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ABSTRACT

Motivation: Deep sequencing based ribosome footprint profiling can

provide novel insights into the regulatory mechanisms of protein

translation. However, the observed ribosome profile is fundamentally

confounded by transcriptional activity. In order to decipher principles

of translation regulation, tools that can reliably detect changes in

translation efficiency in case-control studies are needed.

Results: We present a statistical framework and an analysis tool,

RiboDiff, to detect genes with changes in translation efficiency

across experimental treatments. RiboDiff uses generalized linear

models to estimate the over-dispersion of RNA-Seq and ribosome

profiling measurements separately, and performs a statistical test for

differential translation efficiency using both mRNA abundance and

ribosome occupancy.

Availability: RiboDiff webpage http://bioweb.me/ribodiff.

Source code including scripts for preprocessing the FASTQ data are

available at http://github.com/ratschlab/ribodiff.

Contact: zhongy@cbio.mskcc.org and gunnar@ratschlab.org.

1 INTRODUCTION

The recently described ribosome footprinting technology (Ingolia

et al., 2012) allows the identification of mRNA fragments that were

protected by the ribosome. It provides valuable information on

ribosome occupancy and, thereby indirectly, on protein synthesis

activity. This technology can be leveraged by combining the

measurements from RNA-Seq estimates in order to determine

a gene’s translation efficiency (TE), which is the ratio of the

abundances of translated mRNA and available mRNA (Ingolia et al.,

2011). The normalization by mRNA abundance is designed to

remove transcriptional activity as a confounder of RF abundance.

The TEs in treatment/control experiments can then be compared

to identify genes most affected w.r.t. translation efficiency. For

instance, Thoreen et al. (2012) considered a ratio (fold-change)

of the TEs of treatment and control. However, what these initial

approaches only take into account partially is that one typically only

obtains uncertain estimates of the mRNA and ribosome abundance.

In particular for lowly expressed genes, the error bars for the ratio
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of two TE values can be large. As in proper RNA-Seq analyses, one

should consider the uncertainty in these abundance measurements

when testing for differential abundance. For RNA-Seq, this has

been described in various ways often based on generalized linear

models taking advantage of dispersion information from biological

replicates (Robinson et al., 2010; Anders et al., 2012; Drewe et al.,

2013). In Wolfe et al. (2014) and Zhong et al. (2015), a way to adopt

an approach for RNA-Seq analysis for this problem was described

that had several conceptual and practical limitations. Here, we

describe a novel statistical framework that also uses a generalized

linear model to detect effects of a particular treatment on mRNA

translation. Additionally, our approach accounts for the fact that two

different sequencing protocols with distinct statistical characteristics

are used. We compare it to the Z-score based approach (Thoreen

et al., 2012), DESeq2 (Love et al., 2014) and a recently published

tool Babel (Olshen et al., 2013) that is based on errors-in-variables

regression. Shell and Python scripts for trimming RF adaptor,

aligning reads, removing rRNA contamination and counting reads

are also included in the RiboDiff package.

2 METHODS

In sequencing-based ribosome footprinting, the RF read count is naturally

confounded by mRNA abundance (Fig. 1A). We seek a strategy to compare

RF measurements taking mRNA abundance into account in order to

accurately discern the translation effect in case-control experiments. We

model the vector of RNA-Seq and RF read counts yi
mRNA

and yi
RF

,

respectively, for gene i with Negative Binomial (NB) distributions, as

described before (for instance, Robinson et al., 2010; Love et al., 2014;

Drewe et al., 2013): yi ∼ NB(µi, κi), where µi is the expected count and

κi is the estimated dispersion across biological replicates. Here yi denotes

the observed counts normalized by the library size factor (Supplemental

Section A). Formulating the problem as a generalized linear model (GLM)

with the logarithm as link function, we can express expectations on read

counts as a function of latent quantities related to mRNA abundance βC

in the two conditions (C = {0, 1}), a quantity βRNA that relates mRNA

abundance to RNA-Seq read counts, a quantity βRF that relates mRNA

abundance to RF read counts and a quantity β∆,C that captures the effect

of the treatment on translation. In particular, the expected RNA-Seq read

count µi
mRNA,C is given by the equation log(µi

mRNA,C) = βi
C +βi

RNA.

We assume that transcription and translation are successive cellular

processing steps and that abundances are linearly related. The expected RF

read count, µi
RF,C , is given by log(µi

RF,C) = βi
C + βi

RF + βi
∆,C . A

key point to note is that βi
C is revealed to be a shared parameter between
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Fig. 1. (A) Graphical model representing RidoDiff (Gray circle: observable variables; empty circle: unobservable variables; black square: functions; r denotes

biological replicates; i denotes a gene and G is the number of genes). The dashed line denotes the relationship that we aim to test (see Methods for details).

(B) Receiver operating characteristic (ROC) curve of RiboDiff (with separate dispersions), edgeR and DESeq2 (with interaction model), Z-score method and

Babel on simulated data with large difference between dispersions of RF and RNA-Seq counts (see also Supplementary Figure S-4). (C) Comparison of the

distribution of TE ratios of genes that were detected to have a significant change in translation efficiency by RiboDiff (w/ joint dispersion), Z-score based

analysis and Babel. DESeq2 was very similar to RiboDiff (w/ joint dispersion) and was omitted. Data was taken from GEO accession GSE56887.

the expressions governing the expected RNA-Seq and RF counts. It can be

considered to be a proxy for shared transcriptional/translation activity under

condition C in this context. Then, βi
∆,C indicates the deviation from that

activity under condition C, with βi
∆,C = 0 for C = 0 and free otherwise

(See Supplemental Section B for more details).

Fitting the GLM consists of learning the parameters βi and dispersions

κi given mRNA and RF counts for the two conditions C = {0, 1}. We

perform alternating optimization of the parameters βi given dispersions κi

and the dispersion parameters κi given βi, similar to the EM algorithm

(Supplemental Sections B and C):

βi = argmax
βi

ℓglm(βi|yi, κi) and κi = argmax
κi

ℓNB(κi|yi, µi).

As experimental procedures for measuring mRNA counts and RF counts

differ, we enable the estimating of separate dispersion parameters for the data

sources of RNA-Seq and RF profiling to account for different characteristics

(Supplemental Section E).

As in Anders et al. (2012), with raw dispersions estimated from previous

steps, we regress all κi given the mean counts to obtain a mean-dispersion

relationship f(µ) = λ1/µ + λ0. We perform empirical Bayes shrinkage

(Love et al., 2014) to shrink κi towards f(µ) to stabilize estimates (see

Supplemental Section D). The proposed model in RiboDiff with a joint

dispersion estimate is conceptually identical to using the following GLM

design matrix protocol+condition+condition : protocol (for instance,

in conjunction with edgeR or DESeq1/2).

In a treatment/control setting, we can then evaluate whether a treatment

(C = 1) has a significant differential effect on translation efficiency

compared to the control (C = 0). This is equivalent to determining whether

the parameter β∆,1 differs significantly from 0 and whether the relationship

denoted by the dashed arrow in Fig. 1A is needed or not. We can compute

significance levels based on the χ2 distribution by analyzing log-likelihood

ratios of the Null model (βi
∆,1 = 0) and the alternative model (βi

∆,1 6= 0).

3 RESULTS AND DISCUSSION

We simulated data with different dispersions applied to mRNA

and RF counts (see Supplemental Section F). We illustrate the

performance of our method RiboDiff (with separate dispersion

estimates) as well as Babel and the Z-score method. Although

conceptually closely related to RiboDiff with joint dispersion

estimates, we also include DESeq2 and edgeR with a GLM

that includes an interaction term (GLM condition + protocol +

condition : protocol) to model RNA-seq and RF counts. Figure 1B

shows the receiver operating characteristic (ROC) curve for a case

with large dispersion differences between RF and RNA-seq counts.

RiboDiff exhibits a superior detection accuracy compared to edgeR,

DESeq2, Babel and Z-score method, which is less pronounced when

RF and RNA-Seq dispersions are more similar (see Supplementary

Figure S-4). We obtained close to identical results for RiboDiff with

joint dispersion and DESeq2 with interaction term, although edgeR

with the same setting is slightly better than RiboDiff with joint

dispersion (data not shown). Our experiments illustrate that it can

be beneficial to use the RiboDiff model with separate dispersions,

in particular, when the dispersions of RF and RNA-seq data differ

considerably.

We also re-analyzed previously released ribosome footprint data

(GEO accession GSE56887). After multiple testing correction,

RiboDiff detected 601 TE down-regulated genes and 541 up-

regulated ones with FDR ≤ 0.05, which is about twice as many

as reported previously. The new significant TE change set includes

more than 90% genes identified in the previous study. RiboDiff is

also compared to Z-score method and we find major differences (see

Fig. 1C). Supplemental Section G provides the evidences showing

that the Z-score based method is biased towards genes with low

read count, whereas RiboDiff identifies more plausible differences.

Babel identifies only very few genes with differential TE. We ran the

differential test of RiboDiff on a machine with 1.7 GHz CPU and

4GB RAM, it took 23mins of computing time to finish (10, 474

genes having both mRNA and RF counts).

In summary, we propose a novel statistical model to analyze the

effect of the treatment on mRNA translation and to identify genes of

differential translation efficiency. A major advantage of this method

is facilitating comparisons of RF abundance by taking mRNA

abundance variability as a confounding factor. Moreover, RiboDiff

is specifically tailored to produce robust dispersion estimates for

different sequencing protocols measuring gene expression and

ribosome occupancy that have different statistical properties. The

described approach is statistically sound and identifies a similar set

of genes from a less developed method that was used in recent work

Wolfe et al. (2014). The release of this tool is expected to enable

proper analyses of data from many future RF profiling experiments

(e.g. Su et al., 2015). The described model assumes that RNA-seq
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and RF samples are unpaired and it is future work to extend the

flexibility of the tool to a broader range of experimental settings.
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