as a treatment
option for atherosclerosis, but at the same time provides strong evidence for stage-dependent effects of
proteasome inhibition in atherosclerosis.

Dose- and stage-dependent effects of proteasome inhibitors in atherosclerosis were
discussed [8,16,17]. While dose-dependency has already been elucidated, the underlying reasons
for stage-dependent effects of proteasome inhibition remain less clear. Some studies suggest that
proteasomal activity is decreased in advanced atherosclerotic lesions [18,19], leading to accumulation
of misfolded proteins and cellular stress [9]. Others suggest an overreactive UPS with increased
proteasomal activity and enhanced nuclear factor-κB (NF-κB) activation [20]. Thus, it was hypothesized
that proteasomal activity varies with disease progression. That is, proteasomal activity increases under
the influence of oxidative stress in the initiation phase of atherosclerosis, possibly leading to increased
NF-κB activation and an enhanced inflammatory response [1]. We provided indirect evidence of this
hypothesis, since proteasome inhibition in this phase had beneficial effects [7]. Our present study fails
to show beneficial effects of bortezomib on advanced atherosclerosis in LDLR−/− mice. In line with the
present study, van Herck and colleagues showed that a 4-week bortezomib treatment (100 µg/kg BW)
of collar-induced carotid artery plaques in apolipoprotein E-deficient (ApoE−/−) mice promoted a
rupture-prone plaque phenotype [13]. In contrast, the bortezomib dose used in our study was as low
as 50 µg/kg BW and was previously shown to be beneficial in early atherosclerosis [7]. Consequently,
this led to a lower degree of proteasome inhibition in the present study. However, the effects of this
less pronounced proteasome inhibition were similar to those observed by van Herck et al. [13], as we
observed no influence on plaque size, an increased necrotic core size and reduced collagen content.
Interestingly, both studies show unaltered macrophage content of plaques after bortezomib treatment,
which is underlined by the unaltered cytokine serum levels (IL-6, MCP-1) in our study. This is
in contrast to our previous study showing a clear attenuation of initial macrophage infiltration by
low-dose bortezomib treatment [7], apparently as a consequence of a decrease in MCP-1 and vascular
cell adhesion molecule-1 (VCAM-1) expression in vascular cells [5–7]. In the present study, treatment
was initiated in an atherosclerosis stage, where substantial lesion infiltration by macrophages had
already taken place. Plaque resident macrophages are known to enhance MCP-1 levels in lesions [21],
thereby promoting the recruitment of more leukocytes. We assume that this process is not sufficiently
attenuated by low doses of bortezomib.

The observed promotion of plaque destabilization by bortezomib could be explained by a
decreased proteasome activity in advanced atherosclerosis as recently hypothesized [1]. To further
shed light on stage-specific proteasomal activity, future studies should address composition and
proteolytical capacity of the proteasome in the course of atherogenesis. It is beyond the scope of the
current study to answer this important question. Yet, this knowledge could enable targeted utilization
of next-generation proteasome inhibitors [4] with improved specificity in atherosclerosis treatment.

Results of the present study have important clinical implications since bortezomib has become a
standard therapy for multiple myeloma, especially since it is used in much higher doses to treat this



Int. J. Mol. Sci. 2017, 18, 781 7 of 10

malignant disease and an undefined proportion of this elderly patient cohort may exhibit coronary
atherosclerosis. Indeed, recent case reports on cardiopulmonary and vascular events in multiple
myeloma patients receiving proteasome inhibitor treatment [22,23] emphasize the necessity to pay
particular attention to cardiac symptoms in affected patients.

In conclusion, the treatment of advanced atherosclerosis in LDLR−/− mice with low doses
of bortezomib promotes features of plaque instability. Taking recent studies on favorable effects of
proteasome inhibition in early atherogenesis into consideration, data suggest stage-dependent effects of
proteasome inhibition in atherosclerosis. Further knowledge of proteasomal composition and activity
is needed to effectively explore the therapeutic potential of upcoming next-generation inhibitors.

4. Materials and Methods

4.1. Materials

Unless otherwise specified, all reagents and media were purchased from Sigma Chemicals,
Germany. Bortezomib was kindly provided by Millennium Pharmaceuticals, Cambridge, MA, USA.

4.2. Animal Experiments

Animal experiments were approved by the local authority (G207/03, Landesamt für Gesundheit
und Soziales, Berlin) and were performed according to institutional guidelines. Male 10-week-old
LDLR−/− mice (B6.129S7-Ldlrtm1Her/J; JAX Mice, Boston, MA, USA) were fed a high fat diet for
18 weeks ad libitum (Western-type diet containing 21% butterfat, 17% casein, 0.21% cholesterol;
Ssniff, Soest, Germany). Subsequently, mice were divided into two body weight- and serum
cholesterol-matched groups. A Western diet was continued for another 6 weeks plus intraperitoneal
injections of bortezomib (Bor; n = 11) or saline (C; n = 11). Mice were intraperitoneally injected with
50 µg/kg BW bortezomib twice weekly. General condition and body weight were monitored. After
24 weeks, mice were fasted for two hours, anesthetized in an isoflurane-loaded box and euthanized.
After perfusion with phosphate buffered saline (PBS), hearts and aortae were dissected under a
stereomicroscope (Leica, Wetzlar, Germany), snap-frozen in liquid nitrogen, and stored at −80 ◦C or
fixed in formalin.

4.3. Measurement of Proteasomal Activity

Measurement of proteasomal activity in liver lysates was performed as described previously [7].
Briefly, lysis of tissue was performed by grinding in liquid nitrogen, followed by repeated cycles
of freezing and thawing under hypotonic conditions. After clearance of lysates by centrifugation
for 20 min at 4 ◦C, the chymotrypsin-like activity of the proteasome was determined using the
peptide substrate succinyl-Leu-Leu-Val-Tyr-(7-amino-4-methylcoumarin) (SLLVY, Bachem, Bubendorf,
Switzerland) in an incubation buffer containing 225 mM Tris-HCl, pH 8.2, 45 mM KCl, 7.5 mM
Mg(CH3COO)2, 7.5 mM MgCl2, 1.1 mM dithiothreitol, 6 mM adenosine triphosphate (ATP), 5 mM
phosphocreatine, 0.2 units of phosphocreatinekinase, and 0.2 mM SLLVY. An amount of 20 µg of
protein was used per assay. 7-amino-4-methylcoumarin (AMC) hydrolysis was measured after 30 min
incubation at 37 ◦C in a GeminiEM (Molecular Devices, Sunnyvale, CA, USA) plate fluorescence
reader (360 nm excitation and 460 nm emission wavelengths). The measured chymotrypsin-like (ChTL)
activity in these native tissue lysates was completely blocked when lysates where incubated with 1 µM
MG262 starting 30 min before the assay.

4.4. Staining and Analysis of Atherosclerotic Lesions

For the en face aortic lesion, analysis was performed as previously described [7]. Briefly,
the dissected, formalin-fixed aortae were longitudinally opened, pinned flat on silicone gel, and
stained with Oil Red O. Pinned aortae were digitally photographed. The atherosclerotic lesion area
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was determined using ImageJ version 1.36b software [24]. The lesion area in the aorta was calculated
as the percentage of the total aortic area.

Cryosections of aortic roots were stained with Oil Red O and counterstained with hemalaun.
Image analysis was performed using Zeiss Axiovision Software (Oberkochen, Germany). Results were
calculated as the percentage of the lipid-stained area of the total vessel area and the plaque area.

Cross sections of formalin-fixed, paraffin-embedded brachiocephalic arteries (BCAs) were stained
with the original Movat pentachrome according to the manufacturers’ protocol (Morphisto, Frankfurt
am Main, Germany) and used for measurement of the necrotic core area and the width of the fibrous
cap. The volume of the BCA lesion was determined as described [25].

For fibrous cap width measurements, the entire BCA was serially sectioned into 5 µm sections.
One section every 75 µm was stained with the Movat pentachrome. Images were captured, and
the section displaying the largest plaque area was selected. In addition, the adjacent sections of the
neighboring 10 and 20 µm on both sides were stained with the Movat pentachrome, and the mean
necrotic core area was calculated from these 5 sections. Accordingly, the minimum fibrous cap width
was calculated.

The collagen content of BCA lesions was assessed by examination of Picrosirius Red-stained
sections. Pictures were taken with identical exposure settings (AxioCam HrC, Zeiss, Oberkochen,
Germany). The content of the collagen, identified by birefringence under polarized light, was quantified
as the percent of plaque area for all sections. Morphometric analysis was performed on digital images
using Zeiss Axiovision software.

4.5. Immunohistochemistry

Immunohistochemistry of acetone-fixed 5 µm aortic root cryosections was performed using
anti-Mac-2 (Cedarlane Laboratories, Burlington, Ontario, Canada). Following hemalaun counterstain
sections were digitally photographed under standardized conditions using Zeiss AxioCam MrC and
analyzed using Zeiss AxioVision software.

4.6. Measurement of Serum Lipids

Plasma total cholesterol and triglyceride concentrations were measured with a colorimetric
enzymatic assay (CHOD-PAP, and TG GPO-PAP (Roche-Diagnostics, Mannheim, Germany)).

4.7. Serum Levels of MCP-1 and IL-6

Serum levels of mouse soluble MCP-1 and mouse IL-6 were measured with a Mouse
CCL2/JE/MCP-1 or IL-6 Quantikine ELISA Kit (R&D Systems Inc., Minneapolis, MN, USA) according
to the manufacturer’s protocol.

4.8. Statistical Analysis

Data are presented as mean ± standard error of mean (SEM). Comparisons between groups were
made using the Mann–Whitney or t-test as appropriate (GraphPad Prism Software, GraphPad, La Jolla,
CA, USA). p < 0.05 was considered significant.
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