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Abstract 
Plants use light as source of energy and information to detect diurnal rhythms and seasonal 
changes. Sensing changing light conditions is critical to adjust plant metabolism and to 
initiate developmental transitions. Here we analyzed transcriptome-wide alterations in gene 
expression and alternative splicing (AS) of etiolated seedlings undergoing 
photomorphogenesis upon exposure to blue, red, or white light. Our analysis revealed 
massive transcriptome reprograming as reflected by differential expression of ~20% of all 
genes and changes in several hundred AS events. For more than 60% of all regulated AS 
events, light promoted the production of a presumably protein-coding variant at the expense 
of an mRNA with nonsense-mediated decay-triggering features. Accordingly, AS of the 
putative splicing factor REDUCED RED-LIGHT RESPONSES IN CRY1CRY2 
BACKGROUND 1 (RRC1), previously identified as a red light signaling component, was 
shifted to the functional variant under light. Downstream analyses of candidate AS events 
pointed at a role of photoreceptor signaling only in monochromatic but not in white light. 
Furthermore, we demonstrated similar AS changes upon light exposure and exogenous 
sugar supply, with a critical involvement of kinase signaling. We propose that AS is an 
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integration point of signaling pathways that sense and transmit information regarding the 
energy availability in plants. 

Introduction 

Photosynthetic organisms use light as a source of energy, which perpetually 

fluctuates under natural conditions due to the day-night rhythm, seasonal variation, 

and non-periodic changes depending on diverse environmental factors. Thus, 

sensing light and triggering adequate responses is of utmost importance for the 

survival and reproductive success of photoautotrophs. Plants have evolved complex 

light signaling mechanisms to adjust numerous aspects of their physiology and 

development (Jiao et al., 2007; Franklin and Quail, 2010; Kami et al., 2010; Galvao 

and Fankhauser, 2015), including seedling germination, de-etiolation of dark-grown 

seedlings, entrainment of the circadian clock, chloroplast movement, stomatal 
opening, phototropism, shade avoidance, and the timing of flowering.  

Higher plants possess at least five classes of photoreceptors mediating responses to 

different light qualities: red and far-red light can be sensed by phytochromes (PHYs) 

(Bae and Choi, 2008), blue and ultraviolet-A (UV-A) radiation are mainly detected by 

cryptochromes (CRYs, Lin and Shalitin, 2003), phototropins (Briggs and Christie, 

2002) as well as members of the ZEITLUPE family (Somers et al., 2000; Imaizumi et 

al., 2003), while UV-B light is detected by the receptor UVR8 (Rizzini et al., 2011; 

Heijde and Ulm, 2012). Many of the light-regulated processes are responsive to 

different light qualities and photoreceptor types, and require integration with 

additional signaling pathways determining plant development and adaptation. Further 

information on the light status is perceived in the chloroplast by means of 

photosynthesis, which has been demonstrated to regulate gene expression in 

different compartments, including retrograde signaling from the plastid to the nucleus 

(Foyer et al., 2012). Importantly, retrograde and photoreceptor-mediated signaling 

are interconnected to enable a coordinated response (Ruckle and Larkin, 2009; 

Estavillo et al., 2011; Lepisto and Rintamaki, 2012; Ruckle et al., 2012). 

Plant adaptation to altered light conditions can result in massive changes in plant 

physiology and growth, e.g., de-etiolation of dark-grown seedlings entails reduced 

hypocotyl elongation, opening of the apical hook, and both expansion and greening 

of the cotyledons (Franklin and Quail, 2010; Kami et al., 2010). The molecular 

mechanisms underlying these phenotypic adaptations have been intensively studied, 
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revealing complex light-regulated transcriptional networks (Jiao et al., 2007) as well 

as other modes of gene activity control. Major aspects of light signaling occur within 

the nucleus, into which PHYs are translocated upon light activation (Nagatani, 2004). 

However, light signaling has also been shown to include translational control in the 
cytosol (Liu et al., 2012b; Paik et al., 2012). 

Early steps in light signaling include inactivation of negative regulators such as 

PHYTOCHROME INTERACTING FACTORS (PIFs; Duek and Fankhauser, 2005; 

Monte et al., 2007), DE-ETIOLATED 1 (DET1), and CONSTITUTIVE 

PHOTOMORPHOGENIC 1 (COP1; Lau and Deng, 2012). Subsequently, 

photomorphogenesis-promoting transcription factors are expressed, resulting in the 

activation of downstream transcriptional networks (Hoecker, 2005; Bae and Choi, 

2008). Furthermore, light signaling can alter histone marks and change chromatin 

organization (van Zanten et al., 2010; Fisher and Franklin, 2011). Light-induced 

switching from skoto- to photomorphogenesis is accompanied by fundamentally 

altered gene expression patterns. For instance, more than 20% of all genes in rice 

and Arabidopsis thaliana are differentially expressed in dark-grown compared to light-

exposed seedlings (Ma et al., 2001; Tepperman et al., 2001; Jiao et al., 2005; Jiao et 
al., 2007). 

Earlier studies mainly considered quantitative changes in gene expression upon 

altered light signaling. However, it is now becoming evident that alternative precursor 

mRNA (pre-mRNA) processing substantially increases transcriptome complexity and 

can play an important role in modulating gene expression in response to internal and 

external cues. Among these mechanisms, alternative pre-mRNA splicing (AS) is 

particularly widespread in higher eukaryotes including plants, affecting more than 

60% of all intron-containing genes in A. thaliana (Filichkin et al., 2010; Marquez et al., 

2012). While regulation and functions of most AS events remain to be addressed, 

compelling evidence for the relevance of selected AS instances in plant physiological 

responses has been provided (Syed et al., 2012; Reddy et al., 2013; Staiger and 

Brown, 2013). For example, intricate links between the circadian clock and AS 

regulation were uncovered in A. thaliana (Sanchez et al., 2010; Staiger and Green, 
2011; James et al., 2012; Wang et al., 2012). 

AS is perfectly suited to coordinately regulate gene expression, and might play an 

important role in plant light signaling as well. This hypothesis is supported by the 
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functional analysis of selected AS events, and previously described effects of light 

conditions on AS in different plant species. For the PHY-specific type 5 phosphatase, 

two protein variants with distinct sub-cellular localization patterns are derived from AS 

of the corresponding pre-mRNA (de la Fuente van Bentem et al., 2003). In the case 

of a homolog of the light-regulatory transcription factor LONG HYPOCOTYL 5 (HY5), 

HY5-HOMOLOG (HYH), AS generates transcript variants encoding protein versions 

with different stabilities (Sibout et al., 2006). However, the regulation of these AS 

events and their putative role in light signaling were not investigated. Examples for 

the influence of light conditions on AS include genes encoding an ascorbate 

peroxidase (Mano et al., 1997) as well as a hydroxypyruvate reductase (Mano et al., 

1999) in Cucurbita sp. (pumpkin), and high-light-modulated AS for homologs of the 

family of serine/arginine-rich (SR) splicing factors from A. thaliana (Tanabe et al., 

2007). Comparisons of AS profiles for light- versus dark-grown rice seedlings using 

microarrays (Jung et al., 2009) and for A. thaliana seedlings with a high-resolution 

reverse transcription polymerase chain reaction (RT-PCR) panel (Simpson et al., 

2008) indicated that light-mediated changes in AS patterns might affect the 

expression of numerous genes. This notion was further supported by recent studies 

using RNA sequencing (RNA-seq) to deduce light-regulated AS patterns in a 

transcriptome-wide manner in the moss Physcomitrella patens (Wu et al., 2014), 

etiolated A. thaliana seedlings (Shikata et al., 2014), and light-grown A. thaliana 

plants (Mancini et al., 2016). Interestingly, Wu et al. (2014) and Shikata et al. (2014) 

reported PHY signaling acting upstream of light-regulated AS. By contrast, AS 

patterns for a subset of genes in A. thaliana exposed to alternating light/dark 

conditions changed independent of photoreceptors (Petrillo et al., 2014a; Petrillo et 

al., 2014b; Mancini et al., 2016). These findings raise the intriguing questions 

whether independent signaling pathways in light-regulated AS exist and how AS 

changes can contribute to plant adaptation to altered light conditions. The 

identification of the SR-like splicing factor REDUCED RED-LIGHT RESPONSES IN 

CRY1CRY2 BACKGROUND 1 (RRC1) as a novel component of PHYB signaling 

uncovered a further connection between light signaling and AS (Shikata et al., 2012a; 

Shikata et al., 2012b). The rrc1 mutant was impaired in the PHYB-dependent light 

response and showed AS changes for several SR genes (Shikata et al., 2012b). 

RRC1 functioning in light signaling was dependent on its C-terminal arginine/serine-

rich (RS) region (Shikata et al., 2012a). Given that the RS domain of splicing factors 
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is assumed to play an important role in spliceosome assembly (Reddy et al., 2013), it 

can be anticipated that RRC1 acts in PHYB signaling via light-regulated AS of 

downstream targets. 

In this work, we analyzed transcriptome-wide gene expression and AS changes in 

etiolated A. thaliana seedlings exposed to blue, red, and white light. Our study 

revealed that light signals trigger rapid AS responses of numerous genes, including 

splicing factors and other functional groups. Among these candidates was RRC1, 

which was previously shown to play a role in PHYB signaling. The light signaling 

phenotype of an rrc1 mutant could only be complemented with the splicing variant 

that is up-regulated upon light exposure, indicating the presence of a self-reinforcing 

circuit. Based on AS analyses under different light conditions, the major 

photoreceptors for blue and red light play no essential role in regulating these events 

during photomorphogenesis in white light. Interestingly, the AS output was similarly 

changed by light and sugar feeding in darkness, and depended on kinase signaling. 

Our data also revealed a correlation between the AS output and expression of target 

genes of SUCROSE-NON-FERMENTATION1-RELATED KINASE 1, a central 
integrator of plant energy signaling. 

 

Results 

Dark-grown seedlings display numerous alternative splicing changes upon 
exposure to blue, red, or white light 

Previous studies have established massive transcriptomic re-programming in the 

switch from skoto- to photomorphogenesis (Jiao et al., 2007). To investigate the 

potential impact of AS on gene expression in response to altered light conditions, we 

analyzed transcriptomes of A. thaliana seedlings grown for 6 days in darkness and 

exposed for 1 or 6 h to blue, red, or white light by RNA-seq. Two replicate samples 

for each time point and light quality, as well as corresponding dark controls were 

generated. Mapping of the 100-bp-reads to the A. thaliana genome (TAIR10 

annotation) resulted in 86.0 - 207.6 x 106 reads per time point, based on the two 

replicate samples each (Supplemental Tab. 1). AS events were extracted from 

TAIR10 and complemented by unannotated events that were found in our data 

resulting in 56,270 AS events. To determine quantitative changes in AS and gene 
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expression, a previously established and validated computational pipeline was 

applied (Rühl et al., 2012; Drechsel et al., 2013; Drewe et al., 2013, Supplemental 

Data Set 1 and 2). Upon 1 h exposure to blue (~6 µmol m-2 s-1) or red light (~14 µmol 

m-2 s-1) at intensities that, based on previous publications (e.g. Laubinger et al. 

(2004), Shen et al. (2007)), are expected to result in overall saturating effects on 

hypocotyl elongation, 81 AS events derived from 51 genes were significantly altered 

(false discovery rate, FDR < 0.1; this FDR value is generally used unless otherwise 

mentioned; Supplemental Fig. 1A). The number of AS changes massively increased 

after 6 h blue or red light illumination (Fig. 1A, B). Additional AS shifts were detected 

upon exposure to white light (~130 µmol m-2 s-1), representing more natural light 

conditions. Considering all three light settings, 700 AS events associated with 311 

genes were significantly altered upon 6 h light exposure. As the rate of change in 

transcript steady state levels depends on transcript stability, early AS shifts will only 

be detectable for relatively unstable transcripts. We found only few consistent AS 

changes when comparing the 1 h and 6 h time points for blue and red light 

(Supplemental Data Set 1). This limited overlap can be explained by overall weak AS 

changes at the early time point and the activation of downstream signaling cascades 

at 6 h versus 1 h light exposure. To investigate the potential role of AS in all of these 

light-regulatory processes, we focused our further analysis on the 6 h time point. We 

noticed that the AS responses for the three light qualities showed only a partial 

overlap, independent of the FDR cutoff value (Supplemental Fig. 1B). While blue and 

red light primarily elicit CRY and PHY photoreceptor signaling, respectively, both 

signaling pathways should become active in response to white light. Thus, most of 

the AS changes observed in response to monochromatic light were also expected to 

be present upon white light exposure. To reduce the effect of AS fluctuation between 

samples, which is expected to be most prevalent for low-abundant splicing variants 

with few supporting reads, and to select for AS events that are more likely biologically 

relevant, we included an additional filter for effect size (change in splicing index, SI > 

0.05; Supplemental Fig. 1C & Supplemental Data Set 3). Addition of the SI filter 

reduced the number of detected events, while the overlap between the different light 

qualities was still limited. We assumed that this might be caused by a too stringent 

FDR filter. Therefore, we considered next all events with an FDR < 0.1 in at least one 

color, and then filtered for SI > 0.05 (Fig. 1C). Applying this filter strategy resulted in 

strongly overlapping patterns of AS changes for all three light qualities, with 87.5% - 
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98.0% of all events altered in one color being also affected in at least one more light 

condition (Fig. 1C). The majority of AS events were changed under all three light 

regimes, indicating common AS responses. Red light caused fewer significantly 

altered events upon FDR filtering and a lower median SI change of 0.079 compared 

to 0.137 and 0.136 in blue and white light, respectively (Supplemental Data Set 3). 

Red light thus had an overall weaker effect on AS than blue and white light. Both the 

occurrence of mostly common AS changes in response to different light qualities and, 

for some AS events, weaker quantitative effects of red light were confirmed by the 
validation experiments (see below). 

Of all 56,270 AS events detected in this analysis, 46.9%, 22.4%, 21.2%, and 9.5% 

corresponded to alternative 3’ splice sites, regulated introns (varying rate of intron 

retention/splicing), alternative 5’ splice sites, and regulated exons (cassette exons), 

respectively (Supplemental Fig. 2A). The AS analysis in this work is based on a 

heuristic method, and it was demonstrated to compare favorably to related 

approaches (Kahles et al., 2016). Similar frequencies of the different AS types have 

been observed in previous studies using the same, but also with different AS analysis 

pipelines, and are also found for the TAIR10 annotation (Supplemental Table 2). 

According to these data sets, alternative 3’ splice sites are most abundant, whereas a 

previous survey of AS in A. thaliana identified intron retention as the prevalent AS 

type (Marquez et al., 2012). These discrepancies most likely result from using 

different computational approaches for defining splicing variants, including many low-

abundant isoforms that might not be biologically relevant. Indeed, a very different 

distribution was found for the 700 light-regulated AS events: cassette exons and 

regulated introns were enriched, representing 18.0% and 37.1%, respectively, of all 

AS events altered in response to at least one light quality, while lower fractions of 

alternative 3’ (27.3%) and 5’ (17.6%) splice sites were observed. Among the light-

regulated AS events, we also identified several exitrons (Supplemental Table 3), a 

class of cryptic introns that reside within the coding region of transcripts (Marquez et 

al., 2015). Analyzing the direction of the shift for the AS events that were significantly 

altered in response to at least one light quality, we observed strong biases for the 

intron retention and cassette exon events (Supplemental Fig. 2B). In 74% of the 

significantly changed intron retention events, light triggered a shift towards the 

spliced, i.e., shorter transcript variant, while in 67% of the cassette exons a relative 

increase of the skipping variant was detected. Proportions of alternative up- and 
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downstream 5’ and 3’ splice site usage, respectively, were also elevated in response 

to light, but this effect was less pronounced than for the other two AS types. To 

assess the potential consequences of light-regulated AS on the expression of the 

corresponding genes, we compared the positions of all events to those displaying 

significant changes (Supplemental Figure 2C & Data Set 4A-D). For the light-

regulated AS events, the fractions of events associated either with the coding 

sequence or the 3’ untranslated region (UTR) were decreased and increased, 

respectively, in comparison to all events. For all subsets, however, most of the AS 

events overlapped with the coding sequence. Based on their positions within the pre-

mRNAs, light-triggered AS events can affect the coding and regulation potential of 

the resulting mRNAs. 

Previous studies have revealed widespread coupling of AS and nonsense-mediated 

decay (NMD) in A. thaliana (Kalyna et al., 2012; Drechsel et al., 2013). To assess the 

prevalence of coupled AS-NMD in the context of light regulation, the occurrence of 

NMD-triggering features in the corresponding splicing variants was analyzed. To this 

end, the AS events were integrated into the representative transcript isoform from 

TAIR10, followed by the detection of upstream open reading frames (uORFs), 

premature termination codons (PTCs), and long 3’ UTRs (Supplemental Data Set 4A-

D). Remarkably, 77.2% of all light-regulated AS events exhibit NMD features within 

the splicing isoform that is relatively more abundant in the dark samples. 

Furthermore, 61.1% of all events showed a relative switch from a putative NMD 

target to a non-NMD regulated transcript variant upon light exposure. The 

corresponding fractions were even larger when only considering events within the 

coding sequence, which accounted for most NMD-triggering features in those 

transcripts. Further evidence for coupling of light-regulated AS and NMD was 

provided by comparing the sets of significant events from this study and from a 

previous analysis upon NMD impairment (Drechsel et al., 2013): ~10% of all light-

regulated events have previously been established to involve NMD control 

(Supplemental Data Set 4E-G). Notably, the seedlings analyzed in this and the 

previous work substantially differed in their developmental stage and growth 

conditions. The frequency of coupled AS-NMD was analyzed in light-grown 

seedlings, while the current study revealed that most of the light-regulated AS-NMD 

events showed downregulation of the putative NMD form in light. Thus, the overlap 

might be even higher when analyzing seedlings cultivated under identical conditions. 



9 
	

In conclusion, light-triggered AS typically mediates a switch from a presumably NMD-

regulated transcript to a protein-coding alternative variant, enabling the activation of 

gene expression in the transition from skoto- to photomorphogenesis. 

The RNA-seq data were also analyzed for differential gene expression (Anders and 

Huber, 2010; FDR £ 0.1; Supplemental Data Set 2). In line with previous findings 

(Jiao et al., 2007), a substantial fraction of all genes were significantly up- or down-

regulated in response to light (Fig. 1D and Supplemental Fig. 3). Out of 33,602 genes 

in the TAIR10 annotation, 23,432 genes were expressed in our data set when 

considering all samples (FDR £ 0.1; method based on Gan et al., 2011). 

Furthermore, 10,271 (43.8%) of the expressed genes showed altered transcript 

levels in response to at least one light quality for the 6 h time point. White, blue, and 

red light changed the expression of 9,336, 4,381, and 4,251 genes, respectively. 

When setting a threshold of an at least two-fold change in transcript levels, 3,439, 

2,406, and 2,020 were differentially expressed upon seedling exposure to white, 

blue, and red light, respectively. This adds up to a total number of 4,310 genes, 

corresponding to 18.4% of all expressed genes. Patterns of differential gene 

expression in response to blue and red light showed a huge overlap and most of the 

changes in transcript levels upon illumination with mononochromatic light were also 

detected under white light. Furthermore, blue and red light affected the expression of 

a comparable number of genes, while on the level of AS red light was less effective 

than blue light. Moreover, many transcriptional changes were only found in response 

to white light, possibly as part of an adaptive program that is not activated by weak, 

monochromatic light. When considering differential expression separately for up- and 

down-regulated genes, slightly more genes were induced than repressed at the 6 h 

time point. We also analyzed differential gene expression for the samples exposed to 

light for 1 h (Supplemental Fig. 3). In line with the observations on the level of AS, 

fewer changes were detected for the 1 h compared to the 6 h time point. For this 

earlier time point, the number of induced genes was approximately twice the number 

of downregulated ones. Fewer down- than upregulated genes can not only be 

explained by a lower number of repressed than induced genes, but also by the 

stability of the transcripts: a significant decrease in steady state transcript levels as a 

result of diminished transcription within 1 h is expected to be detectable only for 
highly unstable transcripts. 
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To test if light affects both expression levels and AS of genes, the corresponding 

gene lists were compared separately for white, blue, and red light (Fig. 1E, F; 

Supplemental Fig. 1D). For all light qualities, a substantial fraction of the genes 

showing changes in AS had unchanged total transcript levels. Given that AS can 

contribute to quantitative gene control, for example by generating destabilized NMD 

targets (Drechsel et al., 2013), the number of light-regulated genes displaying both 

altered AS and differential gene expression in a splicing-independent manner might 

be even smaller. In summary, the altered light status triggers complex transcriptome 

reprogramming, involving changes in both gene expression and, for a smaller, mostly 
distinct set of genes, AS. 

Analyzing the functional categories of genes associated with light-regulated AS 

revealed an overrepresentation of the terms “RNA” and “metabolism” for blue light 

and “RNA” for white light (Fig. 1G, Supplemental Data Set 5). The overrepresentation 

of the “RNA” category is in line with previous publications (e.g. Filichkin et al., 2010; 

Rühl et al., 2012; Drechsel et al., 2013), showing extensive regulated AS for genes 

involved in RNA metabolism. Since numerous intergenic regions are expressed in an 

NMD-regulated manner (Drechsel et al., 2013), we compared read accumulation in 

intergenic regions for the dark- and light-exposed samples (Supplemental Data Set 

6). Several of these transcriptional units were found to overlap with previously 

identified long intergenic RNAs (Liu et al., 2012a). Read coverage for some of these 

regions differed substantially between the light conditions tested here. However, total 

expression levels were low in most cases and further studies are required to test the 
functional relevance of these transcripts. 

Finally, to rule out the occurrence of rhythmic expression in the absence of light, 

transcript levels of circadian genes were analyzed in the dark and light samples 

(Supplemental Table 4). When comparing the 0 and 6 h dark samples, no significant 

change was detectable for any of the genes. By contrast, light altered the expression 

of several of these genes, in line with the known role of light in influencing circadian 
expression patterns (Jiao et al., 2007). 

Validation of light-regulated AS events 

We next selected candidates from the list of light-regulated AS events for an 

independent experimental validation (Fig. 2). This selection covered different 

functional categories of genes, including splicing factors (Fig. 2A-D), putative 
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transcription factors (Fig. 2E-G), and a photosynthetic component (Fig. 2H). All of the 

candidate events were confirmed, in line with the high validation rate observed in 

previous studies that applied the same pipeline for AS analysis (Rühl et al., 2012; 

Drechsel et al., 2013). For some genes, several AS events were detected and we 

focused our analysis on the major splicing variants, which were also sequenced 

(Supplemental Fig. 4). For all events, the AS ratios were changed in response to 

blue, red, and white light. However, the extent of splicing change differed for some 

candidates (Fig. 2). For those candidates, white light generally caused the strongest 

AS shifts. Furthermore, for 3 out of 9 candidates, a weaker change in response to red 

compared to blue and white light was observed. These findings are in agreement with 

differences in the SI changes for the three light qualities from the RNA-seq data. 

Light-Regulated AS of RRC1 Results in a Self-Enforcing Circuit 

Previous work had identified the putative splicing factor RRC1 as a novel component 

of PHY-dependent light signaling (Shikata et al., 2012b). Interestingly, our RNA-seq 

data suggested that the inclusion of the third exon of RRC1 is regulated in a light-

dependent manner (Fig. 3A). Analyzing the AS pattern of this region via RT-PCR 

supported the notion that blue, red, and white light caused a shift toward the inclusion 

variant compared to dark samples (Fig. 3B). Separate quantitation of the two splicing 

variants revealed that light exposure resulted in slightly elevated levels of the 

representative RRC1.1 variant and diminished amounts of RRC1.2 (Supplemental 

Fig. 5A). Opposite changes in the levels of the two splicing variants were also 

observed for the light-regulated event in SR30 (Supplemental Fig. 5B), indicating that 

those shifts in splicing variant ratios are caused by AS and not by an altered 

transcript turnover rate. The exon skipping variant RRC1.2 gives rise to a frame-shift, 

resulting in a PTC two exons further downstream. We therefore assumed that this AS 

variant is targeted by NMD, which was corroborated by its accumulation in two 

mutants impaired in NMD activity (Fig. 3C). 

To test the functional significance of light-regulated AS of RRC1, complementation of 

the rrc1-2 mutant, carrying a T-DNA insertion (Fig. 3A) and previously described as a 

knockdown allele (Shikata et al., 2012b), was performed. Subsequently, we 

determined hypocotyl lengths of seedlings grown in red light or darkness (Fig. 3D). 

Median hypocotyl lengths in darkness were similar for all tested lines (Supplemental 

Fig. 6A) and lengths measured in red light were normalized to the average dark value 
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for each line to correct for a potential light-independent growth phenotype. In line with 

the previous report by Shikata et al. (2012b) and the role of RRC1 as a positive 

regulator of light signaling, rrc1-2 had longer hypocotyls than the wild type (WT; Fig. 

3D). This phenotype could be rescued upon complementation with the splicing 

variant RRC1.1, but not RRC1.2 under control of the constitutive 35S promoter. 

Complementation with a corresponding genomic construct also resulted in 

significantly shorter hypocotyls compared to the rrc1-2 mutant, even though the 

median length was still slightly elevated compared to the WT. The differences in 

hypocotyl lengths when comparing complementation with RRC1.1 and the genomic 

construct might be caused by varying levels of overexpression (Supplemental Fig. 

6B). Analysis of the RRC1 levels for the two splicing variants and total transcripts 

confirmed robust and specific expression of the constructs in all transgenic lines. 

However, the genomic construct resulted in massive over-accumulation of RRC1 

transcripts compared to a more moderate increase in the cDNA lines. To exclude an 

effect of using a strong constitutive promoter for the complementation, the constructs 

based on the two AS variants were also expressed in the WT background. None of 

these lines displayed altered hypocotyl lengths compared to WT (Supplemental Fig. 

6C-E). Moreover, immunoblot analysis allowed the detection of a protein 

corresponding to the splicing variant RRC1.1, but not RRC1.2 (Supplemental Fig. 

6F), further suggesting that the exon skipping variant is subject to NMD and does not 

lead to RRC1 protein. In line with the transcript data, protein levels were much higher 

in the plants expressing the genomic construct compared to complementation with 

the RRC1.1 construct. The strong over-expression of RRC1 upon complementation 

with the genomic construct might result in perturbed downstream signaling, which 

would explain the only partial rescue of the hypocotyl elongation phenotype in case 

of this construct. To exclude such effects, the rrc1-2 mutant was also complemented 

with constructs under control of the RRC1 promoter. Indeed, the genomic RRC1 

sequence under control of the endogenous promoter fully rescued the mutant 

phenotype (Supplemental Fig. 7A, B). Expressing the two RRC1 splicing variants 

under control of the endogenous promoter resulted in transcript levels that were 

substantially lower than in the WT, possibly due to the absence of introns 

(Supplemental Fig. 7C). Accordingly, functional complementation of the hypocotyl 

phenotype was found only for the RRC1.1 line with the highest expression 

(Supplemental Fig. 7D). As expected, none of the RRC1.2 lines showed a rescue of 
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the mutant phenotype. Taken together, light-stimulated inclusion of the cassette exon 

represents a mechanism to induce functional RRC1 expression, thereby increasing 

the levels of a positive regulator of light signaling. 

Contribution of Photoreceptors to AS Changes during Photomorphogenesis 

Recent studies in P. patens (Wu et al., 2014) and etiolated A. thaliana seedlings 

(Shikata et al., 2014) suggested a major role of PHY photoreceptors in red light-

dependent AS, whereas altered AS patterns in leaves subjected to varying light 

conditions were attributed to retrograde signaling (Petrillo et al., 2014b). These 

seemingly controversial findings may result from different experimental settings and 

suggest that various factors can influence AS patterns under changing light 

conditions. To further address this intriguing aspect, we first compared the AS 

patterns of five confirmed candidates in etiolated WT and phyA phyB double mutant 

seedlings upon illumination with white light (Fig. 4A). For all events, very similar 

patterns of light-induced AS changes in the comparison of WT and phyA phyB 

mutant seedlings were observed; significant differences between WT and the mutant 

were only found for single events and time points, and did not correlate with the 

overall light response. Interestingly, seedling growth on sugar-containing medium, as 

in the RNA-seq experiment, shifted the AS ratio into the same direction as light (Fig. 

4A, right panels). The relative change upon 6 h of light exposure, however, was 

identical for seedlings grown without and with external sugar supply and also did not 
differ between WT and phyA phyB (Supplemental Fig. 8).  

Our data did not provide evidence for a critical role of the two major red light 

photoreceptors PHYA and PHYB in triggering AS changes upon exposure to white 

light. Given that white light could trigger AS via red- and blue-light-signaling, we next 

analyzed changes in AS upon exposure to red light (Fig. 4B, Supplemental Fig. 8). 

For four out of five events, red light resulted in an AS change in both WT and phyA 

phyB seedlings. Interestingly, the mutant showed a significantly weaker red light 

response than the WT for MYBD. Furthermore, the AS ratio of PPL1 was not 

significantly changed in comparison of darkness and red light in the mutant. These 

data suggested the existence of alternative pathways controlling light-triggered AS, 

and that a contribution of PHYA/PHYB only becomes detectable for some events 

under red light. We therefore assumed that exposure of seedlings to far-red light, 

which triggers PHYA signaling but does not support photosynthesis and the 
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associated signaling, should result in more distinct AS responses in WT and phyA 

phyB seedlings. Far-red light caused an AS shift of all tested events in the WT, albeit 

quantitative changes for SR30 were substantially lower than under white light (Fig. 

4C, Supplemental Fig. 8). Remarkably, no or only very weak effects of far-red on the 

AS pattern in the mutant was detected, revealing the dependency on PHY under this 
particular light condition. 

The differences in AS responses under white, red, and far-red light highlight the 

occurrence of multiple signaling pathways, and that the major PHYs A and B are not 

essential in this process under white light. Besides PHY signaling, white light also 

activates the blue light-responsive cryptochome photoreceptors. To test for a 

potential role of CRYs, AS changes upon exposure to white light were compared 

between WT and cry1 cry2 mutant seedlings. All tested events showed the same 

white light response in WT and cry1 cry2 seedlings (Fig. 5A, Supplemental Fig. 8). 

Overall similar AS changes in WT and cry1 cry2 seedlings were also detected upon 

blue light exposure (Fig. 5B). The relative AS changes between darkness and 6 h 

blue light were slightly more pronounced in the WT than in the mutant (Supplemental 

Fig. 8); however, this quantitative difference was statistically significant only for 

SR30. Taken together, neither PHYA/B-dependent red light signaling nor CRY-

mediated blue light signaling are essential in causing the AS changes in etiolated 

seedlings exposed to white light. This observation could be explained by alternate 

signaling through either PHYs or CRYs; in this case, however, no AS changes would 

be expected upon red and blue light exposure of the phyA phyB and cry1 cry2 

mutant, respectively. While a role of other photoreceptor types cannot be fully 

excluded, it seems more likely that another, photoreceptor-independent signaling 

pathway is involved in light-responsive AS during photomorphogenesis. 

Illumination of etiolated seedlings will not only activate photoreceptor signaling and 

photosynthesis, but also entrain the expression of circadian regulators. Previous 

reports revealed intricate links between the circadian clock and AS in plants 

(Sanchez et al., 2010; James et al., 2012). To address a potential impact of circadian 

regulators, we tested light-triggered AS in mutants defective in different components 

of the circadian clock (Supplemental Fig. 9). Only for the prr7-3 prr9-1 double mutant 

a slightly weaker AS change was seen in case of RRC1, suggesting that overall 
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circadian regulators do not play a major role in the control of these AS events in the 
early phase of photomorphogenesis. 

AS Output Correlates with the Plant’s Energy Supply 

Analysis of the light-responsive AS in etiolated seedlings revealed that not only light, 

but also the growth conditions had a major impact on the splicing outcome. Etiolated 

seedlings grown on sucrose-containing medium had AS ratios shifted into the same 

direction as observed for seedlings grown without sucrose and exposed for 6 h to 

light (Fig. 4, 5). To further dissect how light and sugar can alter AS patterns, WT 

seedlings grown in darkness and on sugar-free medium were transferred to liquid 

medium with or without sugar, and kept in darkness or exposed to white light. To 

account for the osmotic effect of sugar supplementation, an additional control with an 

equimolar concentration of mannitol was included. No significant change in AS was 

detected upon 1 h incubation in darkness when comparing medium without 

supplement, with mannitol, and with sucrose (Fig. 6A). In line with the previous 

findings, light exposure resulted in a pronounced AS shift already after 1 h of 

illumination. Interestingly, at the 6 h time point, the sugar-treated and dark-kept 

seedlings showed a pronounced AS shift in the same direction and of a similar extent 

as observed in light without sugar supply. For several events, the presence of both 

sugar and light caused an even stronger AS shift than the single treatments 
(Supplemental Table 5). 

Many of the light-induced AS events are expected to be coupled to NMD. To test if 

the AS shift under these conditions might be, at least to some extent, a consequence 

of altered NMD activity, we compared the AS response to light and sucrose in 

etiolated WT and NMD mutant seedlings. Analysis of three predicted AS-NMD events 

revealed identical AS shifts in WT and lba1 seedlings upon exposure to light and 

sucrose (Supplemental Fig. 10), irrespective of the accumulation of the predicted 

NMD variant in the lba1 mutant. These data and the separate quantitation of splicing 

variants (Supplemental Fig. 5) indicate that the changes occur on the level of AS and 
not downstream of it. 

The strong effect of sucrose feeding on the AS output is in line with a previous study, 

suggesting that retrograde signaling contributes to AS control in light-grown plants 

(Petrillo et al., 2014b). Accordingly, light-mediated AS is suppressed in green plants 

upon chemical inhibition of photosynthesis by DCMU (3-(3,4-Dichlorophenyl)-1,1-



16 
	

dimethylurea; Petrillo et al., 2014b & Supplemental Fig. 11). Treatment of etiolated 

seedlings with the same inhibitor also slightly weakened, yet did not completely 

abolish the AS shift in our study (Supplemental Fig. 11). The weaker suppression of 

light-mediated AS by DCMU in etiolated seedlings might be explained by the 

absence of an active photosynthesis apparatus. Indeed, different effects of DCMU on 

light- and dark-grown plants have been described before (Mancinelli, 1994). 

Alternatively, upon disruption of photosynthesis, photoreceptor-mediated AS control 
might become detectable in etiolated seedlings, but not in light-grown plants. 

We next tested the effect of different sugars on the AS output. Treatment of etiolated 

seedlings with sucrose, glucose, or trehalose in the absence or presence of light 

revealed that sucrose was most effective (Fig. 6B). Exposure to 0.2% sucrose 

caused a strong AS shift, which was further enhanced in the presence of 2% sucrose 

(Fig. 6B). Glucose feeding caused a slightly weaker AS shift than sucrose. We also 

treated seedlings with trehalose to trigger accumulation of trehalose 6-phosphate 

(Schluepmann et al., 2004), which has previously been described as a signal for 

carbon availability (Schluepmann et al., 2012); however, trehalose exposure had only 

a minor effect on the splicing outcome. Based on these findings, we postulate that 

the AS output might be regulated in response to the plant’s energy supply, possibly 
mediated by the level of sucrose, the major transport form of photoassimilates. 

Upstream Signaling Involved in Light- and Sugar-Mediated AS Changes 

Both sugar feeding and light-driven photosynthesis alter the plant’s energy signaling, 

which might be an integration point resulting in the AS changes observed here. 

Independently acting systems for sensing the plant’s energy status have been 

described, including HEXOKINASE 1 (HXK1) and SUCROSE-NON-

FERMENTATION1-RELATED KINASE 1 (SnRK1, Sheen, 2014). To test their 

potential relevance under the conditions of our experiments, transcript levels of 

HXK1, CHLOROPHYLL A/B BINDING PROTEIN 1 (CAB1), which is known to be 

induced by light (Brusslan and Tobin, 1992), and the SnRK1 targets DARK 

INDUCED (DIN) 1 and DIN6 were measured in seedlings transferred to control or 

supplemented media and incubated for 6 h in light or darkness (Fig. 6C, 

Supplemental Fig. 12). Expression levels of HXK1 were unaffected by both sugar and 

light, while CAB1 transcript levels were elevated only in response to light. DIN1 and 

DIN6 levels, however, correlated with the AS pattern shifts, altering in response to 
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sugar and light. DIN1 and DIN6 transcript levels were reduced in response to light 

and, to an even greater extent, upon sugar exposure. As for the AS shifts, the 

maximum effect was visible when both sugar and light were supplied. The light- and 

sugar-responsive expression patterns of DIN1 and DIN6 are in agreement with 
previous reports (Thum et al., 2003; Baena-Gonzalez et al., 2007). 

The resemblance of the AS and DIN expression changes in response to light and 

sugar application would be in line with a coupling of these processes, which we first 

tested using a snrk1.1 mutant. Molecular characterization of the snrk1.1-3 mutant 

revealed that the T-DNA insertion resulted in an altered transcript and no detectable 

SnRK1.1 protein (Supplemental Figs. 13, 14). Comparing the AS patterns in etiolated 

WT and snrk1.1-3 seedlings showed a slightly different sugar response in darkness 

(Supplemental Fig. 15A). However, both the AS and DIN expression responses 

(Supplemental Fig. 15B) were overall similar in WT and mutant seedlings, suggesting 

remaining activity of the mutant allele or functional redundancy of the two close 

homologs SnRK1.1 and SnRK1.2. In line with this notion, previous studies have 

shown that the snrk1.1-3 mutant does not have an obvious growth phenotype (Mair 

et al., 2015), and that plants are impaired in development and stress responses only 

upon transient knockdown of both SnRK1.1 and SnRK1.2 (Baena-Gonzalez et al., 
2007). 

Signaling through SnRK1 is dependent on its kinase activity and can be disrupted by 

treatment with the kinase inhibitor K252a (Baena-Gonzalez et al., 2007). Thus, 

chemical inhibition of SnRK1 is expected to mimic its inactivation under conditions of 

increased energy availability. However, it should be noted that K252a has a broad 

target spectrum, resulting in the inhibition of various kinases, and not exclusively 

SnRK1. Treatment of etiolated seedlings with K252a in the dark changed the AS ratio 

for SR30, PPD2, and MYBD as sucrose supply or light exposure did (Fig. 7). 

Furthermore, in the presence of K252a, the effect of sucrose supply in darkness on 

the AS ratio of SR30 and PPD2 was significantly enhanced compared to the 

corresponding controls without inhibitor. An additional effect of K252a on the AS ratio 

was also observed for some of the light-treated samples. In the case of RRC1 and 

PPL1, K252a treatment changed AS into the opposite direction compared to sucrose 

and light treatment. These different AS responses could be explained by the 

involvement of distinct sets of splicing factors and their regulation upon inhibitor 
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treatment in a SnRK1-dependent and -independent manner, in line with the broad 

target spectrum of K252a. Thus, generation of a mutant specifically impaired in both 

SnRK1.1 and SnRK1.2 activities will be needed to test for a direct role of SnRK1 

signaling in these splicing pattern changes. Taken together, our data suggest that in 

plants AS represents an integration point of multiple signaling pathways that are 
responsive to altered energy availability. 

 

Discussion 

Photomorphogenesis Induces Complex Transcriptome Changes on the Levels 
of Gene Expression and Alternative Splicing 

Previous microarray studies revealed that a substantial proportion of the A. thaliana 

genome is expressed in a light-dependent manner (Ma et al., 2001; Tepperman et 

al., 2001; Jiao et al., 2005; Jiao et al., 2007). Genome-wide profiling based on 

oligonucleotide microarrays suggested that approximately 20% of all genes from A. 

thaliana and rice are differentially expressed in comparison of seedlings undergoing 

skoto- or photomorphogenesis (Jiao et al., 2005). In this study, we used RNA-seq to 

determine transcriptome profiles in the early phase of photomorphogenesis, induced 

by exposure of etiolated A. thaliana seedlings to blue, red, or white light. We found 

that 18.4% of all expressed genes show an at least twofold increase or decrease of 

total transcript levels in response to 6 h light exposure for one or several light 

conditions. Accordingly, the extent of light-modulated gene expression seems to be 

comparable in the transition phase and upon constant growth in different light 

regimes. When comparing different light qualities, blue and red light affected similar 

numbers of genes, with a substantial gene overlap. This observation is in agreement 

with previous studies showing that only relatively few genes are specifically regulated 

by monochromatic light (Ma et al., 2001; Jiao et al., 2005). Furthermore, we found 

that most of the genes showing altered expression upon exposure to blue and red 

light, but also many additional genes, were responsive to white light. The finding that 

white light is most effective can be explained by the activation of both blue and red 

light signaling as well as by the higher intensity of white light, which was used to 
analyze the seedling response under standard illumination conditions. 
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Analysis of our RNA-seq data further revealed that the photomorphogenic response 

is not only accompanied by differential expression of numerous genes but also 

involves massive AS changes. Illuminating etiolated seedlings for 6 h caused 

significant changes in 700 AS events under at least one light condition. Upon 

additional filtering for the effect size, most regulated AS events were altered under all 

three light conditions. Interestingly, several AS events showed weaker quantitative 

changes under red light compared to blue and white light. We used intensities of blue 

and red light that are expected to overall saturate the effect on hypocotyl elongation. 

However, this does not exclude that stronger and/or additional AS shifts may be 

detected upon exposure of etiolated seedlings to monochromatic light of higher 

intensities due to photoreceptor-dependent and -independent signaling. Comparison 

of the sets of genes displaying light-modulated gene expression and AS highlighted 

the existence of mostly distinct and few common targets. This overlap might be even 

lower, considering that many AS variants from A. thaliana have been reported to be 

targeted by NMD (Kalyna et al., 2012; Drechsel et al., 2013). Accordingly, AS shifts 

affecting the formation of destabilized transcripts are also expected to change total 
steady state transcript levels. 

To test for a role of coupled AS-NMD in light-responsive gene control, we analyzed 

which types of AS events are affected and whether this has an effect on the 

presence of NMD-triggering features. Instances of light-regulated AS were enriched 

for intron retention and cassette exon events, both of which are known to frequently 

introduce NMD target features (Kalyna et al., 2012; Drechsel et al., 2013). For 

example, splicing factors from the family of POLYPYRIMIDINE TRACT BINDING 

PROTEINS, such as PTB1 and PTB2 from A. thaliana, activate inclusion of so-called 

poison exons in their corresponding pre-mRNAs, thereby introducing PTCs and 

rendering the transcripts sensitive to NMD (Stauffer et al., 2010). The auto- and 

crossregulatory mechanism allows balancing of gene expression based on coupled 

AS-NMD and has been frequently observed for splicing factors from animals and 

plants (Staiger et al., 2003; Lareau et al., 2007; Isken and Maquat, 2008; Schoning et 

al., 2008; Palusa and Reddy, 2010; Wachter et al., 2012). Regarding the direction of 

AS changes, the majority of light-regulated cassette exon and intron retention events 

resulted in skipping and splicing, respectively, upon light exposure. Interestingly, a 

previous study in P. patens showed the opposite effect for intron retention events, 
i.e., preferential intron retention upon light exposure (Wu et al., 2014). 
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Based on the predominant AS shifts observed in our study, we anticipated that light 

exposure reduces the number of transcripts containing NMD-triggering features. 

Implementing the AS events into the corresponding full-length transcripts further 

corroborated this assumption: 77.2% of the light-responsive AS events exhibited 

NMD target features for the splicing variants being relatively more abundant in 

darkness. Furthermore, 61.1% of the significant events showed a light-dependent 

relative shift from a splicing variant containing NMD-eliciting features to an mRNA 

without such characteristics. It will be interesting to test how many of these 

transcripts are indeed regulated by NMD, and to what extent accumulation of the 

corresponding proteins is affected by the changes in AS-NMD. Based on the large 

number of light-regulated AS events affecting the presence of NMD target features, it 

seems likely that the expression of numerous genes can be restricted by the 

formation of NMD-regulated splicing variants in darkness, whereas light shifts the AS 

outcome towards a more stable mRNA and translation into the corresponding factors. 

The involvement of coupled AS-NMD in light-triggered processes further expands the 

functions of NMD, which is increasingly recognized as an important regulator of 

physiological transcripts besides its role in RNA surveillance (Drechsel et al., 2013; 

Karam et al., 2013; Gloggnitzer et al., 2014; Sureshkumar et al., 2016). Furthermore, 

alternative strategies for preventing the translation of unproductive transcripts have 

been described in plants, in particular nuclear retention of intron-containing 

transcripts (Göhring et al., 2014). Thus, different mechanisms might contribute to the 

regulation of gene expression by targeting AS variants predominantly produced in 

etiolated seedlings. 

Light-Dependent AS Defines Expression of Splicing Factors and Is Critical for 
Light Signaling 

The genes containing light-dependent AS events showed an overrepresentation of 

the functional category “RNA”, including several splicing factors. This observation is 

in line with previous studies showing extensive and regulated AS for the pre-mRNAs 

of many splicing factors (Reddy and Shad Ali, 2011; Syed et al., 2012; Wachter et al., 

2012; Reddy et al., 2013; Staiger and Brown, 2013; Mancini et al., 2016), which 

allows quantitative gene control by coupling to NMD (see above) but might also 

increase their functional diversity. Interestingly, among our candidates was RRC1, a 

putative splicing factor that had previously been identified as a component of PHYB 
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signaling (Shikata et al., 2012a; Shikata et al., 2012b). We demonstrated in the 

current work that the corresponding AS event gives rise to one splicing variant that is 

degraded via NMD, whereas light promotes the formation of the transcript resulting in 

RRC1 protein. Complementation experiments using an rrc1 mutant revealed that only 

the light-induced splicing variant is able to rescue the mutant defect in red light 

signaling. Accordingly, generation of this PHY signaling component is limited due to 

coupled AS-NMD in darkness. The light-mediated AS change is expected to allow 

increased formation of the RRC1 protein, which, because of its function as a positive 

regulator of PHY signaling, should further enhance the light response. Previous work 

showed that the C-terminal arginine/serine-rich (RS) domain of RRC1 is required for 

its function in PHYB signaling (Shikata et al., 2012a; Shikata et al., 2012b). In 

general, the RS domain of splicing factors is critical for their splicing regulatory 

activity (Graveley, 2000; Reddy and Shad Ali, 2011). Hypomorphic rrc1 mutants 

lacking the RS domain displayed AS changes for several SR genes (Shikata et al., 

2012b), indicating that RRC1 might be directly involved in the regulation of these AS 

events. Future work needs to address whether RRC1 is a key regulator of 

downstream light-modulated AS events and what the molecular links to red light 

signaling are. Analyzing the sequence context of light-regulated AS events identified 

several enriched motifs (Supplemental Table 6), which might serve as binding sites 
for RRC1 or other splicing factors involved in this process. 

Alternative Splicing Is a Converging Point for Processes Affecting Plant Energy 
Signaling 

Our study revealed that AS of numerous genes is altered upon illumination of 

etiolated seedlings and, in the case of RRC1, can modulate light signaling. To gain a 

better understanding of light-triggered AS, the upstream regulatory components need 

to be identified. Two recent studies analyzing light-induced AS in P. patens (Wu et 

al., 2014) and etiolated A. thaliana seedlings (Shikata et al., 2014) suggested the 

involvement of PHY photoreceptors. Notably, comparison of AS changes in WT and 

phyA phyB mutants upon exposure to red light actually identified a larger number of 

PHY-independent than PHY-dependent events (Shikata et al., 2014; see also 

Supplemental Data Set 7): upon 1 h red light exposure, 1,505 and 1,714 genes were 

reported to give rise to PHY-dependent and PHY-independent AS events, 

respectively. An even lower fraction of PHY-dependent AS events were found upon 3 



22 
	

h red light exposure, triggering AS changes in 1,116 and 2,098 genes in a PHY-

dependent and PHY-independent manner, respectively. Surprisingly, most of the 

events defined to be PHY-dependent were changed only after 1 h or 3 h, raising the 

question of what the functions of numerous, short-lived AS changes might be. 

Analysis of the data from Shikata et al. (2014) using our pipeline detected far fewer 

AS changes and an increase in the number of events from the 1 h to the 3 h time 

point (Supplemental Data Set 7). The latter is expected, as changes in RNA steady 

state levels are limited by the RNA stability, and as a consequence of downstream 

signaling. Both the order of magnitude of regulated AS events and an increase in 

detectable AS changes over time are in agreement with the results from our RNA-seq 

data. Shikata et al. (2014) defined AS events to be PHY-dependent when the 

direction of change was identical in the comparison of dark versus light in WT and 

phyA phyB versus WT in light. We used an alternative constraint for calling events 

PHY-dependent, which is the occurrence of light-induced AS in the WT, but not in the 

phyA phyB mutant. Using this definition and our analysis pipeline, we identified 329 

PHY-dependent and 11 PHY-independent AS changes upon 3 h of red light 

exposure from the RNA-seq data generated by Shikata et al. (2014) (Supplemental 

Data Set 7). Thus according to our analysis, almost all AS changes detected upon 

exposure to red light of this intensity are PHY-dependent. 

By contrast, light-triggered AS changes in plants grown in light/dark cycles were 

shown to be independent of photoreceptors (Petrillo et al., 2014b; Mancini et al., 

2016). Based on our data, the PHYA/B and CRY photoreceptors also play no major 

role in AS control during photomorphogenesis in normal light conditions. AS changes 

in response to white light were identical in WT compared to phyA phyB and cry1 cry2 

mutants, which are defective in the major red and blue light receptors, respectively. 

Analysis of red-light responsive AS for a splicing factor gene in a phy quintuple 

mutant from A. thaliana also excluded, at least in light-grown plants, a role of the 

other PHYs in this process (Mancini et al., 2016). We observed that a contribution of 

PHYA/B to light-mediated AS is only detectable under red and far-red light. For most 

candidates, AS changes in response to red light were less pronounced in phyA phyB 

than in the WT. Similarly, blue light induced slightly weaker AS shifts in cry1 cry2 

compared to WT, albeit this difference was not statistically significant for most events. 

An even weaker or no AS shift in phyA phyB seedlings exposed to red light was 

shown in the validation experiments from Shikata et al. (2014). Moreover, our 
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analysis of the RNA-seq data from Shikata et al. (2014) revealed that 97% of the AS 

changes in red light are PHY-dependent (see above). The varying degree of PHY-

mediated AS control upon exposure to red light can most likely be attributed to the 

use of different light intensities, as 8.3 and ~28 µmol m-2 s-1 red light, respectively, 

were used by Shikata et al. (2014) and in our corresponding downstream analyses. 

Higher intensities of red light might result in an increased PHY response, but also 

enhance PHY-independent signaling. Accordingly, a stronger activation of 

photosynthesis at higher light intensities might explain the reduced PHY-dependency 

of the AS changes under this condition. Furthermore, we found that in response to 

far-red light, most AS events were unchanged in the phyA phyB mutant, while WT 

seedlings showed similar AS shifts as under white light. Taken together, our data 

suggest that PHYs and presumably also CRYs can induce AS changes; however, 

this effect becomes detectable only in artificial monochromatic light conditions. 

Accordingly, alternative signaling routes must exist and are active under more 

natural, white light conditions, outweighing the effect photoreceptors have on AS. 

Based on our findings, we propose that AS changes during photomorphogenesis in 

regular light conditions are primarily controlled by a metabolic signal that is derived 

from photosynthesis. A major role of PHYA/B and CRY photoreceptors only becomes 

visible under light conditions that do not, or only to a minor extent, support 

photosynthesis, namely far-red light and relatively weak red light. Moreover, sugar 

feeding in darkness had a similar effect on the splicing patterns as light exposure. In 

line with our findings for etiolated seedlings, AS changes in light-grown plants were 

reported to depend on retrograde signaling from the chloroplast to the nucleus 

(Petrillo et al., 2014b). In contrast to light-grown plants, etiolated seedlings do not 

possess a fully developed photosynthesis system. This raises the question of how 

much time etiolated seedlings need to set up photosynthesis and thereby alter 

metabolic signaling. While we are not aware of studies reporting the onset of 

photosynthesis in A. thaliana seedlings undergoing photomorphogenesis, former 

reports on other plant species suggested that photochemical activity of the 

photosystems is already detectable a few minutes after illumination of etiolated 

seedlings (Baker and Butler, 1976). In Hordeum vulgare (barley), the first CO2 

assimilates were detected 1 h after light exposure (Biggins and Park, 1966). 

Accordingly, we assume that photosynthesis is activated within the first hours of light 

exposure, resulting in altered metabolic signaling and changing AS patterns. 
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Interestingly, previous studies described metabolic repression of photoreceptor 

signaling (Sheen, 1990; Harter et al., 1993; Dijkwel et al., 1997), which might further 

limit the role of photoreceptors in the light regulation of AS	under photosynthesis-

competent conditions. The cross-talk between carbon and light signaling can also 

substantially change during plant development, as reported for the sugar- and light-

responsive transcript levels of three genes in etiolated seedlings compared to light-

grown plants (Thum et al., 2003). Similarly, the contribution of different signaling 
pathways in light-mediated AS might be altered during photomorphogenesis. 

Testing the effect of different sugars, we observed that exogenous supply of sucrose 

caused the most pronounced AS shifts. Exposure of etiolated seedlings to both light 

and sugar resulted in even stronger AS shifts than the single treatments for most 

events. This finding can be explained by the existence of independent signaling 

pathways. Alternatively, the single treatments may not have resulted in saturated 

responses, e.g. as a consequence of limited photosynthesis or inefficient sugar 

uptake and transport in the seedlings. Taking into account that already the single 

treatments resulted in very pronounced AS changes for most candidates, further 

work will need to examine whether an even stronger AS shift is of functional 

relevance. At least some of the AS events might allow a gradual response due to the 
integration of multiple signaling pathways. 

Furthermore, we demonstrated that the AS patterns correlated with the expression of 

DIN genes, which are targets of SnRK1, a central integrator of energy and stress 

signaling (Sheen, 2014). Previous work revealed inactivation of SnRK1 under 

conditions of high energy availability, in particular under light or upon sugar feeding in 

darkness (Baena-Gonzalez et al., 2007; Sheen, 2014). Interestingly, we found for 

several genes that chemical inhibition of kinases caused similar AS shifts as supply 

of light or sugar, suggesting an important role of phosphorylation in the upstream 

signaling. However, as the kinase inhibitor used in our study is not specific for SnRK1 

and because of the probable functional redundancy of SnRK1.1 and SnRK1.2, 

further work will be required to test a direct link between SnRK1 signaling and light-

/sugar-triggered AS changes. Notably, a role of AS in sugar responses is also 

supported by the findings that the splicing factor SR45 negatively regulates glucose 

signaling (Carvalho et al., 2010) and modulates SnRK1 protein stability in A. thaliana 

(Carvalho et al., 2016). SnRK1-mediated metabolic adjustment has been described 
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to involve direct phosphorylation of key enzymes in metabolism (Sugden et al., 1999; 

Harthill et al., 2006) and differential transcriptional programs (Polge and Thomas, 

2007; Baena-Gonzalez and Sheen, 2008; Mair et al., 2015). Based on our findings, 

changes in the AS program, mediated through SnRK1 and/or other kinases, might 

provide an additional and powerful means to adjust metabolism to the plant energy 
supply. 

 

 

Methods 

Plant cultivation and experiments 

Generally, seeds were sterilized in 3.75% NaClO and 0.01% Triton X-100 and plated 

on ½ MS medium containing 0.8% phytoagar (Duchefa) with or without 2% sucrose 

added. Sucrose-containing medium was used for the RNA-seq and validation (Fig. 2, 

3) experiments. The experiments with the photoreceptor mutants (Fig. 4, 5) were 

performed in parallel with seedlings grown on medium with and without sugar as 

indicated. Seeds were stratified for at least 2 days at 4°C, then germination was 

induced in white light for 2 h. Seedlings were grown in darkness for 6 days and then 

exposed to white, red, blue, or far-red light, or kept in darkness for the indicated 

period. Darkness samples were taken in green light. 

For hypocotyl assays, seeds were plated singly on plates without sucrose. After the 

initial 2 h light exposure, plates were placed in red light or in darkness for 6 days. The 

lines to be compared were grown on the same plates. Seeds were the same age. 

Seedlings were scanned after transfer to ½ MS plates with 1.5% agar. The length of 

scanned seedlings was measured using ImageJ (Schneider et al., 2012). All relative 

hypocotyl lengths are normalized to the average length of each line grown in 

darkness. 

For transfer experiments and sugar treatments (Fig. 6, 7), seeds were plated densely 

on medium without sucrose and grown in darkness for 6 days after initial light 

exposure. Seedlings were transferred to liquid ½ MS medium without or with sugar 

supplementation under green light and incubated in white light or darkness for the 

indicated periods. For kinase inhibition, 4 µM K252a (dissolved in DMSO) was 

added; the corresponding mock sample was treated with DMSO only. 
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For DCMU treatment, light-grown seedlings were cultivated under long-day 

conditions in white light for 6 days on sucrose-free ½ MS plates. Subsequently, 

seedlings were transferred to 100 µM DCMU (3-(3,4-Dichlorophenyl)-1,1-

dimethylurea; stock dissolved in ethanol, EtOH) or mock solution containing an 

equivalent concentration of EtOH, followed by 6 h incubation in darkness or white 

light. Etiolated seedlings were grown for 6 days in liquid medium (½ MS without 

sucrose) and darkness, followed by DCMU or mock treatment as described for the 

light-grown seedlings. 

The following lines have been used in different experiments: rrc1-2 (SALK_121526C, 

N667179), lba1 (Yoine et al., 2006), upf3-1 (SALK_025175), lhy-null (Yakir et al., 

2009), toc1-101 (Kikis et al., 2005), prr7-3 prr9-1 (Farre et al., 2005), phyA-211 phyB-

9 (phyA phyB), cry1-304 cry2-1 (cry1 cry2), and snrk1.1-3 (GABI_579E09; Mair et al., 

2015). 

 

Light conditions 

Continuous white light had an intensity of ~130 µmol m-2 s-1. For monochromatic light 

LED fields (Flora LED, CLF Plant Climatics) were used. Specifications: blue 420-550 

nm, maximum (max) 463 nm, Full Width at Half Maximum (FWHM) 22.2 nm; far-red 

680-790 nm, max 742 nm, FWHM 23.8 nm; red 620-730 nm, max 671 nm, FWHM 25 

nm. Light intensities are provided in figure legends and have been measured with a 

Skye SKR1850, using the far-red channel for far-red, and photosynthetically active 

radiation for blue, red, and white light. Red light intensity of ~10 µmol m-2 s-1 for 

hypocotyl assays were achieved by stacking plates with a layer of white paper 

between them. 

 

RNA-seq analyses 

Seedlings were grown in darkness for 6 days, then sampled (0h), or exposed to light 

for 1 h or 6 h, or kept in darkness for 6 h before sampling (6D). RNA was extracted 

using the EURx GeneMATRIX Universal RNA Purification Kit. Starting from 4 µg total 

RNA, libraries were prepared using the Illumina TruSeq Kit v2, Box A mostly 

according to the manufacturer's instructions (Sample Preparation v2 Guide 

September 2012). The PCR step was performed using only half the template in a 
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reaction volume of 34 µL, and the libraries were subsequently purified on a 2% 

agarose gel. After cutting a band of appropriate size from the gel for each library, the 

DNA was extracted using the Qiagen MinElute Gel Extraction Kit. Concentrations 

were determined using the Agilent 2100 Bioanalyzer with the DNA1000 Kit. RNA-seq 

libraries were prepared using the Illumina TruSeq Kit and sequenced single end with 

101 bp read length and a 7 bp index read on the HiSEQ2000, equipped with on-

instrument HCS version1.5.15 and Real time analysis (RTA) version1.13. Cluster 

generation was performed on a cBot (recipe: SR_Amp_Lin_Block_Hyb_v8.0, 

Illumina) using a flow cell v3 and reagents from TruSeq SR Cluster Kits v3 (Illumina) 

according to the manufacturer’s instructions. The final library DNA concentration was 

7 to 8 pM on the flow cell. Samples were duplexed or quadruplexed using the 

adapters 012, 006, 019, and 005 (see Supplemental Table 1). Each sample was run 

in biological duplicates. 

We used a previously established pipeline for alignment, splice event calling, and 

analyses (Rühl et al., 2012; Drechsel et al., 2013). In short, RNA-seq reads were 

aligned to the TAIR 10 reference genome using PALMapper (Jean et al., 2010) in 

two steps. First, an alignment was performed to discover novel splice junctions. 

Second, the novel splice junctions were included in the alignment to obtain a splice-

sensitive alignment. Subsequently, novel splice events were called using SplAdder 

(Kahles et al., 2016), as also described in Drechsel et al. (2013). Read counts and 

differential AS events were determined using rDiff (Drewe et al., 2013). Differential 

gene expression was analyzed using DESeq (Anders and Huber, 2010). For a 

detailed description of parameter settings, see Computational Parameter Settings in 

the Supplemental Method section. To estimate the biological variance and thus 

determine accurate false discovery rates, the analyses of differential AS events and 

differential gene expression were performed jointly on all replicates of the samples 

that were to be compared. 

For filtering the results, AS events with an FDR value below a certain threshold were 

required to not show changes in the opposite direction in any other light condition 

(i.e. (B_up < FDR and R_down > FDR and W_down > FDR) or (B_down < FDR and 

R_up > FDR and W_up > FDR) for events changing significantly in blue light). Data 

analysis was done using Excel (Microsoft) or Python (Anaconda distribution 2.1.0, 

Continuum Analytics) with SciPy (Jones et al., 2001), NumPy (van der Walt et al., 
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2011), Pandas (McKinney, 2010), Matplotlib (Hunter, 2007), and IPython (Pérez and 

Granger, 2007), or DataJoint (Yatsenko et al., 2015). 

Functional clustering using the MapMan software (Thimm et al., 2004) was done as 

previously described (Rühl et al., 2012; Drechsel et al., 2013), and as detailed in 

Supplemental Data Set 5. Extraction of NMD features and analysis of intergenic 

regions were performed as described in Drechsel et al. (2013). 

The RNA-seq data described in Shikata et al. (2014) were kindly provided by 

Kousuke Hanada. Trimming was performed as described in Shikata et al. (2014). 

Subsequently, the data was analyzed as described for our RNA-seq data. In our 

analysis of the data described in Shikata et al. (2014), we considered both read ends 

of the paired-end reads as two independent single-end reads. 

 

Calculation of splicing index and event filtering 

For determination of effect sizes, the splicing index (SI) was calculated for each event 

and light condition. SI is the ratio of the number of spliced alignments supporting the 

longer isoform, divided by all spliced alignments corresponding to this event. In case 

of intron retention events, the SI was determined as the average intron coverage 

divided by the average intron coverage plus the spliced alignments spanning the 

respective intron. As the reliability of the SI depends on the number of available 

alignments, no SI index was calculated when fewer than 10 isoform-specific reads 

were available. SI values for an event of the category ‘old’ were only computed when 

the event could be confirmed in the respective read library, that is there was a 

sufficient number of alignments present in the new libraries to call the event. 

For comparison of SI values of significantly changed AS events, the following filters 

were applied: all relevant replicates need to be assigned an SI value, and the 

variation in SI between replicates needs to be less than 0.25. Furthermore, to 

exclude splicing variants of low abundance or with minor changes, only those events 

with SI changes greater than 0.05 were considered as having changed between dark 

and light samples. When combining data from different light qualities, events with 

opposite changes in SI > 0.05 were excluded. 

 

RNA extraction, RT, qPCR, and PCR product analyses 
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RNA was extracted using the Universal RNA Purification Kit (EURx) with an on-

column DNase digest as instructed by the manufacturer. Reverse transcription was 

done with RevertAid Premium (Thermo Fisher), or using AMV Reverse Transcriptase 

Native (EURx) for light-grown sets of WT and NMD mutant seedlings. The maximum 

volume of RNA template possible and a dT20 primer were used following the 

manufacturers' instructions.  

RT-qPCRs were performed as described previously (Stauffer et al., 2010). In short, 

the Biorad CFX384 real-time PCR system and MESA GREEN qPCR Mastermix Plus 

(Eurogentec) were used. PP2A (AT1G13320) transcript levels were measured for 

normalization.  

RT-PCR fragments were separated and visualized on ethidium bromide stained 

agarose or polyacrylamide gels. Isoform concentrations were measured using the 

Agilent 2100 Bioanalyzer with the DNA1000 Kit. Oligonucleotides used are listed in 

Supplemental Table 7. Gel pictures were enhanced using the Adobe Photoshop 

autocontrast function. 

Splice variants were subcloned using the pGEM-T Vector System I (Promega) or 

StrataClone PCR Cloning Kit (Agilent) and sequenced, or sequenced directly. 

 

Statistical analysis 

Number of biological replicates (n), types of error bars, and statistical analyses are 

defined in the figure legends. 

 

Cloning procedures 

RRC1 overexpression constructs are based on the vector pGWB612 (Nakamura et 

al., 2010). Oligonucleotide sequences are listed in Supplemental Table 7. CDS of the 

splicing variants, with the 3' UTR included were amplified from cDNA and the 

genomic sequence of RRC1 was amplified from genomic DNA using primers 22/23 

and recombined using the Gateway system (Invitrogen) into pDONR207, after PCR 

extension of the attachment sites with primers 24/25. Subsequently, RRC1 

sequences were recombined into pGWB612. For the complementation constructs 

under control of the endogenous promoter, an RRC1 1013 bp putative promoter 

fragment including the 5' UTR was amplified using primers 26/27 and exchanged with 
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the 35S promoter of pGWB612 using HindIII/XbaI. Subsequently, the cDNA or 

genomic sequence was introduced as for the overexpression constructs. 

 

Plant transformation 

A. thaliana plants were stably transformed by the floral dip method (Clough and Bent, 

1998). 

 

Protein extraction and immunoblot analyses 

For immunoblot analyses, proteins were extracted as described previously (Rühl et 

al., 2012), using the following buffers: RRC1 protein was extracted using a 

denaturing buffer as previously described (Shikata et al., 2012b) with Complete 

(Roche) as protease inhibitor. SnRK1.1 protein was extracted using 50 mM Tris-HCl 

(pH 7.5), 150 mM NaCl, 0.1% (v/v) Tween 20, and 0.1% (v/v) β-mercaptoethanol. All 

extracts were cleared by centrifugation for ~20 min at 15,000 xg and 4°C. SDS-

PAGE and semi-dry immunoblotting were performed according to standard protocols. 

For detection, the following commercial antibodies were used: mouse α-HA (Sigma), 

rabbit α-SnRK1.1 (Agrisera), α-mouse-peroxidase (Sigma), α-rabbit-peroxidase 

(Sigma). Chemiluminescence detection used Super Signal West Dura (Pierce). 

 

Data Access 

Visualization of RNA-seq data is available at 

http://gbrowse.cbio.mskcc.org/gb/gbrowse/r403PAS/ 

 

Accession Numbers 

RNA-seq data have been deposited in the Gene Expression Omnibus repository 

(http://www.ncbi.nlm.nih.gov/geo) under accession number GSE70575. A list of all 

analyzed genes is provided in Supplemental Data Sets 1 and 2. 
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Supplemental Data 

Supplemental Data Sets 1-7 are available at 
http://datadryad.org/resource/doi:10.5061/dryad4nt0f 

Supplemental Figure 1. Light-Triggered AS Changes Using Different Filter Criteria. 

Supplemental Figure 2. Properties of AS Events. 

Supplemental Figure 3. Light-Dependent Changes in Total Transcript Levels.  

Supplemental Figure 4. Sequences of Splicing Variants Identified. 

Supplemental Figure 5. Changes in Splicing Variant Levels of RRC1 and SR30 in 
Response to White, Blue, and Red Light. 

Supplemental Figure 6. Overexpression of RRC1 Does Not Affect Hypocotyl 
Length. 

Supplemental Figure 7. Complementation of the rrc1-2 Mutant Using Constructs 
under Control of the Endogenous Promoter. 

Supplemental Figure 8. AS Shifts in Response to White Light Are Comparable in 

Wild Type and Photoreceptor Mutants. 

Supplemental Figure 9. Circadian Regulators Do Not Majorly Influence Light-
Dependent AS of Select Candidates. 

Supplemental Figure 10. Light- and Sucrose-Triggered AS Changes Are 
Comparable in WT and NMD Mutant Seedlings. 

Supplemental Figure 11. DCMU Treatment Reduces Light-Dependent AS Changes 
in Light- and Dark-Grown Arabidopsis Seedlings. 

Supplemental Figure 12. Transcript Levels of HXK1 and CAB1 in Response to 
Sucrose and Light. 

Supplemental Figure 13. Analysis of the T-DNA Insertion Mutant snrk1.1-3. 

Supplemental Figure 14. Genomic, Transcript, and Protein Sequences for the Wild 
Type SnRK1.1 and the Mutant snrk1.1-3 Alleles. 
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Supplemental Figure 15. AS Patterns and DIN Expression in the snrk1.1-3 Mutant. 

Supplemental Table 1. Alignment Statistics for RNA-seq Data.  

Supplemental Table 2. Frequencies of AS Types in Different Datasets.  

Supplemental Table 3. Light-Regulated AS Events of “Exitron” Type. 

Supplemental Table 4. Genes Underlying Circadian Regulation Are Not 
Differentially Expressed in Darkness.  

Supplemental Table 5. Statistical Comparison of AS Changes in Response to Light 
and Sugar. 

Supplemental Table 6. Motifs Enriched in Light-Regulated AS Events. 

Supplemental Table 7. Sequences of DNA Oligonucleotides. 

Supplemental Methods. Computational Parameter Settings. 

Supplemental Data Set 1. Computational Analysis of Transcriptome-Wide AS. 

Supplemental Data Set 2. Computational Analysis of Transcriptome-Wide 
Differential Gene Expression. 

Supplemental Data Set 3. Splicing Index Analysis. 

Supplemental Data Set 4. Analysis of NMD Target Features and Overlap between 
NMD- and Light-Regulated AS. 

Supplemental Data Set 5. Categorization of Light-Regulated and Reference Gene 
Sets into Functional Subgroups. 

Supplemental Data Set 6. Expressed Intergenic Regions. 

Supplemental Data Set 7. Computational Analysis of Transcriptome-Wide AS 
changes in response to red light based on the data from Shikata et al. (2014). 
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Figure 1. Changes in Alternative Splicing and Gene Expression in the Course of Photomorphogenesis 
Triggered by Blue, Red, and White Light. 

(A, B) Venn diagrams showing the numbers of significantly altered AS events (A) and the corresponding 
numbers of genes affected (B) upon 6 h exposure to blue (~6 µmol m-2 s-1), red (~14 µmol m-2 s-1), and 
white (~130 µmol m-2 s-1) light (FDR < 0.1). Events or genes showing changes in opposing directions 
under two light conditions were excluded. Total numbers of events/genes changing under each light 
condition are given in parentheses. 

(C) Venn diagram of significantly altered AS events after 6 h light exposure upon additional filtering based 
on the effect size (change in splicing index, SI > 0.05). Only events with an FDR < 0.1 under at least one 
light condition were considered for SI analysis. Events with SI changes in opposite directions under two 
conditions were excluded. Events are grouped according to their SI only. 

(D) Venn diagram of genes changing in total expression (TX) upon 6 h exposure to blue, red, and white 
light (FDR ≤ 0.1). Total numbers of genes changing under each light condition are given. 

(E, F) Genes exhibiting changes in AS, TX, or both upon 6 h white (E) and blue (F) light exposure. 

(G) Gene ontology term analysis of genes undergoing AS or TX changes, upon 6 h white or blue light 
exposure compared to all AS events detected and all genes in MapMan, respectively. met., metabolism; 
misc., miscellaneous; cell div. & dev., cell division & development; “*” indicate terms overrepresented 
compared to all AS events and all genes in MapMan, respectively, with Bonferroni-corrected p < 0.05. 
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Figure 2. Validation of Light-Dependent Alternative Splicing in Genes from Different Functional 
Categories. 

Splicing variants of genes encoding splicing factors (A-D), putative transcription factors (E-G), a 
photosynthetic component (H), and a hypothetical chloroplast protein (I) were co-amplified from samples 
grown in darkness and collected at 0 h or after 6 h exposure to white (~130 µmol m-2 s-1), blue (~6 µmol 
m-2 s-1), or red (~18 µmol m-2 s-1) light (top, middle, bottom bars), and quantified using a Bioanalyzer. 
Shown are representative agarose gels with double arrowheads pointing at 300 bp of a DNA size ladder 
with 100-bp increments, and PCR products from 0 h (left) and 6 h white light (right) samples. The variants 
quantified are labeled (.1 or .2) and partial (A-C, E, G, I) or full (D, F, H) gene models are shown with 
introns represented by lines and exons by boxes. Regions colored in dark grey are UTRs, and asterisks 
mark the introduction of a premature termination codon. Solid arrowheads show the positions of the 
primers used, and the arrow (C) indicates a splice-junction-spanning primer. Bars give average relative 
splice form ratios with the ratio in darkness set to 1, as indicated by the light grey background bar for 
each color. Error bars are SD, n = 3. Scale bars beneath the models represent 500 bp. 
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Figure 3. Light Promotes AS of RRC1 to the Variant Required for Functioning in Phytochrome Signaling. 

(A) Models of RRC1 major splicing variants showing exons as boxes and introns as lines. UTRs are dark
grey. The positions of the co-amplification primers are given by arrowheads, and the insertion site of the
T-DNA in the rrc1-2 mutant is indicated. The asterisk marks the introduction of a premature termination
codon in the RRC1.2 variant. The co-amplified PCR products in 0 h (left) and 6 h white light (right)
samples separated on a gel are shown with the double arrowhead pointing at 100 bp of a 50-bp ladder.
Transcript models are aligned to corresponding amplification products. Below the transcript models,
coverage plots show representative RNA-seq results for a 0 h and 6 h light sample. The alternatively
spliced region is shown in black.

(B) Confirmation of light-dependent AS under ~130 µmol m-2 s-1 white (left), ~6 µmol m-2 s-1 blue (middle),
and ~18 µmol m-2 s-1 red (right) light. Splicing variants were co-amplified from samples grown in darkness
for 6 d and collected at 0 h or after 1 h or 6 h exposure to light, and quantified using a Bioanalyzer. Bars
give average splice form ratios with the ratio in darkness set to 1. Error bars are SD, n = 3.

(C) Splicing variants were co-amplified from etiolated WT plants, or indicated NMD-deficient mutants, and
quantified as in (B). Ratio in WT is set to 1; error bars are SD, n = 3.

(D) Violin plots showing the distribution of the relative hypocotyl lengths measured in red light (~10 µmol
m-2 s-1) for rrc1-2, WT, and complementation lines (top). In each violin the dashed line represents the
median, and the dotted lines the quartiles. All hypocotyls were normalized to the average length in
darkness of each line. Complementation constructs express tagged splicing variants (.1, .2) or the
genomic sequence (g) under control of the CaMV 35S promoter. Asterisks indicate p-values from Mood’s
median test compared to WT: * < 10-2, ** < 10-11, *** < 10-17. Exact p-values for all comparisons are
provided in Supplemental Fig. 6E; n is indicated above each genotype. For each complementation
construct, 3 independent F1 lines were each analyzed once in a total of 3 independent experiments.
Bottom panel shows representative seedlings from hypocotyl assays in darkness and under red light (cR). 
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Figure 4. Contribution of Phytochrome A/B Signaling to AS Control Becomes Visible in Red and Far-Red, 
But Not in White Light. 

Etiolated seedlings grown on plates with or without 2% sucrose (Suc) for 6 d were exposed to ~130 µmol 
m-2 s-1 white (A), ~28 µmol m-2 s-1 red (B), or ~15 µmol m-2 s-1 far-red (C) light for the indicated periods. 
Splice variants were co-amplified and quantified using a Bioanalyzer. AS ratios in (A) and (C) were 
normalized to the one measured for the corresponding WT 0 h on plates without sucrose, separately for 
each replicate of WT and phyA phyB sample sets. In (B), ratios were normalized to the mean value of the 
WT replicates at 0 h (- sucrose). Displayed are mean values + SD (A: n = 5-7 for SR30 and RRC1; other 
candidates: n = 3; B: n = 4 for SR30; other candidates n = 3; C: n = 3). p-values: * < 0.05, ** < 0.01, *** < 
0.001, comparing WT and phyA phyB in an independent t-test, or, if WT is set to 1, in a 1-sample t-test. 
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Figure 5. AS Shifts in Response to White Light Are Comparable in WT and cry1 cry2 Seedlings. 

Etiolated seedlings grown on plates with or without 2% sucrose (Suc) for 6 d were exposed to ~130 µmol 
m-2 s-1 white (A) or ~4 µmol m-2 s-1 blue (B) light for the indicated periods. Splice variants of the indicated 
genes were co-amplified and quantified using a Bioanalyzer. AS ratios were normalized to the one 
measured for WT 0 h on plates without sucrose. Displayed are mean values + SD (n = 3-4). Statistical 
comparison of WT and cry1 cry2 using independent t-test, or, if WT is set to 1, in a 1-sample t-test (* < 
0.05). 
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Figure 6. Sucrose and Light Cause Comparable AS Shifts. 

(A) Seedlings were grown in darkness for 6 d and afterwards incubated in control medium (MS), mannitol 
(Man), or sucrose (Suc) solutions for 1 h or 6 h in darkness or ~130 µmol m-2 s-1 white light. Alternative 
splice forms were co-amplified and quantified using a Bioanalyzer. Ratios were normalized to the 
corresponding control samples in darkness. Color scheme for dark (gray) and light (yellow) samples 
applies to all panels. Displayed are mean values (n = 3). Error bars are SD; p-values: * < 0.05, ** < 0.01, 
*** < 0.001 comparing Man and Suc to the MS light and dark sample, respectively. Tests are independent 
t-tests when not tested against 1, and 1-sample t-test when tested against 1. Detailed results from the 
statistical analysis are provided in Supplemental Table 5. 

(B) AS analysis of SR30 in seedlings grown in darkness and incubated in control medium (MS), sucrose 
(Suc), mannitol (Man), glucose (Glc), or trehalose (Tre) solutions for 6 h in darkness or ~130 µmol m-2 s-1 
white light. Data are normalized to MS sample in darkness. Displayed are mean values (n = 3-5) + SD. 
Statistical comparison between MS and different sugars as detailed in (A); dark and light samples were 
analyzed separately. 

(C) RT-qPCR analysis of transcript levels for SnRK1.1 targets. Sample description and data 
normalization, depiction, and statistical analysis as described in (A). Data displayed on a log scale. 
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Figure 7. Light- and Sucrose-Regulated AS Involves Kinase Signaling. 

WT seedlings were grown in darkness and then incubated in control medium (mannitol, Man) or sucrose 
(Suc) solution for 3 h or 6 h in darkness or ~130 µmol m-2 s-1 white light. Incubation was performed in the 
absence (control) or presence of the kinase inhibitor K252a. AS ratios were determined as described 
before and are normalized to corresponding Man samples. Displayed are mean values +SD (n = 3); p-
values: * < 0.05, ** < 0.01, *** < 0.001 comparing control and K252a treatment. Significant differences 
determined using independent t-tests when not tested against 1, and 1-sample t-test when tested against 
1. 
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