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Abstract Sorting-related receptor with A-type repeats

(SORLA) is an intracellular sorting receptor that directs

cargo proteins, such as kinases, phosphatases, and sig-

naling receptors, to their correct location within the cell.

The activity of SORLA assures proper function of cells

and tissues, and receptor dysfunction is the underlying

cause of common human malignancies, including Alz-

heimer’s disease, atherosclerosis, and obesity. Here, we

discuss the molecular mechanisms that govern sorting of

SORLA and its cargo in multiple cell types, and why

genetic defects in this receptor results in devastating

diseases.
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Introduction

Sorting of proteins to their destined location in subcellular

compartments is essential for proper cell function, and

faulty protein sorting will result in cellular dysfunction and

disease. Protein sorting is essential for all cell types, but

particularly challenging in neurons in which cell

compartments of axons and dendrites may be as far away

as 1 m from the soma of motor neurons. Within cells, the

Golgi is the central hub that sorts the bulk of proteins.

Protein sorting proceeds in the trans-most cisterna of this

organelle called the trans-Golgi network (TGN) that con-

sists of an elaborate web of branching tubular membrane

domains. From the TGN, proteins may be targeted to the

apical or basolateral plasma membranes, to the endosomal/

lysosomal system, or to specialized secretory granules for

activity-dependent release. Directed protein trafficking is

mediated by sorting receptors, transmembrane proteins that

interact with cytosolic adaptors at the Golgi membranes to

guide their protein cargo to and from the TGN (reviewed in

[1]).

In recent years, one group of sorting receptors received

particular attention because of their causal involvement in

human diseases, such as Alzheimer’s and Huntington’s

disease, psychiatric disorders, but also atherosclerosis,

dyslipidemia, and diabetes. These sorting receptors are

called VPS10P domain receptors. Initially characterized in

neurons in the brain, VPS10P domain receptors now

emerge as key regulators of intracellular protein sorting

not only in the nervous system but also in many other

tissues as well [2]. Here, we focus on the sorting-related

receptor with A-type repeats (SORLA), a VPS10P domain

receptor that is paradigmatic for the mode of action of

this class of sorting receptors. We describe the molecular

interactions of SORLA with adaptor complexes that

control traffic between TGN, plasma membrane, and

endosomes. We discuss the functional significance of this

trafficking pathway for proper routing of enzymes, growth

factors, and signaling receptors, and why SORLA dys-

function may result in devastating pathologies, including

neurodegeneration, impaired renal ion homeostasis, and

obesity.
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Cell biology of SORLA sorting

SORLA (also known as LR11 or SORL1) was initially

uncovered in the search for receptors that share structural

similarity to the low-density lipoprotein (LDL) receptor, the

main endocytic receptor for uptake of lipid-loaded lipopro-

teins into vertebrate cells. These studies identified a 250-kDa

type 1 transmembrane protein in brain [3] and liver [4] that

contained complement-type repeats and a b-propeller, struc-

tural elements in the LDL receptor required for binding and for

pH-dependent release of ligands, respectively (Fig. 1a). The

ability of SORLA to internalize lipoproteins seemingly sup-

ported the notion of a novel species of lipoprotein receptor

[5, 6]. However, this assumption was questioned by the

presence of additional structural elements in SORLA not

found in the LDL receptor, namely a VPS10P domain and six

fibronectin-type III domains (Fig. 1a). The VPS10P domain

was noteworthy as it was identified earlier in an intracellular

sorting protein in yeast called the vacuolar protein sorting 10

proteins (VPS10P) [7]. VPS10P directs newly synthesized

peptidases from the TGN to the vacuole (the yeast lysosome)

where they act in proteolytic breakdown of internalized pro-

teins. A similar function for SORLA in intracellular protein

sorting in mammalian cell types was supported by the fact that

the bulk of the receptor molecules was present in the Golgi

rather than at the cell surface, a finding that argued against a

role as endocytic receptor [6, 8].

By now, an extensive body of work has substantiated the

relevance of SORLA as an intracellular sorting receptor that

shuttles between TGN, cell surface, and endosomes in neu-

rons and multiple other cell types. SORLA is synthesized as a

pro-receptor containing a 53 amino-acid pro-peptide at the

ultimate amino terminus. This pro-peptide is believed to

block the binding site for ligands in the VPS10P domain, a

major site for interaction with peptide ligands [9, 10].

Removal of the pro-peptide by convertases in the TGN

activates the ligand-binding capability of the receptor [6].

This activation step may be required to prevent premature

binding of ligands to nascent receptor molecules in the

biosynthetic pathway of the cell. Apart from the VPS10P

domain, the cluster of complement-type repeats in SORLA

constitutes another site for ligand recognition [11, 12].

Binding of ligands to the VPS10P domain or the comple-

ment-type repeats is lost at low pH (\5.5) [13], suggesting

ligand interaction to partake in the secretory pathway and at

the cell surface, but to be disrupted in the acidic milieu of late

endosomes. The significance of additional structural elements

in the extracellular domain for receptor functions is less clear.

Based on analogy to other proteins, the fibronectin-type III

domain may be involved in protein–protein interactions [14],

while the b-propeller may facilitate pH-dependent release of

ligands in endocytic compartments [15].

As well as by the ability to recognize distinct ligands

through its luminal domain, the function of SORLA in

protein sorting is determined by information encoded in its

short cytoplasmic tail. This tail domain encodes recogni-

tion motifs for cytosolic adaptors that direct the complex

trafficking path of SORLA between cell surface and vari-

ous intracellular compartments (Fig. 1b). Typically, newly

synthesized SORLA molecules follow the constitute

secretory pathway from the endoplasmic reticulum through

the Golgi to the cell surface, a default route for trans-

membrane proteins that does not require distinct sorting

motifs (Fig. 2). At the cell surface, some SORLA mole-

cules are subject to proteolytic shedding releasing the

soluble ectodomain of the receptor, termed soluble

(s) SORLA [16, 17]. However, most SORLA molecules at

the cell surface remain intact and undergo clathrin-depen-

dent endocytosis guided by the clathrin adaptor protein 2

(AP2) that interacts with an acidic motif D2190-

DLGEDDED in the receptor tail [8]. Internalized receptors

move to the early endosomes from where most receptors

will sort to the TGN to continuously shuttle between TGN

and endosomes thereafter. Retrograde movement of

SORLA from endosomes to the TGN is guided by phos-

phofurin acidic cluster sorting protein 1 (PACS1) that also

Fig. 1 Structural organization of SORLA. a Organization of the

SORLA polypeptide is shown, indicating the main structural elements

and their documented functions. The VPS10P domain and the cluster

of complement-type repeats serve as major ligand-binding sites in the

luminal receptor domain. The b-propeller interacts with the molecular

chaperone MESD to facilitate folding of the receptor polypeptide, and

it may be involved in pH-dependent release of bound ligands in acidic

endosomal compartments. b Amino-acid sequence of the cytoplasmic

receptor tail highlighting three main binding motifs for cytosolic

adaptors, termed FANSHY, the acidic motif (DDLGEDDED), and the

GGA-binding site (DDVPMV). GGA, Golgi-localizing, c-adaptin ear

homology domain, ARF-interacting protein; MESD, mesodermal

development deletion interval; VPS10P, vacuolar protein sorting 10

proteins. a adapted from [43]
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binds to the acidic cluster [18], and by the multimeric

adaptor complex retromer that binds to the F2172ANSHY

tail motif [19, 20]. Anterograde sorting of SORLA from the

TGN to endosomes is mediated by the monomeric clathrin

adaptors GGA1 and GGA2 (Golgi-localizing, c-adaptin ear

homology domain, and ARF-interacting proteins) that

interact with the D2207DVPMVIA element in the SORLA

tail [18, 21, 22]. Finally, binding of the adaptor protein

AP1 to the acidic tail motif may aid in anterograde as well

as retrograde sorting of SORLA [8]. The shuttling of pro-

tein cargo between TGN and endosomes likely constitutes

the major trafficking route taken by SORLA in neurons.

However, some studies also report the ability of SORLA to

move ligands from endosomes to the cell surface guided by

the sorting nexin family member (SNX) 27 [23], or from

endosomes to lysosomes, potentially sorted by GGA3

[24, 25]. The complex trafficking path for SORLA has

mainly been elucidated in established cell lines. However,

recent studies in mouse models expressing mutant SORLA

variants lacking individual adaptor binding sites have

substantiated this model in the brain by documenting

impaired anterograde sorting in receptor mutants lacking

the GGA-binding site [25] and impaired retrograde sorting

in mutants unable to interact with PACS1 [26] or retromer

[25].

SORLA controls amyloidogenic processes
in the brain

Given the predominant expression of SORLA in the brain

and its complex trafficking path in neurons, major efforts

have been focused on identifying the protein cargo sorted

by this receptor and its relevance for brain (patho)physi-

ology. These studies have highlighted an important role for

SORLA in control of amyloidogenic processes in the brain

and as a major risk factor for Alzheimer’s disease (AD).

Central to the pathology of AD is the amyloid precursor

protein (APP), a type-1 transmembrane protein expressed

in many cell types, including neurons. In a naturally

occurring process, APP is broken down into various pro-

teolytic fragments, including the amyloid-b peptides (Ab),

peptides of 37–43 amino-acid length that encompass part

of the transmembrane, and extracellular domains of APP.

Amyloid-b peptides, notably Ab42, are considered main

culprits in neurodegenerative processes as they exhibit a

tendency to aggregate to neurotoxic oligomers and senile

plaques, pathological features causative of neuronal dys-

function and cell loss in AD patients (reviewed in [27]).

Amyloidogenic processing requires endocytosis of APP

molecules from the cell surface and delivery to endosomes

whereby proteolytic breakdown to Ab occurs [28–30]. As

it turns out, SORLA acts as a sorting receptor for APP that

shuttles internalized precursor molecules from endosomes

back to the TGN to decrease production of Ab [18, 31, 32].

Binding of APP proceeds through the cluster of comple-

ment-type repeats in SORLA that forms a 1:1

stoichiometric complex with the luminal domain of APP

[11, 12, 33]. Overexpression of SORLA in cells reduces

Ab formation [18, 31, 32, 34], while loss of expression

accelerates Ab production and senile plaque deposition

[35, 36], documenting a protective function for SORLA in

AD progression. The interaction of SORLA and APP is

blocked by signaling through b-adrenergic receptors via a

yet unknown mechanism, resulting in impaired Golgi

retrieval and in increased endosomal accumulation of APP

[37]. In line with the presumed sorting path of the receptor,

prevention of APP processing depends on the ability of

SORLA to move retrogradely from endosomes to the TGN

Fig. 2 Intracellular trafficking path for SORLA. Nascent SORLA is

an inactive pro-receptor (pro-SORLA) that is activated by proteolytic

removal of an amino-terminal pro-peptide in the TGN, resulting in

transfer of the active receptor (SORLA) through the constitutive

secretory pathway to the cell surface. Some receptor molecules at the

cell surface are subjected to ectodomain shedding, resulting in release

of the extracellular receptor domain. Ectodomain shedding disrupts

the ability of SORLA to act as a sorting receptor, but may serve to

produce a soluble receptor fragment termed soluble (s)SORLA that

acts as a signaling molecule. Still, most SORLA molecules at the cell

surface remain intact and undergo clathrin-dependent endocytosis

facilitated by the clathrin adaptor protein (AP) 2. The bulk of

internalized receptors move from endosomes back to the TGN to

continuously shuttle between TGN and endosomal compartments

thereafter. Adaptors GGA1 and GGA2 guide anterograde movement

of SORLA from the TGN to endosomes, whereas PACS1 and the

retromer complex facilitate retrograde sorting from endosomes back

to the Golgi. AP1 may be involved in bi-directional sorting. As

alternative routes, SORLA may sort from endosomes to the cell

surface (aided by adaptor SNX27) or to lysosomes (aided by GGA3).

Figure adapted from [43]. AP, adaptor protein; GGA, Golgi-

localizing, c-adaptin ear homology domain, ARF-interacting protein;

PACS1, phosphofurin acidic cluster sorting protein 1; SNX27, sorting

nexin family member 27
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and is lost in receptor mutants that cannot interact with

retromer [25] or PACS1 [26]. As well as by sorting APP,

SORLA has also been shown to reduce the amyloidogenic

burden by sorting of newly produced Ab peptides to

lysosomes for catabolism [13]. This activity depends on the

interaction of Ab with a recognition site in the VPS10P

domain of SORLA [10] and on the ability of the receptor to

interact with GGAs to move in an anterograde fashion from

the TGN to endocytic compartments [25].

Taken together, the ability of SORLA to sort APP and Ab
likely represents major mechanisms, whereby this receptor

reduces the amyloidogenic burden and delays progression of

neurodegeneration. This hypothesis received strong support

from genetic studies in AD patients that identified gene vari-

ants in SORL1, the gene encoding SORLA, as being

associated with the risk of the sporadic form of AD

[34, 38, 39]. Some of these sequence variants have been shown

to impair efficiency of SORL1 transcription [34, 40, 41] or

translation [42], in line with low levels of SORLA being

disease promoting in patients and mouse models (reviewed in

[43]). Furthermore, a missense mutation in SORL1, that dis-

rupts its ability to bind Ab, has been identified in a family with

the autosomal dominant form of AD [44].

SORLA in neurotrophin signaling

Protein cargo sorted by SORLA in neurons is not restricted

to APP and its processing products, but also encompasses a

number of neurotrophin receptors, cell surface proteins that

transmit trophic signals to support growth and survival of

neurons. Specifically, SORLA acts as a sorting factor for the

tropomyosin-related kinase receptor (TrkB), the receptor for

brain-derived neurotrophic factor (BDNF). SORLA facili-

tates trafficking of TrkB between synaptic membranes and

the cell soma, a step critical for BDNF signal transduction

into cells [45]. Loss of SORLA results in impaired neuritic

transport of TrkB and in a blunted response to BDNF [45].

Intriguingly, SORLA is also a downstream target of BDNF

with receptor gene transcription being induced almost

10-fold by BDNF signaling in neurons [41, 46]. These data

suggest a positive feedback loop, whereby BDNF enhances

trophic signaling through induction of SORL1, the gene

encoding the sorting receptor for TrkB.

Another trophic pathway modulated by SORLA acts

through glial cell-line-derived neurotrophic factor (GDNF)

that promotes survival of distinct populations of central and

peripheral neurons, such as midbrain dopaminergic neu-

rons and spinal motor neurons. SORLA interacts with

GDNF to increase its regulated secretion from cells [47]. In

addition, SORLA interacts with GFRa1, the co-receptor for

GDNF [48]. SORLA facilitates internalization of GFRa1/

GDNF complexes from the plasma membrane, resulting in

lysosomal catabolism of GDNF but cell surface recycling

of GFRa1. This sorting route provides an efficient pathway

for clearance of GDNF from the extracellular space and

counteracts consequences of excessive GDNF signaling,

such as hyperactivity and reduced anxiety (as seen in mice

lacking SORLA) [48]. Finally, SORLA also impacts sig-

naling through a heterodimeric neurotrophic cytokine

called cardiotrophin-like cytokine:cytokine-like factor 1

(CLC:CLF-1) [49]. Specifically, SORLA interacts with the

CLF-1 moiety to facilitate internalization of the cytokine in

complex with the ciliary neurotrophic factor receptor

(CNTFR) a. SORLA-dependent endocytosis is required for

neurotrophic signaling through CLC:CLF-1, but it also

downregulates signal reception by directing ligand and

receptor to lysosomal degradation [49].

The cell biology of SORLA-dependent sorting of neu-

rotrophins and their receptors, and the implication of

cytosolic adaptors in this process, still awaits further

investigation. However, the ability of this receptor to

impact pathways both for trophic support but also of

amyloidogenic insult to neurons makes this sorting path-

way an important target in control of neurodegenerative

processes in patients.

SORLA in renal ion homeostasis

While major attention has been focused on the relevance of

SORLA for protein sorting in neurons, other studies have

uncovered important roles for this protein in non-neuronal cell

types, as well. Thus, SORLA is abundantly expressed in the

thick ascending limb (TAL) of Henle’s loop, a distal segment

of the renal nephron responsible for water and ion homeostasis

[50, 51]. Lack of SORLA expression in epithelial cells of the

TAL results in failure to properly reabsorb sodium and chlo-

ride, a defect attributed to the inability of these cells to activate

the major sodium transporter in the distal nephron Na–K-Cl

cotransporter 2 (NKCC2) [51]. As it turns out, SORLA con-

trols the phospho-regulation of NKCC2 by interacting with

both the Ste-20-related proline-alanine-rich kinase (SPAK)

[51] and the calcineurin phosphatase [52] that carry out

phosphorylation and dephosphorylation of NKCC2, respec-

tively. These findings suggest SORLA-mediated sorting of

kinases and phosphatases as a regulatory process in modula-

tion of renal ion balance.

SORLA in vascular cell migration
and atherosclerosis

Atherosclerosis, or thickening of the artery wall, is a major risk

factor for cardiovascular morbidity and mortality, including

myocardial infarction and stroke. Atherosclerosis is caused by
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excessive accumulation of lipids in macrophages in the vessel

wall (foam cells) and by the proliferation of intimal smooth

muscle cells. Jointly, these processes contribute to the for-

mation of fibrous plaques that may obstruct the vessel lumen.

Interestingly, Sorl1 has been mapped as a pro-atherogenic

locus in mice [53]. The relevance of SORLA for atheroscle-

rotic processes was further supported by correlating

circulating levels of the shedded ectodomain sSORLA

(indicative of full-length receptor levels in tissues) with

intima-media thickness in subjects with coronary artery dis-

ease [54] or acute coronary syndrome [55]. Currently, there

are two main hypotheses how SORLA impacts atherosclerotic

plaque formation. One model suggests a role for SORLA in

control of plasma triacylglyceride levels through regulation of

lipolysis. Triacylglyceride-rich lipoproteins are highly pro-

atherogenic particles. Their turnover is determined by

hydrolysis of triacylglycerides to free fatty acids through

lipoprotein lipase (LPL) in the circulation. SORLA traffics

newly synthesized LPL molecules from the TGN to lyso-

somes, reducing the amount of the enzyme being secreted by

cultured cells [56]. In addition, SORLA mediates the endo-

cytosis of apoA-V, an activator of LPL [57, 58]. Modulation of

LPL activity through clearance of apoA-V is supported by the

loss of SORLA binding in an apoA-V variant found in indi-

viduals with severe hypertriglyceridemia [59]. Potentially,

either through control of LPL or apoA-V levels, SORLA may

inhibit lipolysis and raise the levels of pro-atherogenic

lipoprotein particles in the circulation.

An alternative model suggests a more direct role for

SORLA in atherosclerotic processes in the vessel wall. It is

based on the ability of SORLA to stimulate proliferation

and migration of intimal smooth muscle cells (SMC) and

monocytes, processes that accelerated intimal thickening

and atherosclerotic plaque formation [60–63]. Potentially,

the stimulation of SMC migration by SORLA works

through modulation of cell surface expression of the

urokinase receptor (uPAR) [64, 65]. The uPAR is a gly-

cosylphosphatidyl inositol-anchored receptor for urokinase,

a protease that activates plasminogen to plasmin, which, in

turn, breaks down the extracellular matrix. Binding of

urokinase to uPAR on the surface of cells increases their

proteolytic potential and facilitates migration. The ability

to regulate surface exposure of uPAR is seen for full-length

SORLA but also for sSORLA, suggesting both cell

autonomous and non-autonomous modes of action [65, 66].

SORLA is a risk factor for obesity

Genome-wide association studies not only confirmed the

relevance of SORL1 as a genetic risk factor for sporadic

AD [38] but also revealed a surprising association of this

locus with metabolic traits (e.g., obesity and waist

circumference) in humans and mouse models [67, 68]. In

addition, loss of SORLA expression in mice with targeted

Sorl1 disruption is protected from diet-induced obesity,

suggesting a so far unknown function for this receptor in

metabolic regulation [69, 70]. Recent studies in transgenic

mouse models shed light on potential modes of receptor

action, albeit proposing distinct roles for SORLA and

sSORLA in this context. In a study by Whittle and col-

leagues, sSORLA was shown to impair thermogenesis in

mice by binding to bone morphogenetic protein (BMP)

receptors and inhibiting BMP/TGF b signaling in adipo-

cytes [69]. Thermogenesis is the process of heat

production from metabolic fuel and a driving force for

consumption of body lipid stores by brown adipose tissue.

Mice genetically deficient for SORLA are protected from

diet-induced obesity because of enhanced thermogenesis

in adipose tissue, providing an explanatory model for the

association of SORL1 with obesity in the human popula-

tion [69].

An alternative model to explain the role of SORLA in

energy homeostasis entails intracellular sorting of the

insulin receptor (IR) [70]. One of the actions of insulin

signaling in adipocytes is the downregulation of lipolysis.

This mechanism reduces energy production from break-

down of lipid stores in a state of sufficient energy supply

from carbohydrates. Cellular signal transduction proceeds

through binding of insulin to the IR on the surface of target

cells and subsequent endocytosis of receptor and hormone

complexes. Internalization serves two purposes. First, it

delivers receptor-ligand complexes to endosomes, a pre-

requisite for signal transduction. Second, it moves

receptor-ligand complexes to lysosomal compartments for

catabolism, a mean to downregulate signal reception. In a

process reminiscent of APP sorting in neurons, SORLA

interacts with internalized IR molecules in endosomes and

shuttles them back to the TGN. Retrograde trafficking

reduces lysosomal catabolism and increases the fraction of

IR molecules recycled back to the cell surface. SORLA-

dependent recycling sensitizes adipocytes for insulin signal

reception and enhances the impact of insulin on blockade

of lipolysis. Consequently, overexpression of SORLA in

adipose tissue of mice inhibits lipolysis and promotes the

fat mass gain, while loss of the receptor expression

increases lipolysis rate and protects animals from obesity

and secondary metabolic complications [70].

In obese human subjects, the levels of SORLA in adi-

pose tissue [70] and those of sSORLA in the circulation

[69] positively correlate with the body mass index.

Although the exact mode of action in adipose tissues as

humoral factor or as sorting receptor still awaits further

clarification, all current data support the significance of

SORL1 as genetic risk factor of obesity in the human

population.
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Outlook: SORLA dysfunction as an explanatory
model for comorbidities?

Studies on seemingly unrelated disease entities have

converged on SORLA as a sorting receptor for multiple

ligands in organs, such diverse as the brain, the kidney,

or adipose tissue. These observations raise the intriguing

possibility that SORLA (dys)function may explain some

of the comorbidities commonly seen in the human

population as exemplified for AD and type II diabetes

(T2D). T2D, a disease characterized by lack of respon-

siveness of cells to insulin (insulin resistance), is one of

the major risk factors for sporadic AD [71]. As well as

in peripheral tissues, such as muscle, liver, and fat,

insulin signaling is also widespread in neurons in the

brain, where it modulates central control of metabolism

but also behavior and memory [72–74]. In AD patients,

brain insulin signaling is impaired, partially due to

reduced levels of the hormone [75] and abnormal

intracellular sequestration of the IR in neurons caused by

Ab [76, 77]. Conversely, alerted levels of insulin sig-

naling in a diabetic state may impact Ab metabolism by

changing rates of production and clearance as suggested

by studies in vitro and in rodent models [78, 79]. Cur-

rently, the mechanistic link between brain insulin

resistance and amyloidogenic processes is a matter of

intense debate and the reader is referred to excellent

recent reviews in this subject ([80]). A role for SORLA

in insulin signaling in neurons has not been documented

yet. However, low levels of the receptor are likely to

result in decreased neuronal sensitivity to the hormone

as shown for adipocytes previously [70]. Although quite

speculative at present, low levels of receptor expression

in carriers of SORL1 risk alleles may thus cause both

central insulin resistance and increased amyloidogenic

burden, and prove to be an explanatory model for the

link between neurodegenerative and metabolic diseases

that warrant further exploration.
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