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Abstract 
High-occupancy target (HOT) regions are the segments of the genome with unusually high 
number of transcription factor binding sites. These regions are observed in multiple species and 
thought to have biological importance due to high transcription factor occupancy. Furthermore, 
they coincide with house-keeping gene promoters and the associated genes are stably 
expressed across multiple cell types. Despite these features, HOT regions are solemnly defined 
using ChIP-seq experiments and shown to lack canonical motifs for transcription factors that are 
thought to be bound there. Although, ChIP-seq experiments are the golden standard for finding 
genome-wide binding sites of a protein, they are not noise free. Here, we show that HOT 
regions are likely to be ChIP-seq artifacts and they are similar to previously proposed 
‘hyper-ChIPable’ regions. Using ChIP-seq data sets for knocked-out transcription factors, we 
demonstrate presence of false positive signals on HOT regions. We observe sequence 
characteristics and genomic features that are discriminatory of HOT regions, such as 
GC/CpG-rich k-mers and enrichment of RNA-DNA hybrids (R-loops) and DNA tertiary structures 
(G-quadruplex DNA). The artificial ChIP-seq enrichment on HOT regions could be associated to 
these discriminatory features. Furthermore, we propose strategies to deal with such artifacts for 
the future ChIP-seq studies. 
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Introduction 
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is now a standard method to 
quantitatively assay the binding sites of a DNA binding protein in the genome. Large scale 
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projects such as ENCODE [1] and modENCODE [2] used this technology to find the binding 
sites of hundreds of proteins in multiple species. With more binding site data available, it has 
become apparent that certain parts of the genome harbour high frequency of protein-DNA 
binding events. These regions are called high-occupancy target (HOT) regions and they are 
observed in multiple species [3,4]. HOT regions are associated with housekeeping genes and 
are enriched in binding events without canonical motifs [5]. HOT regions are thought to have 
biological importance due to high number of binding sites observed, but previous reports failed 
to assign a clearly distinctive function that would explain the requirement for the exuberant 
number of bound transcription factors. 
  
In this study, we aim to gain a deeper understanding of the nature of HOT regions and the 
genomic features associated to them. First, we wanted to investigate the features that are 
common to HOT regions across species. To date, there has been no cross-species comparison 
of HOT regions in terms of sequence features. The sequence features that are shared across 
species can lead to a better understanding and prediction of HOT regions in other species as 
well. With the sequence analysis and subsequent integrative analysis, we primarily aim to 
uncover the rationale behind the propensity of HOT regions to have unusual number of binding 
events, many of which are motifless binding events (transcription factors binding to a region 
without the known motif) [5]. For us, the plausible explanations for motifless binding are a 
combination of 1) interaction of transcriptions factors (TFs) where only a handful of them are 
actually binding to DNA [3], 2) existence of weak binding sites where TFs bind to non-canonical 
motifs in a weak manner [6], 3) regions with high-affinity for chromatin immunoprecipitation 
called ”hyper-ChIPable“ regions [7]. Many of the HOT regions are shown to bind hundreds of 
proteins based on ChIP-seq experiments [4]. However, the stable interaction of a protein 
complex that consists of hundreds of TFs or side-by-side binding of TFs, many to weak motifs, 
seems implausible. Detection of hundreds of proteins occupying an individual hot region could 
be explained by extensive protein interaction networks between transcription factors and 
cofactors, where only a few factors directly bind to DNA. However, only a handful of such 
interactions were experimentally validated [3]. Side-by-side binding of hundreds of proteins is 
again not possible due to space limitations, because the average size of a transcription factor is 
10 nm [8] and if a hundred of them bound next to each other as packed as possible, it would 
require 1000 nm in length (or about ~2900 bp assuming 1bp is 0.34nm [9]), which is beyond the 
size of average HOT regions. Therefore, we seek additional explanations for existence of HOT 
regions in the genome and their association with motifless binding. 
 
For a better understanding of what creates the HOT regions, firstly, we investigated nucleotide 
sequence features (motifs, k-mer content, etc.) of HOT regions across the species. We built 
species-specific machine-learning models to learn discriminative sequence features for HOT 
regions. We showed that HOT regions are associated with certain sequence features that are 
shared across species. Secondly, in order to investigate the potential technical biases causing 
the occurrence of HOT regions, we analyzed ChIP-seq experiments for knocked-out 
transcription factors in mice. Previously, [7] showed that highly expressed loci in yeast give rise 
to false-positive peaks when they did ChIP-seq experiments for proteins that did not have the 
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corresponding gene in the genome. We set out to examine if such a technical bias could be the 
driving force behind HOT regions given that motifless binding is prominent on those regions. As 
a result of this analysis, we observed false positive signals on HOT regions. Finally, we 
investigated the association of HOT regions with RNA:DNA hybrids called R-loops. The two 
classes of regions share similarity in sequence features and genes associated. We 
demonstrated association of HOT regions with R-loops. This paper presents a new rationale 
that explains the apparent high-occupancy on at least some of the HOT regions. With a better 
understanding of HOT regions provided here and other potential sources of bias associated with 
false-positive ChIP-seq peaks, now researchers can avoid these pitfalls and obtain less noisy 
data by additional computational analysis.  
 

Results 
 
HOT regions exist in multiple species and cover TSSes of stably expressed genes across 
cell types 
HOT regions are observed in multiple species - human [3,10], D. melanogaster  [11], yeast [12] 
and C. elegans  [10,13]. Based on density of ChIP-seq peaks used as a measure of TF 
occupancy, we defined HOT regions in human, mouse, worm (C. elegans)  and fly (D. 
melanogaster ) (See Figure 1A and Methods). Our method detected 4324 HOT regions in 
human, 2638 in mouse, 422 in C.elegans  and 408 in D. melanogaster , out of 428,498 regions 
with at least one peak in human, 245,250 in mouse, 40,921 in C. elegans , and 37,853 in D. 
melanogaster . These examined regions along with their TF occupancy percentiles (percentiles 
from ChIP-seq peak count distribution) as well as HOT regions are accessible via UCSC track 
hub (https://bimsbstatic.mdc-berlin.de/hubs/akalin/HOTRegions/hub.txt).  
 

HOT regions are typically located at promoters. The majority of HOT regions (80%) are in close 
proximity to TSS (within 5 kb) of genes (Figure 1B). In human and mouse, they are mostly 
associated with CpG islands (Figure 1C). The analysis of properties of genes associated with 
HOT regions show their stable expression pattern across all 35 analysed cell lines (Figure 1D), 
gene expression levels for those genes are generally above the median level of expression for 
all genes in the respective cell types. Gene Ontology (GO) [14] analysis revealed a variety of 
biological processes highly represented in HOT region-associated genes such as RNA 
processing, ncRNA processing, ncRNA metabolic process and ribosome biogenesis (Figure 
1E), which is in line with the findings reported by [3].  
 
To summarize, consistent with the published features of HOT regions [3,4], our findings confirm 
that genes associated with HOT regions are mostly housekeeping genes - they are required for 
the maintenance of basic cellular functions and are constitutively expressed. 
 
HOT regions have specific k-mer content compared to control regions 
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We analysed sequence characteristics of HOT regions in human, mouse, C.elegans  and D. 
melanogaster , since sequence characteristics may be shared across species and that could 
explain the existence of HOT regions on multiple species. For this purpose, we built 
machine-learning models that can discriminate HOT regions from non-HOT or so called “COLD” 
regions using sequence features. The machine-learning model is primarily used for identifying 
features that are predictive of HOT regions. For this purpose, we used low-level sequence 
features such as k-mers. We used 2bp, 3bp and 4bp long k-mer frequencies. In addition, we 
used GC content and CpG observed/expected ratio (O/E ratio). CpG islands are a frequent 
feature of HOT regions in human and mouse. Although, C. elegans  and D. melanogaster  do not 
have CpG islands, CpG enrichment could be important at least for C.elegans,  for which HOT 
regions are enriched for CpG dinucleotides [10]. We built a predictive model of “hotness” of 
genomic regions using a penalized multivariate regression method [15]. We built four 
species-specific models using normalized feature matrix as input. We had high accuracy for all 
models: cross-validation AUC between 0.82 and 0.94 for all the models. The top 10 feature 
importance averaged across species shows that CpG and GC rich k-mers along with CpG O/E 
ratio are the most important predictors for all the models (See Figure 2A for feature importance 
across all models and Figure S1A for individual models). The most predictive features averaged 
from all species are sufficient for discriminating HOT and COLD regions for all species. 
Although, localized CpG and GC spikes across genomes of C. elegans  and D. melanogaster 
are not common, we can discriminate HOT and COLD regions across all four species using the 
same GC/CpG rich top features. We used principal component analysis to visualize the 
discrimination between HOT and COLD regions using the top features (Figure 2B). To 
determine whether there are higher order sequences which differentiate between HOT and 
non-HOT regions, we performed discriminative de novo  motif analysis on HOT regions from all 
four species. The resulting motifs were short (5-6 bp with high information content), GC and 
CpG dominant (Figure S1B). The motifs partially matched binding sites of known transcription 
factors which bind GC rich sequences, such as SP1.  

 
ChIP-seq for knock-out transcription factors have enrichment in HOT regions 
Upon observing common low-level sequence features of HOT regions across species, we 
investigated whether potential technical biases of the ChIP-seq method could at least partially 
explain false positive signals on HOT regions. Previous studies suggest that even if the ChIP-ed 
protein does not exist in the analysed sample, highly expressed loci might give rise to 
false-positive peaks in yeast [7] and D. melanogaster  [11]. In order to address this question with 
a more comprehensive collection of datasets, we downloaded all available experiments where 
the ChIP-ed transcription factor was not expected to be physically present in the cell as the 
gene encoding the transcription factor was “knocked-out”. This set consists of 43 ChIP-seq 
experiments for knock-out (KO) transcription factors (KO ChIP-seq), where only 24 experiments 
have a control experiment in the form of input DNA or mock-IP (See Supplementary Table 1 for 
accession numbers and details). These experiments are carried out by different labs, which 
reduces the lab-specific bias for KO generation and ChIP-seq experiments. More than half of 
the KO ChIP-seq experiments show a clear signal enrichment (measured as IP/control) over 
HOT regions. KO ChIP-seq experiments with strong enrichment on HOT regions are shown in 
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Figure 3A and experiments without signal enrichment are shown in Figure S2A. The signal is 
absent from regions which do not have extreme enrichment of TF binding events. Pooling all the 
available signal enrichment for the KO ChIP-seq experiments with strong enrichment on HOT 
regions also shows the trend where signal enrichment on average is higher for HOT regions 
(Figure 3B shows signal enrichment of HOT regions and other control regions binned based on 
their TF occupancy percentiles). 
 
In addition, we noticed that some KO ChIP-seq experiments used IgG “mock” ChIP-seq as 
control. The IgG ChIP-seq experiments should ideally control for unspecific binding that could 
potentially cause a false positive signal, and yet more than half of KO ChIP-seq experiments 
that have IgG ChIP-seq as control show signal enrichment on HOT regions (see Figure 3A). 
Following up on this, we wanted to see whether the HOT regions show an enrichment of signal 
in IgG control experiments. We downloaded available IgG control experiments from ENCODE, 
where antibodies from the same vendor was used in multiple cell types (results shown in Figure 
S2B). HOT regions showed a consistent enrichment in multiple IgG experiments, however, the 
enrichment was weak and showed variability, which was dependent on the cell type (Figure 
S2C). 
 
 
HOT regions are associated with R-loops and G-quadruplex DNA 
We next investigated the association of HOT regions with other GC rich features of the genome. 
One such feature that shares the same type of annotation with HOT regions such as CpG 
islands is R-loops. An R-loop is a nucleic acid structure that is composed of an RNA-DNA hybrid 
and consequently displaced single-stranded DNA [16]. Their formation and stabilisation are 
associated with GC content and CpG islands [17] and G-quadruplexes [18].  R-loops exist 
across a broad spectrum of species from bacteria to high eukaryotes [19] and are shared across 
mammals [19,20]. R-loop accumulation is a source of replication stress, genome instability, 
chromatin alterations, or gene silencing. They are associated with cancer and a number of 
genetic diseases [16].  

 
R-loops can be detected genome-wide using a method called DNA-RNA immunoprecipitation 
followed by sequencing (DRIP-seq). It involves immunoprecipitation and sequencing of DNA 
fragments using the DNA-RNA hybrid specific S9.6 antibody [21], which was developed by 
extensively testing for specificity to DNA-RNA hybrids [22]. We analysed publicly available 
DRIP-seq datasets to investigate R-loop enrichment on HOT regions [20,23,24] (See 
Supplementary Table 1 for accession numbers). We observed R-loop enrichment on HOT 
regions on every cell line analyzed compared to other region sets binned based on their TF 
occupancy percentiles (Figure 4A). We observed this enrichment even when the DRIP-seq 
experiments with RNAseH treatment were used as controls. The RNAseH treatment removes 
R-loops and subsequent DRIP-seq experiment results in depleted signal for R-loops. This 
shows that the S9.6 antibody binds specifically to R-loops and does not show additional 
interactions with other forms of DNA and DNA-binding proteins. In addition, we also observed 
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DRIP-seq enrichment on HOT regions of C. elegans  (Figure 4B).  These results suggest that 
R-loops across different species overlap with HOT regions.  
 
R-loops usually colocalize with G-quadruplex DNA (G4-DNA) which is a tertiary structure of 
single-stranded DNA [16]. These structures can form on the displaced single-stranded G-rich 
DNA on the opposite side of the R-loop. We calculated the enrichment of G4-DNA on HOT 
regions using G4-ChIP-seq experiments [25], which are shown to enrich for G4-DNA 
specifically. We observed enrichment of G4-DNA signals on HOT regions, which is consistent 
with R loop localization on HOT regions (Figure 4D).  
 
In addition, if R-loops are associated with hyper-ChIPability that gave rise to the definition of 
HOT regions, we would also expect to see R-loops in hyper-ChIPable regions originally defined 
in yeast by Teytelman et al. [7]. Indeed, we see enrichment of DRIP-seq signal [26] on 
published hyper-ChIPable regions of yeast (Figure 4C).  
 
Since R-loops are associated with HOT regions, occupying TFs must be able to bind RNA-DNA 
hybrids or single-stranded DNA (ssDNA). Therefore, we checked if the TFs assayed by 
ENCODE have ssDNA binding or RNA-DNA hybrid binding domains, or such GO term 
annotations. Out of 165 studied TFs in human, only 2 of them contain at least one of the ssDNA 
binding domains: BACH1 contains a 'DUF1866' domain (from the RRM clan) and E2F6 contains 
a BRCA-2_OB3 domain (from the OB clan). Furthermore, none of the 165 TFs have an 
annotation of the GO term ‘single-stranded DNA binding’ (GO:0003697). When considering the 
direct interaction partners of these TFs, 31 out of 165 TFs (18.8%) have at least one direct 
interaction partner with an ssDNA-binding domain and 11 out of 165 TFs (6.7%) have at least 
one direct interaction partner with the GO term annotation for ssDNA binding. On the other 
hand, Cauli_VI domain that mediates the binding of RNASEH1 to RNA/DNA hybrids, is 
annotated only for two proteins in the whole proteome (RNASEH1 and Ankyrin repeat and LEM 
domain-containing protein 2 (ANKLE2)) and none of the human proteins have the associated 
GO term ‘DNA/RNA hybrid binding (GO:0071667)’ (according to the reviewed UniProt sequence 
annotations). Therefore, we could not detect any association of TFs or TFs' interaction partners 
with RNA/DNA hybrid binding function. 
 
HOT regions have stable hypo-methylation across cell types 
We also investigated the CpG methylation dynamics over HOT regions using base-pair 
resolution methylation data across multiple human cell types. Since most HOT regions are 
associated with CpG islands and above average expressed genes, we would expect low 
methylation over HOT regions [27]. In addition, hypo-methylated CpGs are prevalent in R-loops, 
and the formation of R-loops are proposed to be protecting the R-loop associated loci from de 
novo DNA methylation [16]. Consistent with these information, we observed hypo-methylation 
for HOT regions compared to controls. The median methylation levels for HOT regions was 
similar to the median methylation levels of CpG islands not associated with HOT regions 
(non-HOT CGI) (See Figure 4E for an example cell line, see Figure S3 for all analyzed cell 
lines). Interestingly, non-HOT CGI had higher variation of methylation than the HOT regions 
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despite the median methylation for both sets being low. This was a trend evident in all the cell 
types examined. Across the cell types, non-HOT CGI had 3-4 times higher methylation variation 
than HOT regions. This indicates that although HOT regions are associated with CpG islands, 
they are different from non-HOT CpG islands in their methylation dynamics and they maintain 
low levels of methylation across different cell types (See Figure 4F). 
 

Discussion  

HOT regions are locations in the genome with remarkably high occupancy of transcription 
factors. These regions are mostly associated with promoters of stably expressed genes. We 
showed that the low-level sequence features, such as GC rich and CpG containing k-mers, are 
shared across HOT regions of different species. Most interestingly, we demonstrated that HOT 
regions are specifically enriched with false positive signals, using KO transcription factor 
ChIP-seq. These false positive signals are antibody dependent since KO ChIP-seq experiments 
show variable intensity of signals on HOT regions. The traditionally suggested controls, such as 
IgG ChIP-seq, can not reliably control for these artifacts. We showed that HOT regions 
associate with R-loops, in multiple organisms, as well as G-quadruplex DNA structures. Our 
results support the view that the peaks observed on HOT regions are produced by the 
unspecific enrichment in multiple ChIP-seq experiments, rather than by the pull-down of specific 
transcription factors.  
 
There might be many causes for the persistent false positive signal on HOT regions. The 
ChIP-seq signal consists of the signal from actual binding events and the noise. The noise is 
usually attributed to sequencing depth, library preparation, but most importantly to antibody 
specificity [28]. The observed false positive signal could be obtained through pull-down of 
non-target proteins; this would however require that all experimentally used antibodies 
cross-react with a small set of proteins which constitutively bind GC rich promoters in multiple 
cell lines - a scenario which is highly improbable. The degree of overlap of HOT regions with 
R-loops suggests another hypothesis - that the antibodies cross-react directly with 
polynucleotide epitopes present in the HOT regions [29]. R-loops are formed during 
transcription of GC rich, hypomethylated regions, where the nascent RNA strand displaces one 
of the DNA strands, forming an RNA:DNA Watson-Crick base pairing with the complementary 
strand. Such displacement causes R-loop prone regions to contain multiple polynucleotide 
structures: double stranded DNA, single stranded DNA, RNA:DNA hybrids, single stranded RNA 
(reviewed in [16]), G quadruplex complexes [30,31], etc., all of which can be bound by 
antibodies with a range of affinities [30,32–35]. Anti-DNA antibodies are abundant in the serum 
of normal animals immunized with protein fragments [36–45], and are frequently polyspecific 
[40,46–54] - they can bind both polynucleotide and non-polynucleotide (e.g. peptide, 
phospholipid) epitopes [35]. Abundance of epitopes in constrained genomic regions, along with 
the fact that the HOT regions are associated with CpG islands of housekeeping genes (which 
are expressed and form R-loops in many cellular systems), and the promiscuity of antibodies, 
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provide a simple explanation for the ubiquity of enrichments observed on HOT regions in 
various ChIP-seq experiments. Serum of non-immunized, healthy animals usually contains a 
low percentage of anti-DNA binding antibodies. This explains why the IgG samples, when used 
as controls, show a signal on HOT regions, but the intensity of the signal is much lower than 
from antibodies produced by deliberate immunization. The recommended experimental methods 
for ascertaining antibody specificity [55] control almost exclusively for binding of antibodies to 
non-target proteins, so the direct interaction of antibodies with polynucleotide epitopes might be 
an underappreciated source of false positives in ChIP-seq experiments. In addition, if HOT 
regions have R-loops as shown here and the observed high TF occupancy is real, the TFs 
should be able to bind single-stranded DNA (ssDNA) or DNA-RNA hybrids. Based on the 
current protein domain annotations, very few to none of the TFs have the necessary machinery 
to bind ssDNA or DNA-RNA hybrids.  
 
In this work, we have focused on regions that show high enrichment in multiple ChIP-seq 
experiments. Although we provide evidence that HOT regions do not contain several dozens of 
bound transcription factors, the real extent of detected false positive interactions is probably not 
limited to HOT regions. With the currently available data, it is not possible to estimate the 
proportion of an antibody specific error resulting from the enrichment due to the pull-down of 
non-target proteins vs. the direct binding to polynucleotide epitopes. Examination of the DNA 
binding properties of monoclonal antibodies, for example with protein binding arrays [56,57], 
might provide the required data for constructing more precise error models.  
 
Lack of a strong signal over HOT regions, in a subset of KO ChIP-seq samples shows that by 
using stringent antibody validation methods, it is possible to perform highly specific ChIP 
experiments. A level of prudence is needed though - a lack of signal in a KO ChIP-seq 
experiment might also be caused by technical conditions such as low number of reads, low 
library complexity or unsuccessful IP. 
 
Our results, yet again [29,55,58,59], emphasise the need for critical examination and extensive 
testing of antibodies prior to their experimental usage. Whenever possible, controls in ChIP-seq 
experiments should be performed by ChIP-ing of protein in a system where the protein is not 
physically present, as implemented in Knockout Implemented Normalization method (KOIN) 
[60]. If such controls are unfeasible, we provide lists of HOT regions and ChIP-seq peaks 
overlapping with those regions should be carefully examined. Either those peaks should be 
removed from the set or more stringent quality controls, such as requirement of a canonical 
motif, should be exercised before making correlative or functional conclusions about the protein 
of interest.  
 

Methods 
ChIP-seq data for definition of HOT regions 
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Analyses of human TF binding sites were performed using the UCSC human hg19 reference 
genome, mouse mm9, D. melanogaster  dm3 and C. elegans  ce10. ChIP-seq files in 
narrowPeak format were downloaded from the ENCODE (www.encodeproject.org) and 
modENCODE (data.modencode.org) portals. Human TF binding sites in narrowPeak format 
were downloaded from the UCSC Uniform track 
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/. 166 
human TFs, 42 murine, 42 D. melanogaster,   and 83 C. elegans  were obtained. 
 
Defining HOT regions  
For a given set of ChIP-seq peaks per species, we determined the summits of the peaks. 
Following that, we calculated the density of the summits over the genome using 500 bp sliding 
windows. We calculated the local maxima of the density vector for each chromosome. We made 
sure local maxima of the density vector are the only maxima in 2000 bp surrounding of the 
maxima for human and 1000 bp for other species. This is necessary to remove sub-optimal 
maxima around the real maxima. 2000 bp threshold was specifically applied for human datasets 
due to high number of experiments creating multiple local maxima around the real maxima. We 
then ranked these maxima based on the density scores, which is effectively the number of 
overlapping ChIP-seq peaks and represents the TF occupancy. These density scores are 
referred to as TF occupancy throughout the text. We used 99th percentile threshold to define 
the HOT regions. This is in line with previous methods [61]. HOT regions were called using only 
the regulatory peak sets (no RNA polymerase datasets were included). The regions that are not 
selected as HOT regions are binned according to their TF occupancy percentiles (number of 
ChIP-seq peak counts) and used as controls in follow-up analyses.  
 
Assigning HOT regions to genes and expression analysis 
Distance from HOT regions to the nearest transcription start sites was analysed using GREAT 
[14]. Expression values of genes associated with HOT regions across tissues were obtained 
from the Expression Atlas EBI database (www.ebi.ac.uk/gxa) and fantom5 CAGE expression 
[62].  
 
Sequence analyses of HOT regions 
Extraction of 2-,3 and 4-mers, CpG frequencies (sum of observed G and C divided by length of 
genomic region equal to 2000), GC skew, the observed/expected ratios for CpG on HOT 
regions was computed using scripts written in R version 3.3.1 and BSgenome package. We 
used the following genome assemblies: mm9, hg19, ce10, dm3. The observed/expected ratios 
for CpG were calculated according to the formula (O/E)CpG = [f(CG)/f(C)f(G)] × 
width(genomic_region), where f denotes the observed frequency of the given mono- or 
di-nucleotides. De novo motifs were found using R package motifRG [63].  
MotifRG is a discriminative motif analysis tool which searches for overrepresented motifs in a 
positive set when compared to a negative set. Sequences from HOT regions were used as the 
positive set, while the negative set was constructed by sampling equal number of sequences as 
there are HOT regions from non-HOT regions. Motif analysis was performed on separately on 
HOT regions from H.sapiens , M.musculus , D.melanogaster  and C.elegans . MotifRG was run 
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with the following parameters: start.width=6, both.strand=TRUE, mask=TRUE, 
enriched.only=TRUE. 
 
 
Elastic net construction and PCA for discrimination of HOT regions 
For training, we used HOT regions defined as regions with TF occupancy percentiles higher 
than 0.995 for hg19 and 0.99 for other organisms. In order to use as a control, regions with TF 
occupancy lower than 85th percentile, were sampled matching the number of selected HOT 
regions. HOT and control regions for mm9 and hg19 were CpG sampled, in order to sure that 
the ratio of HOT and control regions that overlap CpG islands were the same. The genomic 
coordinates of the CpG islands were downloaded from the UCSC Table browser (cpgIslandsExt 
table). All models had the following set of features: CpG frequencies, ratio of observed versus 
expected CpGs, GC skew, and 2 3-, 4-mers. Feature matrix was standardized prior to training. 
Models trained and tested for the same species were trained using 10-fold cross-validation. 
Variable importance scores were calculated for each species-specific model as an absolute 
value of the model coefficients, which were then normalized to a scale from 0 to 100. Average 
relative importance was calculated as an average of variable importance scores of all models. 
Area under the ROC curve (AUC) was computed to measure the accuracy of the models. We 
used elastic net function from the glmnet R package [64]. For the PCA, we used top 10 features 
ranked by the average relative importance. Using these same features for all species, we 
calculated PCA and plotted the the color coded scatter plot on principal components for each 
species. For illustration purposes, we sampled the same number of “COLD” regions as the 
number “HOT” regions.  
  
Data processing and visualization of KO ChIP-seq, DRIP/RDIP-seq and G4 ChIP–seq 
samples 
Fastq files of KO ChIP-seq experiments (See Supplementary Table 1) were downloaded from 
the European Nucleotide Archive database (ENA). All fastq files have single-end reads and 
were uniquely mapped into murine genome version mm9 using Bowtie 1.1.12 with parameters: 
-p 3 -S -k 1 -m 1 --tryhard -I 50 -X 650 --best --strata --chunkmbs 1000. The bbduk program 
from the BBMap software 35.14 was used for adapter, quality trimming and filtering with 
parameters: minlength=20 qtrim=r trimq=20 ktrim=r k=25 mink=11 
ref=”bbmap/resources/truseq.fa.gz” hdist=1. Two of KO ChIP-seq samples NFAT1_P+I and 
NFAT1_None didn’t pass bbduk tests and were excluded from the further analysis. The FastQC 
0.11.3 program was used for quality control. Conversion from SAM to BAM file format, sorting 
and indexing BAM files was done using samtools 0.1.19, conversion from BAM to BED file 
formats and then BED to BedGraph file formats using Bedtools-2.17.0, from BedGraph to 
BigWig file format using BedGraphToBigWig v4. The same pipeline was used for DRIP-seq and 
RDIP-seq samples, and G4 ChIP-seq (due to lack of detected adapters, bbduk argument ‘ref’ 
that indicates a path to adapters was omitted). 

The R package genomation [65] was used for calculating fold enrichment analysis of KO 
ChIP-seq samples and plotting heatmaps. Fold enrichment of KO ChIP-seq samples was 
defined as log2 of IP signal divided by control per base pair. Out of total 25 KO ChIP-seq 
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samples, 15 are positively and 9 are negatively associated with TF occupancy scores. 
Heatmaps were binned on x-axis into 50 bins, average for each bin was taken, and winsorized 
to limit extreme values below 0.5 and above .99 percentile. Some of KO ChIP-seq samples are 
conditional knockouts using Cre-lox recombination system (See Supplementary Table 1). 
Enrichment presented as boxplots of KO ChIP-seq, DRIP/RDIP-seq, G4-ChIP-seq samples 
(Figure 3B and 4A,B,D) was calculated as the logarithm base 2 of the number of reads from IP 
sample overlapping HOT regions (normalized for library size and multiplied by counts per 
million) divided by the number of the reads from the control sample overlapping HOT regions 
normalized in the same way. If control was not available then IP with RNaseH treatment was 
treated as control. For visualisation purposes, windows on heatmaps were sampled: 3000 
windows from 0 to 75th TF occupancy percentile, 3000 from 75th to 99th, and 3000 from 99th to 
100th percentile. 

 
IgG samples corresponding to the following antibody ENCAB000AOJ were downloaded from 
ENCODE. Samples marked with “extremely low read depth were removed from the analysis”. 
Samples which belong to the same biosample term id were pooled together. Signal was 
visualized in a region of +/- 1kb around HOT (>99th percentile), MILD (between 99th and 75th 
percentile), and COLD regions (below 75th percentile). Prior to visualization, the reads were 
extended to 200bp in a stranded fashion, and the signal was normalized to per million reads.  
 
 
Methylation dynamics for HOT regions  
Methylation over the regions of interest is extracted from the Roadmap Epigenomics Consortium 
Whole-genome Bisulfite sequencing data sets [66]. Our regions of interest consist of HOT 
regions, non-HOT regions (regions with lower TF occupancy), and CpG islands not associated 
with HOT regions (non-HOT CGI). For each region of interest, we extracted overlapping 
methylation value for each cell type and calculated the mean methylation value per region. We 
plotted the distribution of mean methylation values for each set of regions: HOT regions, 
non-HOT regions (binned into different TF occupancy levels), and non-HOT CGI. For each cell 
type, we calculated the interquartile range and median methylation values for HOT regions and 
non-HOT CGI. Next, we plotted the distributions of medians and interquartile ranges across cell 
types as boxplots to compare the methylation dynamics for HOT regions to non-HOT CGI. 
 
PFAM domains and Human Protein-Protein Interactions 
Reviewed UniProt [67] human protein sequences (as of 31.08.2015) were scanned for 
occurrence of PFAM HMM (both PFAM-A and PFAM-B) models using HMMER3 [68]. The HMM 
scanning detected 9511 types of PFAM domains in 19275 proteins.  
 
PFAM [69]entries for single-stranded DNA-binding domains were collected from the PFAM 
database by combining all members of the following PFAM clans: OB (for OB-fold domains), KH 
(for K-homology domains), RRM (for RRM-like domains), and sPC4-like (for the Whirly domain). 
The collection of these four clans contains 90 different types of PFAM domains.  
 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/107680doi: bioRxiv preprint first posted online Mar. 5, 2017; 

https://paperpile.com/c/2Z1Xut/bU2N
https://paperpile.com/c/2Z1Xut/9zLL
https://paperpile.com/c/2Z1Xut/I0WH
https://paperpile.com/c/2Z1Xut/Jncu
http://dx.doi.org/10.1101/107680
http://creativecommons.org/licenses/by-nc-nd/4.0/


Human protein-protein interaction data was downloaded from the iRefWeb database [70]. In 
order to dissect which protein-protein interactions of TFs are direct (or relatively direct physical 
interactions of proteins), the interactions were filtered for the following criteria: 1)Interactor A 
(uidA) is from taxa:9606 and interactor B (uidB) is from taxa:9606; 2)Interaction type between 
uidA and uidB is one of  'MI:0915(physical association)', 'MI:0407(direct interaction)', 
'MI:0403(colocalization)',  'MI:0914(association)',  or 'MI:0191(aggregation)'; 3)Both uidA and 
uidB have an ID mapped to UniProt accessions.  
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Figure Legends 
 
Fig1. Features of HOT regions. A) Schematic workflow of HOT regions definition. The barplot 
indicates number of ChIP-seq peaks in HOT (red), MILD (green) and COLD (blue) regions. B) 
HOT regions are located mostly close to transcription start sites and are promoter associated. 
The figure shows binned orientation and distance between HOT regions and the nearest genes. 
Associations precisely at 0 refers to the transcription start site of the nearest gene. C) Most HOT 
regions overlap with CpG islands. D) Expression profiles of genes associated with HOT regions 
across cell types in mouse (Expression Atlas EBI databases using fantom5 CAGE expression). 
The genes are stably expressed in all 35 cell types between 40th and 80th percentile. E) 
Functional enrichment analysis with Gene Ontology and and KEGG pathway on genes 
associated with murine HOT regions. HOT regions are significantly enriched for terms that relate 
to housekeeping functions. 
 
Fig2. K-mer properties of HOT regions. A) Top 10 features ordered in relative importance 
averaged across species. Importance scores are scaled to 0-100 scale for each species then 
averaged. B) Principal component analysis using top 10 features shown in A. PCA is carried out 
for human, mouse, worm and fly separately. Scatter plots using first two principal components 
are shown, each dot represent HOT and COLD regions. The scatter plot is colored based on 
density of points, the more dense the points the darker the color.  
 
Fig3. A) Heatmaps show KO ChIP-seq experiments with signal on HOT regions. The barplot 
indicates number of ChIP-seq peaks are in HOT (red), MILD (green) and COLD (blue) regions. 
The values in the heatmaps are log2(IP/control). The status of the control sample input DNA or 
IgG is color coded on the top of the heatmaps. B) Boxplots show distribution of average 
log2(IP/control) values for different sets of TF occupancy percentile bins. The log2(IP/control) 
values for each region in A is averaged across KO ChIP-seq experiments. The rightmost 
boxplot represents HOT regions, TF occupancy > 99th percentile, and the rest represent control 
region sets with different TF occupancy percentiles. 
 
Fig4. R-loops are associated with HOT regions. The boxplots show log2(IP/control) for HOT 
regions and control regions binned based on their TF occupancy percentile A) Various human 
cell lines and B) in worm. Boxplots show DRIP-seq read count per base-pair for hyper-ChIPable 
regions and all other genes as controls . D) HOT regions are enriched with G-quadruplex DNA 
(G4-ChIP-seq). Boxplots show log2(IP/control) for HOT regions and control regions binned 
based on their TF occupancy percentile. E) HOT regions are hypo-methylated in comparison to 
controls in H9 cell line. Boxplots show distributions of methylation for HOT regions (rightmost 
boxplot) and control regions binned based on their TF occupancy percentile F)  Left Boxplot 
showing distributions of methylation medians across cell types for HOT regions and CpG islands 
that are not associated with HOT regions (non-HOT CpGi). Right boxplot showing  distributions 
of methylation IQRs (interquartile ranges) across cell types for HOT regions and non-HOT CpGi. 
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